首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
施用缓控释氮肥是降低稻田土壤氨挥发损失的常用措施之一。将缓控释氮肥与速效氮肥配施,可以解决水稻对氮素的需求与降低氮素损失之间的矛盾。在保证水稻产量的前提下,以减少稻田氨挥发损失、提高氮肥利用效率以及降低环境污染为目的,采用大田裂区试验的方法,设置不施氮肥和施氮量分别为60(N60)、120(N120)、180(N180)、240(N240)kg·hm-2 5个施氮水平,以及氮肥一次性施用(SF)及氮肥一基二追(TF)2种施肥方式,研究不同氮肥用量及运筹模式对水稻田氨挥发、氮肥利用率以及水稻产量的影响:结果表明,氮肥施用方式和施氮量对水稻田氨挥发损失量影响显著,同一施氮方式下,稻田土壤氨挥发损失量随着施氮量增加而增加,SF各处理氨挥发损失量为14.46~23.74 kg·hm-2,TF各处理的氨挥发损失量则为23.3~47.74 kg·hm-2,SF氨挥发损失量比TF降低37.9%~50.3%;氮肥施用方式显著影响氮肥表观利用率和氮肥偏生产力,SF和TF的最大氮肥表观利用率均出现在N180,分别为50.02%和38.68%;低施氮量(N60)和高施氮量(N240)时,TF氮肥偏生产力高于SF,而施氮量为120(N120)kg·hm-2、180(N180)kg·hm-2时,SF比TF氮肥偏生产力分别高出3.32和5.58 kg·kg-1;施氮量极显著影响水稻的氮素吸收量和氮肥农学利用率;SF和TF的最高产量分别出现在N180和N240,且SF高于TF,两者相差465.3 kg·hm-2。缓控释氮肥与速效氮肥配施一次性施肥可以有效降低稻田氨挥发损失,同时提升氮肥表观利用率和偏生产力,且能在施氮量较低的情况下获得较高产量,在水稻氮肥管理上具有应用价值。  相似文献   

2.
硝化抑制剂施用对水稻产量与氨挥发的影响   总被引:10,自引:4,他引:10  
孙海军  闵炬  施卫明  冯彦房  李卫正  初磊 《土壤》2015,47(6):1027-1033
通过田间微区试验,应用~(15)N标记技术研究两个施氮水平下硝化抑制剂CP施用对水稻产量、氮素利用率、氮素土壤残留和氨挥发的影响。结果表明:与推荐施氮处理(240 kg/hm~2)相比,减氮处理(180 kg/hm~2)水稻产量明显降低,但是减氮处理下施用硝化抑制剂CP后增产15.2%,差异显著,并且达到了推荐施氮处理下的产量水平。而推荐施氮处理下施用硝化抑制剂对水稻产量反而没有显著影响。施用硝化抑制剂可显著提高11.1%~25.0%的~(15)N吸收与利用效率,同时~(15)N平衡计算结果表明稻田施用硝化抑制剂减少了21.7%~28.1%的硝化?反硝化、径流等途径~(15)N损失,这可能是CP施用增加水稻产量的机理之一。然而,施用硝化抑制剂会增加54.7%~110.6%的氨挥发排放。因此,在水稻生产过程中施用硝化抑制剂CP时要进一步减施氮肥才有明显的增产效果,同时还需要采取一定的措施来控制氨挥发。  相似文献   

3.
不同供氮水平下幼龄苹果园氮素去向初探   总被引:14,自引:7,他引:7  
以2年生红富士/平邑甜茶为试材,采用田间小区和15N微区相结合,研究了不同供氮水平下幼龄苹果园氮素去向。结果表明,施用氮肥显著增加了植株生物量和吸氮量,而氮肥利用率随施氮量的增加显著降低;N75、N150和N225的氮肥利用率分别为31.28%、22.95%和19.38%。土壤残留氮量随施氮量的增加而显著增大,且残留氮素主要分布于060 cm土层,深层渗漏量很小。整个作物土壤体系氮素回收率随施肥量的增加显著降低,损失率显著增高。N75处理的氮素回收率为60.41%,显著高于N150(46.41%)和N225处理(40.88%);且损失率最低(39.59%),显著低于其它两个处理。氨挥发损失随施氮量的增加显著升高,N2O损失量各处理间无明显差异;氮素损失中氨挥发和N2O损失所占比例较低,较多的氮素通过反硝化和径流等途径损失。  相似文献   

