首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Galaxy clusters form through a sequence of mergers of smaller galaxy clusters and groups. Models of diffusive shock acceleration suggest that in shocks that occur during cluster mergers, particles are accelerated to relativistic energies, similar to conditions within supernova remnants. In the presence of magnetic fields, these particles emit synchrotron radiation and may form so-called radio relics. We detected a radio relic that displays highly aligned magnetic fields, a strong spectral index gradient, and a narrow relic width, giving a measure of the magnetic field in an unexplored site of the universe. Our observations show that diffusive shock acceleration also operates on scales much larger than in supernova remnants and that shocks in galaxy clusters are capable of producing extremely energetic cosmic rays.  相似文献   

2.
The origin of cosmic rays is one of the major unresolved questions in astrophysics. In particular, the highest energy cosmic rays observed have macroscopic energies up to several 10(20) electron volts and thus provide a probe of physics and astrophysics at energies unattained in laboratory experiments. Theoretical explanations range from astrophysical acceleration of charged particles, to particle physics beyond the established standard model, and processes taking place at the earliest moments of our universe. Distinguishing between these scenarios requires detectors with effective areas in the 1000-square-kilometer range, which are now under construction or in the planning stage. Close connections with gamma-ray and neutrino astrophysics add to the interdisciplinary character of this field.  相似文献   

3.
The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.  相似文献   

4.
The dilference between the energy spectra of iron and other cosmic rays is interpreted in terms of two source mechanisms. One mechanism, possibly acceleration at neutron star surfaces, produces the iron, and another is responsible for the rest of the primary nuclei. Within this model, observations of high-energy cosmic rays could determine whether secondary nuclei are produced in the sources or in the interstellar medium.  相似文献   

5.
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest-energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.  相似文献   

6.
Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray-produced (21)Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.  相似文献   

7.
Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.  相似文献   

8.
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.  相似文献   

9.
The signal strength, bandwidth, and detection range of acoustic pulses generated by cosmic-ray air showers striking a water surface are calculated. These signals are strong enough to be audible to a submerged swimmer. The phenomena may be useful for studying very-high-energy cosmic rays and may help answer the important question of whether the origin of cosmic rays is extragalactic or galactic.  相似文献   

10.
Observations of galactic cosmic radiation and anomalous component nuclei with charged particle sensors on the Ulysses spacecraft showed that heliospheric magnetic field structure over the south solar pole does not permit substantially more direct access to the local interstellar cosmic ray spectrum than is possible in the equatorial zone. Fluxes of galactic cosmic rays and the anomalous component increased as a result of latitude gradients by less than 50% from the equator to -80 degrees . Thus, the modulated cosmic ray nucleon, electron, and anomalous component fluxes are nearly spherically symmetric in the inner solar system. The cosmic rays and the anomalous nuclear component underwent a continuous, -26 day recurrent modulation to -80.2 degrees , whereas all recurring magnetic field compressions and recurring streams in the solar wind disappeared above approximately 55 degrees S latitude.  相似文献   

11.
The active galaxy Markarian 501 was discovered with air-Cerenkov telescopes at photon energies of 10 tera-electron volts. Such high energies may indicate that the gamma rays from Markarian 501 are due to the acceleration of protons rather than electrons. Furthermore, the observed absence of gamma ray attenuation due to electron-positron pair production in collisions with cosmic infrared photons implies a limit of 2 to 4 nanowatts per square meter per steradian for the energy flux of an extragalactic infrared radiation background at a wavelength of 25 micrometers. This limit provides important clues about the epoch of galaxy formation.  相似文献   

12.
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.  相似文献   

13.
Voyager 1 crossed the termination shock of the supersonic flow of the solar wind on 16 December 2004 at a distance of 94.01 astronomical units from the Sun, becoming the first spacecraft to begin exploring the heliosheath, the outermost layer of the heliosphere. The shock is a steady source of low-energy protons with an energy spectrum approximately E(-1.41 +/- 0.15) from 0.5 to approximately 3.5 megaelectron volts, consistent with a weak termination shock having a solar wind velocity jump ratio r=2.6(-0.2)(+0.4). However, in contradiction to many predictions, the intensity of anomalous cosmic ray (ACR) helium did not peak at the shock, indicating that the ACR source is not in the shock region local to Voyager 1. The intensities of approximately 10-megaelectron volt electrons, ACRs, and galactic cosmic rays have steadily increased since late 2004 as the effects of solar modulation have decreased.  相似文献   

14.
Analysis of argon-38 and argon-39 produced by cosmic rays in four iron meteorites gives normal amounts of the radioactive product argon-39 and abnormally low amounts of stable argon-38. This indicates that these meteorites were exposed to cosmic rays for unusually short periods of time. These exposure times are one or two orders of magnitude shorter than those for the average iron meteorite, and they overlap the periods found for chondrites. It is suggested that perhaps 20 percent of the iron meteorites have similarly short exposure periods.  相似文献   

15.
Present-day (1967 to 1969) fluxes of alpha particles from solar cosmic rays, determined from satellite measurements, were used to calculate the production rates of cobalt-57, cobalt-58, and nickel-59 in lunar surface samples. Comparisons with the activities of nickel-59 (half-life, 8 x 10(4) years) measured in lunar samples indicate that the long-term and present-day fluxes of solar alpha particles are comparable within a factor of approximately 4.  相似文献   

16.
It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Ni?o. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.  相似文献   

17.
A model for lunar surface processes is presented which explains the main albedo and color contrasts and the temporal changes in these optical properties. Evidence from Apollo 11 and Apollo 12 samples and telescopic spectral reflectivity measurements indicates that the maria are similar in mineralogy on a regional scale and that the highlands are consistent with an anorthositic-gabbro composition. Bright craters and rays in both regions expose materials that are relatively crystalline compared with their backgrounds, which are richer in dark glass. With age, bright craters and rays in the maria darken in place by meteorite impact-induced vitrification and mixing with the surrounding material. Highland bright craters and rays may, however, darken primarily through regional contamination by iron- and titanium-rich mare material.  相似文献   

18.
The origin of the most energetic particles ever observed, cosmic rays, will begin to be revealed in the next few years. Newly constructed ultrahigh-energy cosmic ray observatories together with high-energy gamma-ray and neutrino observatories are well positioned to unveil this mystery before the centenary of their discovery in 2012. Cosmic ray sources are likely to involve the most energetic phenomena ever witnessed in the universe.  相似文献   

19.
Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.  相似文献   

20.
We demonstrate two approaches that use the recently developed helium spin-echo technique to measure surface potential energy landscapes. For helium-lithium fluoride (100), we use the selective adsorption phenomenon to obtain the complete experimental band structure of atoms in a corrugated surface potential. For carbon monoxide-copper (001), we measure the diffusion-induced energy broadening in the scattered helium beam and extract properties of the adsorbate-substrate potential. The measurements are made possible by the resolution of our new spectrometer, which improves on existing resolution by three orders of magnitude. We show that it is possible to produce benchmark energy landscapes to assist evaluation and development of first-principles theory in the problematic van der Waals/weak chemisorption regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号