首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
本研究以位于山西省右玉县农牧交错带的半干旱草地生态系统为研究对象,探究短期内不同水平的氮添加对半干旱草地生态系统CO_2交换的影响。试验设置8个梯度0、1、2、4、8、16、24和32 g N·m-2(分别表示为N_0、N_1、N_2、N_4、N_8、N16、N24和N32)。采用静态箱法对草地净生态系统CO_2交换量(NEE)、生态系统呼吸(ER)进行测定,同时监测10 cm表层土壤温度和含水量。试验结果表明:短期氮添加(N32除外)显著增加农牧交错带半干旱草地生态系统净碳交换,NEE、ER和生态系统总初级生产力(GEP)在整个生长季均随氮素添加水平的上升呈单峰型变化趋势,在N16和N24处理下的生态系统CO_2交换达到最高,而N32显著降低了NEE;不同氮添加水平下,ER和GEP相对NEE更为敏感;表层(0~10 cm)土壤温度与含水量影响生态系统CO_2交换,表现为:土壤温度(10 cm)与ER呈显著正相关(R^2>0.1,P<0.05),表层(0~10 cm)土壤含水量与NEE和GEP分别呈显著正相关和显著负相关(R^2>0.1,P<0.05)。因此,短期不同水平氮添加增加了农牧交错带半干旱草地生态系统净碳吸收,对该地区草地生态系统碳的源/汇功能具有一定的参考意义。  相似文献   

2.
生态系统净碳交换(NEE)是评估碳循环及收支的重要指标,由生态系统总初级生产力(GEP)及生态系统呼吸(ER)共同决定。以晋北农牧交错带赖草草地为研究对象,利用LI-840a静态箱法,通过观测为期2年(2015-2016)围封和放牧管理下NEE、ER和GEP的日动态和季动态,分析其与气温、土壤温度(0~10 cm)、土壤含水量(0~10 cm),以及地上和地下生物量的相关性,旨在说明放牧对农牧交错带赖草草地生态系统碳交换的影响。结果表明:放牧显著降低了赖草草地地上、地下生物量;NEE、ER和GEP的日变化及季节变化特征明显,均呈现单峰型变化,在5、6、9月较低,在7-8月较高;生态系统碳交换的日变化主要受气温影响,而季节变化主要受表层土壤温度影响;同时NEE、ER和GEP与地上、地下生物量也存在极显著相关性;相比围封,放牧明显降低了该草地生物量和生态系统碳交换速率,但未改变日、季变化趋势。说明放牧通过破坏草地植被光合组织,降低了草地生态系统碳交换能力,减弱了草地生态系统碳汇功能。  相似文献   

3.
放牧强度对不同草地类型生态系统气体交换影响的研究   总被引:1,自引:0,他引:1  
为揭示不同放牧强度下不同草原类型气体交换的变化规律,在8月中旬采用Li-6400 便携式光合仪和密闭式箱法,分别对内蒙古草甸草原、典型草原和荒漠草原不同放牧强度下气体交换进行分析研究。结果表明:不同草原类型之间的生态系统净CO2交换(NEE)、生态系统总呼吸(ER)和生态系统总初级生产力(GEP)均存在显著差异(P<0.05)。草甸草原的NEE和GEP随放牧强度增加呈现降低趋势,ER则呈现上升趋势;典型草原的NEE和GEP随放牧强度增加呈现上升趋势,ER则呈现下降趋势;荒漠草原的NEE和GEP除对照区外,随放牧强度增加呈现上升趋势,而ER呈降低趋势。放牧通过对草原生态系统植物、土壤等产生影响,从而影响生态系统气体交换。  相似文献   