4.
低量施氮对小青菜生长和氮素损失的影响   总被引:1,自引:5,他引:1  
采用田间试验和微区试验相结合,研究了低量施氮对小青菜(Brassica.chinensis)产量、氮肥利用率和氮素损失的影响,其中氮素总损失用15N示踪法测定,氨挥发用通气密闭室法测定,反硝化损失用乙炔抑制-原状土柱培养法测定,不加乙炔测定N2O排放。结果表明,施用氮肥显著增加了小青菜的产量和吸氮量,在75和150kg/hm2氮肥水平下,氮肥利用率分别为46.8%和39.4%。由于试验地土壤pH低(5.38),各处理的氨挥发均很低且差异不大,施用氮肥没有增加氨挥发。试验地土壤反硝化损失和N2O排放量较高,分别为N4.34kg/hm2/sup和N2.65kg/hm2,施用氮肥没有增加反硝化损失和N2O排放,表明氮源不是反硝化作用的限制因子。在N75和150kg/hm2两个施氮水平下,氮素回收率分别为103%和91.3%,并且土壤残留氮主要累积在020cm土层,表明肥料氮损失很少,这与氨挥发、反硝化损失较低的结果相吻合。  相似文献   

5.
控释氮肥在淹水稻田土壤上的去向及利用率   总被引:57,自引:11,他引:57  
通过土壤渗漏装置、微区和田间小区试验,研究了15N标记控释氮肥在淹水稻田土壤上氮素的去向和利用率。结果表明,施用控释氮肥能明显地降低氨挥发、淋失和硝化—反硝化的损失。控释氮肥处理的氨挥发量比尿素降低54.0%,氮淋失量降低32.5%。尿素的硝化—反硝化损失量占施入氮量的34.5%,而控释氮肥的只占2.0%;控释肥料与尿素氮在0—80cm土层中的残留率相近。控释氮肥一次性全量作基肥施入土壤,水稻的氮肥利用率平均为65.6%,比尿素(基肥+追肥)高出32.2个百分点。控释氮肥的农学效率显著地高于尿素。  相似文献   

6.
传统和优化施氮对春玉米产量、氨挥发及氮平衡的影响   总被引:3,自引:1,他引:2  
【目的】本文通过在陕西省长武县(CW)和吉林省梨树县(LS)的春玉米田间试验,研究了传统和优化施氮对春玉米产量、土壤氨挥发及氮平衡的影响,以探讨春玉米氮肥优化的潜力及其对农田氨减排的效果。【方法】试验设对照、传统施氮(长武N 250 kg/hm2,梨树N 300 kg/hm2)及优化施氮(N 200 kg/hm2)3个处理,分别以N0、Ncon、Nopt表示。氨挥发采用德尔格氨管法(简称DTM法)进行原位测定,通过田间气象因素的校正计算氨挥发累积量。【结果】长武和梨树点不同施氮处理下春玉米的产量结果表明,除对照(长武7.9 t/hm2、梨树3.8 t/hm2)外,传统和优化施氮处理间均无显著差异(长武10.6 10.8 t/hm2,梨树9.5 9.6 t/hm2)。玉米氮肥利用率表现为优化施氮(44.3%44.5%)显著高于传统施氮(33.6%36.4%),其中长武点氮肥利用率提高了8.1个百分点,梨树点氮肥利用率增加了10.7个百分点。氨挥发田间监测结果显示,基肥翻耕入土后,伴随降雨的产生,长武和梨树点均未产生氨挥发。喇叭口追肥期表施氮肥后,长武和梨树点均产生大量氨挥发(占追施尿素氮量的16%22%),减少追肥用量N 30 kg/hm2(长武点)和N 100 kg/hm2(梨树点)能显著减少氨挥发损失N 8和15 kg/hm2。土壤-春玉米系统氮平衡估算的结果显示,与长武点氮素表观矿化N 97 kg/hm2相比,梨树点仅为N 16 kg/hm2。优化施氮比传统施氮处理显著降低表观氮素盈余N 48 88 kg/hm2。长武点各施氮处理的表观氮素盈余中,约46%的氮素残留在0—1 m的土壤中,54%损失到环境中,氨挥发占总损失的15%30%;梨树点表观氮素盈余中,35%损失到环境中,其中氨挥发占总损失的54%75%,约有65%残留在0—1m的土壤中。梨树点传统施氮处理0—1 m土层的氮素残留达N 140 kg/hm2,部分残留在土壤中的氮素也将面临淋洗、硝化和反硝化等损失的风险。与优化施氮相比传统施氮氮素表观损失增加了约N 30 40 kg/hm2,除氨挥发损失外,淋洗和硝化/反硝化等也是土壤-春玉米系统中不可忽视的氮素损失途径。【结论】我国春玉米主产区农民传统的氮肥用量偏高,增产效应不明显,氮肥损失风险加剧,尤其是氨挥发损失较大,氮肥的优化潜力高达20%33%,相当于可减少施氮N 50 100kg/hm2。  相似文献   