4.
本研究以位于山西省右玉县农牧交错带的半干旱草地生态系统为研究对象,探究短期内不同水平的氮添加对半干旱草地生态系统CO_2交换的影响。试验设置8个梯度0、1、2、4、8、16、24和32 g N·m~(-2)(分别表示为N_0、N_1、N_2、N_4、N_8、N_(16)、N_(24)和N_(32))。采用静态箱法对草地净生态系统CO_2交换量(NEE)、生态系统呼吸(ER)进行测定,同时监测10 cm表层土壤温度和含水量。试验结果表明:短期氮添加(N_(32)除外)显著增加农牧交错带半干旱草地生态系统净碳交换,NEE、ER和生态系统总初级生产力(GEP)在整个生长季均随氮素添加水平的上升呈单峰型变化趋势,在N_(16)和N_(24)处理下的生态系统CO_2交换达到最高,而N_(32)显著降低了NEE;不同氮添加水平下,ER和GEP相对NEE更为敏感;表层(0~10 cm)土壤温度与含水量影响生态系统CO_2交换,表现为:土壤温度(10 cm)与ER呈显著正相关(R~20.1,P0.05),表层(0~10 cm)土壤含水量与NEE和GEP分别呈显著正相关和显著负相关(R~20.1,P0.05)。因此,短期不同水平氮添加增加了农牧交错带半干旱草地生态系统净碳吸收,对该地区草地生态系统碳的源/汇功能具有一定的参考意义。  相似文献   

5.
[目的] 探究不同降水梯度和不同载畜率对生态系统碳交换的影响。[方法] 试验依托内蒙古乌兰察布市四子王旗短花针茅荒漠草原不同载畜率(对照、低载畜率、中载畜率、高载畜率)平台,增设模拟降水试验(减水50%、自然降水、增水50%、增水100%)。在2017年植物生长季,采用Li-6400便携式光合仪和密闭式箱法测定生态系统净碳交换(net ecosystem carbon exchange,NEE)、生态系统呼吸(ecosystem respiration,ER)和生态系统总初级生产力(gross ecosystem productivity,GEP)对不同降水梯度和不同载畜率的响应。[结果] ①降水单因素处理对NEE、ER、GEP均产生极显著(P<0.001)影响。②高载畜率处理的ER显著(P<0.05)低于对照处理。③降水与载畜率的交互作用只对GEP产生显著(P<0.05)影响。相同载畜率处理下,降水量的增加对NEE、ER、GEP均有促进作用;相同降水处理下,对照区的ER、GEP显著(P<0.05)高于高载畜率区。ER、GEP在低载畜率条件下与土壤体积含水量的线性回归模型斜率的绝对值最大。[结论] 随着土壤含水量的增加,NEE、ER、GEP呈显著增加的趋势;随着载畜率的增加,ER显著降低,降水与载畜率的交互作用只对GEP产生显著影响,尽管水分的增加促进生态系统碳交换,但中、高载畜率条件下荒漠草原生态系统碳交换对土壤水分变化的敏感性减少。  相似文献   

6.
全球平均气温的不断上升对陆地生态系统的碳收支产生了深远的影响。本研究基于LI-6400便携式光合仪和密闭箱式法,并通过设置开顶箱(OTCS)增温装置来模拟增温状态,研究了2017青海湖流域的小泊湖高寒湖滨湿地7~9月净生态系统碳交换(NEE)、生态系统呼吸(ER)、总生态系统生产力(GEP)对增温的响应。研究结果表明:1) NEE、ER、GEP均表现为明显的日变化和月变化特征,且在整个研究阶段生态系统表现为碳汇; 2)增温对NEE、GEP抑制作用明显,对ER的影响较小,增温处理下的生态系统碳交换与对照相比较弱,从而降低了整个湿地生态系统的碳汇能力。  相似文献   

7.
耿晓东  旭日 《草业科学》2017,34(12):2407-2415
高寒草甸是青藏高原主要的草地生态系统类型,对气候变化非常敏感,研究高寒草甸生态系统碳交换对升温的响应具有重要的理论和现实意义。在青藏高原中部地区的高寒草甸,使用开顶箱法(open-top chambers,OTCs)设置不增温对照(T_0)以及4个不同程度的增温处理(T_1、T_2、T_3、T_4),采用CO_2红外分析仪对生长季期间的碳交换进行连续3年的观测。结果表明,4个增温处理的5cm土壤温度较之于不增温对照分别增加1.73(T_1)、1.83(T_2)、3.03(T_3)以及3.53℃(T_4);土壤水分没有发生梯度变化。观测期间,净生态系统碳交换(net ecosystem carbon exchange,NEE)基本为负值,因此高寒草甸表现为碳汇。增温小于2℃促进总生态系统生产力(gross ecosystem productivity,GEP),但对生态系统呼吸(ecosystem respiration,ER)影响较小,因而促进NEE,即促进高寒草甸的碳吸收;但增温大于3℃则抑制GEP,对ER影响较小,因而总体上对NEE产生抑制作用。综上所述,在高寒草甸生态系统,适度增温促进碳吸收,增温过度则降低碳吸收。  相似文献   