7.
【目的】在我国水稻生产中探讨秸秆全量还田与氮肥配施的理论与技术,阐明秸秆还田对水稻产量、 氮素利用率及氮素损失的影响,对于提高水稻产量和氮素利用效率、 减少氮污染具有重要意义。【方法】2009~2011年,以水稻南粳46为材料,在江苏常熟农业生态实验站进行原状土柱模拟试验。试验采用裂区设计,主区为秸秆全量还田(S)和无秸秆还田(S0); 副区为氮肥用量(N),设置N 120、 180、 240和300 kg/hm2 4个氮水平,以不施氮肥(N0)为对照。分析了水稻基肥期、 分蘖期、 穗肥期的氨挥发量和土壤80 cm处渗漏水全氮含量,土壤0—15 cm全氮含量,水稻产量,以及水稻籽粒和秸秆氮含量,计算水稻生育期氮肥的氨挥发损失率、 淋溶损失率、 土壤残留率以及水稻的氮肥利用效率。【结果】水稻产量随氮肥适宜用量增加而增加,与单施氮肥相比,秸秆还田下水稻平均增产6.3%,其中N 240 kg/hm2 处理产量最高; 水稻的氮肥利用率随施氮量的增加呈下降趋势,秸秆还田能够提高水稻的氮肥利用率,氮肥农学效率和氮肥表观利用率较单施氮肥分别提高1.4~3.4 kg/kg和1.8%~4.2%; 水稻田氨挥发损失量、 氮肥淋溶损失量和土壤残留氮量均随施氮量的增加而增加,在N 240 kg/hm2水平下,秸秆还田氨挥发损失量增加18.2%、 土壤残留氮量增加10.1 kg/hm2,减少氮素淋溶损失量30.9%,氮肥总损失率降低6.0%。【结论】在秸秆全量还田下,配施适量的氮肥,可以提高水稻对氮肥的利用率,增加产量,同时减少氮肥损失。本试验中,以麦秸全量还田配施N 240 kg/hm2为最优组合。  相似文献   

8.
  【目的】  茶树是多年生叶用作物,对氮肥的需求量较大,施用氮肥是提高茶叶产量的主要措施之一。但过量施用氮肥不仅降低茶叶的氮肥利用率,还会带来环境风险。明确我国茶园氮肥施用状况和氮肥主要损失途径,为茶园合理施用氮肥,降低氮肥损失提供科学依据。  【方法】  以茶园、氮肥利用和损失为关键词,在中国知网和Web of Science筛选相关文献。分析计算了不同施氮量下的茶叶产量、氮肥农学利用率以及氮肥偏生产力,并比较了这些指标在2000年前后的差异。同时分析茶园无机氮 (铵态氮和硝态氮) 淋失、氨挥发、反硝化 (N2O排放) 等损失量与氮肥施用量之间的关系。  【结果】  我国茶园施用氮肥的平均增产率为41.7%,氮肥农学效率为8.1 kg/kg,氮肥偏生产力为31.4 kg/kg。与2000年前相比,2000年后茶园施氮增产率、氮肥农学效率和氮肥偏生产力的平均值均呈现下降趋势。在茶园氮肥损失方面,无机氮 (铵态氮和硝态氮) 淋洗和氨挥发为主要的氮素损失途径,其中淋洗损失量为186.8 kg/hm2,占氮肥施用量的33.9%;氨挥发损失量为48.8 kg/hm2,占氮肥施用量的15.1%;反硝化 (N2O排放) 损失量为16.7 kg/hm2,占氮肥施用量的3.6%。  【结论】  我国茶园氮肥农学效率较低,而且呈不断下降的趋势。茶园氮素损失以无机氮 (铵态氮和硝态氮) 淋洗和氨挥发为主,而且随着施氮量的增加不断上升。因此,为实现我国茶园长期绿色可持续发展,必须优化氮肥管理,降低氮肥损失,以提高氮肥利用率。  相似文献   