8.
2012年生长季(6~9月)采用封闭箱法研究不同放牧强度对典型草原CO_2通量日变化的影响,结果表明:重度放牧地生物量显著低于其它放牧样地。各放牧样地草地生态系统CO_2净气体交换(NEE)在夜晚(21∶00)均为正值(碳源),不放牧地与中度放牧地在白天为负值(碳汇),但8月份重度放牧地在13∶00时转化为碳源,NEE为0.42μmol CO_2/m~2·s,而在17∶00时NEE只有-0.03μmol CO_2/m~2·s,是极弱的碳汇。放牧季开始后,重度放牧草地生态系统CO_2总固定量、生态系统呼吸和NEE均显著低于不放牧与中度放牧地。随着放牧时间增加,重度放牧地固定CO_2的能力逐渐减弱,重度放牧改变了草地植被碳的汇/源状态。  相似文献   

9.
青藏高原高寒草甸生态地位突出但退化严重,其植被光合和系统呼吸特征如何响应仍不清楚。于植被生长的旺盛期(7月中旬~8月中旬)在青藏高原祁连山南麓分别选取原生草地、中度退化和重度退化3类高寒草甸,使用自制同化箱和LI-6400便携式光合仪测定生态系统CO2净交换(NEE)、生态系统暗呼吸(RES)和生态系统初级光合(GEP),研究退化程度对高寒嵩草草甸生态系统CO2通量的影响特征。结果表明不同退化程度的NEE、RES和GEP的单峰日变化格局没有明显差异,日极值出现时间相近。日均NEE和日均RES随着退化加剧逐渐升高,重度退化较原生草地分别显著(P0.05)升高了41.8%和12.2%。日均GEP略有下降。退化降低了RES的温度敏感度(Q10),提高了群落表观光量子产额(a),但对系统潜在CO2最大同化速率(Pmax)无明显影响。在植被生长旺盛期,高寒草甸生态系统碳收支对退化的响应主要表现在系统的呼吸强度而非群落光合速率。  相似文献   

10.
以2013年10月-2014年9月连续观测的CO2通量数据为基础,分析了科尔沁草甸生态系统净碳交换量(NEE)的时间变化特征及其驱动因素。结果表明,NEE日变化季节差异明显,生长季变化幅度大,净CO2日吸收速率7月>8月>9月>6月>5月;生长季内,NEE主要受控于叶面积指数和光合有效辐射。NEE与光合有效辐射(PAR)之间的关系可用直角双曲线方程来描述,拟合得到的表观初始光能利用率α为0.0015 μmol CO2/μmol PAR,最大光合速率Pmax为0.65 μmol CO2/(m2·s)。叶面积指数(LAI)对NEE的影响可由分段函数表示,当LAI>3.08时,表现为渐进饱和型,且LAI越大NEE对PAR的响应越明显;当高饱和水汽压差(VPD)在1.5~2.0 kPa时,光合作用开始降低,NEE明显受到VPD值的抑制;短暂强降雨(累计降雨量>40 mm/d)对昼间NEE有一定的抑制,而持续低强度降雨(降雨时长>15 h)对夜间NEE存在激发作用;夜间NEE随土壤温度呈指数增长,温度敏感系数(Q10)为2.63。  相似文献   

11.
全球降水格局的改变势必会影响陆地生态系统的各项功能,而草地碳汇功能对水分的变化极为敏感.为探究不同降水梯度对生态系统碳交换产生的影响,于内蒙古四子王旗荒漠草原设置模拟降水试验(减水50%、自然降水、增水50%和增水100%),在2017年5月至9月,每隔15?d采用Li-6400便携式光合仪和密闭式箱法测定生态系统净碳...  相似文献   

12.
放牧强度对青海海北高寒矮嵩草草甸碳交换的影响   总被引:1,自引:0,他引:1  
以禁牧、轻度放牧、中度放牧和重度放牧4种不同放牧强度的高寒矮嵩草草甸为研究对象,分别于2014年和2015年植物生长季5~9月,使用LI-6400便携式光合仪和同化箱测定生态系统净CO_2交换(NEE)和生态系统呼吸(ER),并利用土壤温湿度自动记录仪测定土壤10cm处的温度和体积含水率,以研究放牧强度对青海海北高寒矮嵩草草甸碳交换的影响。结果表明:生长季5~9月,试验地10cm土壤温度的变化范围在7.21~13.23℃,随放牧强度增大而增大;体积含水率在19.68%~32.33%间波动,随放牧强度增大而减小。高寒草甸NEE在生长季表现出明显的"V"型变化,5月NEE最大,为1.43μmolCO_2/m^2·s,此时草地仍处于碳排放状态,7月最小(碳吸收速率最大),为-14.32μmolCO_2/m^2·s,吸收强度表现出随放牧强度增大而增大的趋势;ER呈倒"V"型变化规律,7月最大,为12.15μmolCO_2/m^2·s,放牧强度仅对7月的ER产生影响,其余月份4个样地差异均不显著。相关分析表明,NEE与土壤温度和绿体生物量极显著负相关,相关系数分别为-0.910和-0.559,与土壤湿度显著正相关,相关系数为0.559;ER与土壤温度和绿体生物量显著正相关,相关系数分别为0.824和0.453,与土壤有机碳含量极显著负相关,相关系数为-0.605,与土壤湿度、枯体生物量和全氮含量相关不显著。  相似文献   

13.
试验以南方改良后的暖性草丛草地为研究对象,探讨刈割对南方草地生态系统碳交换的影响。结果表明:(1)在生长季(4~9月),对照和刈割草地均处于CO2吸收阶段,但刈割草地对CO2的吸收量低于对照草地(P0.01);在非生长季(10月~次年3月),对照和刈割草地均处于碳排放阶段,但刈割草地CO2排放量显著低于对照组(P0.01),在全年尺度上,刈割草地净生态系统碳交换量(NEE)与对照草地无显著差异,且均为碳汇草地;(2)刈割草地生态系统呼吸(ER)和土壤呼吸(RS)在个别月份与对照相比有所降低,但在全年尺度上无影响;(3)生长季时,刈割草地生态系统总初级生产力(GEP)高于对照草地(P0.05),但在非生长季和全年水平下无显著差异(P0.05)。在生长季和非生长季草地生态系统碳交换量在刈割下有所变化,但在全年水平上效果并不显著。说明草地对外界干扰有一定的自我调适功能,适度刈割并不会影响草地生态系统碳循环。  相似文献   

14.
以甘肃玛曲试验站的高寒草甸为研究区域,2014年8月采用LI-8150土壤碳通量观测系统和LED灯模拟饱和光合潜力,观测对照、轻牧、重牧3个放牧梯度下的生态系统潜在净生产力(potential net ecosystem productivity,NEP_(pot))及生态系统呼吸(ecosystem respiration,Re)。结果表明,1)对照、轻牧、重牧3个处理的NEP_(pot)日变化均呈先升高后降低的变化特征,且不同时间NEP_(pot)大小均呈现出对照轻牧重牧(P0.05);Re及总初级生产力(potential gross primary productivity,GPP_(pot))有相似的变化特征;2)8月的NEP_(pot)、Re、GPP_(pot)出现逐旬降低的变化趋势;3)8月底,轻牧、重牧组地上生物量分别比对照组低24.88%、47.69%(P0.05);4)地上生物量对放牧响应的敏感性均大于GPP_(pot)、NEP_(pot)及Re(P0.001),NEP_(pot)、Re、GPP_(pot)与日均温呈正相关(P≤0.001),与5 cm土壤湿度呈负相关(P0.01)。因此,随放牧强度的增加,地上生物量的减少,高寒草甸生态系统NEP_(pot)、Re、GPP_(pot)逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号