9.
露地种植大白菜的氮肥效应与氮素损失研究   总被引:7,自引:0,他引:7  
采用田间小区和微区试验,研究了施用化学氮肥在露地大白菜上的氮肥效应和氮素损失。氮素总损失用15N示踪法测定,氨挥发用通气密闭室法测定,反硝化损失用乙炔抑制原状土柱培养法测定,不加乙炔测定N2O排放。结果表明,施用化学氮肥增产显著,用差值法计算得到的氮肥利用率在25.3%4~7.2%之间,相应的示踪法氮肥利用率为18.1%2~4.6%。化学氮肥显著增加了氨挥发、反硝化和N2O排放等气态氮损失;其中氨挥发占施氮量的0.97%1~7.1%,反硝化占4.33%8~.55%,N2O排放在1.09%1~.63%之间变化。大白菜收获时9.2%~10.9%的标记尿素被淋洗到40.cm以下土层。试验期间尿素的氮素总损失达41.1%4~8.1%,以表观淋洗损失最为严重,其次是氨挥发,而反硝化损失最低。与普通尿素相比,包衣尿素明显降低了氨挥发。  相似文献   

10.
黄河上游灌区稻田氨挥发损失研究   总被引:7,自引:1,他引:6  
采用密闭气室间歇式抽气法研究了黄河上游灌区不同施肥处理下稻田氨挥发损失特征。结果表明,在水稻全生育期不同施肥处理下稻田氨挥发量为N 27.6~94.1 kg/hm2,肥料氮损失率为16.4%~22.2%;不同施肥阶段氨挥发损失持续时间为10 d左右,氨挥发最大峰值均发生在施肥后2~3d;分蘖肥后氨挥发损失量最大,损失量占全生育期损失总量的27.1%~37.0%。温度、光照、pH值是黄河上游灌区氨挥发的主要影响因素,稻田田面水铵浓度与氨挥发呈显著线性正相关。稻田氨挥发损失量随氮肥施用量的增加而增加,与习惯施肥(N300)相比,减氮20%(N240)及有机肥和化肥配合施用(N240-1/2OM)均能有效减少稻田氨挥发损失,且这两个处理的水稻产量最高,是生态效益和经济效益双赢的最佳模式。  相似文献   

11.
Reducing ammonia (NH3) volatilization is a practical way to increase nitrogen (N) fertilizer use efficiency (NUE). In this field study, soil was amended once with either cotton (Gossypium hirsutum L.) straw (6 t ha?1) or its biochar (3.7 t ha?1) unfertilized (0 kg N ha?1) or fertilized (450 kg N ha?1), and then soil inorganic N concentration and distribution, NH3 volatilization, cotton yield and NUE were measured during the next two growing seasons. In unfertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 38–40% and 42–46%, respectively, less than that in control (i.e., unamended soil) during the two growing seasons. In the fertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 30–39% and 43–54%, respectively, less than that in the control. Straw amendment increased inorganic N concentrations, cotton yield, cotton N uptake and NUE during the first cropping season after application, but not during the second. In contrast, biochar increased cotton N uptake and NUE during both the first and the second cropping seasons after application. Furthermore, the effects of biochar on cotton N uptake and NUE were greater in the second year than in the first year. These results indicate that cotton straw and cotton straw biochar can both reduce NH3 volatilization and also increase cotton yield, N uptake and NUE. In addition, the positive effects of one application of cotton straw biochar were more long-lasting than those of cotton straw.  相似文献   

12.
Polyaspartic acid (PASP) is a low-cost, environmentally friendly, and multifunctional polymer material. The knowledge regarding the effects of PASPs, especially the PASPs with a different molecular weight (MW), on nitrogen use efficiency (NUE), ammonia (NH3) volatilization and nitrous oxide (N2O) emission in crop fields is scarce. In this study, maize pot experiments were conducted to evaluate three types of PASPs with different MW. Five treatments were designed: (1) application of chemical phosphorus (P) and potassium (K) fertilizer (PK), (2) PK plus urea (NPK), (3) NPK plus PASP-1 (PASPT1, MW: 5517), (4) NPK plus PASP-2 (PASPT2, MW: 6934), and (5) NPK plus PASP-3 (PASPT3, MW: 7568). The yield indicators of crop height, straw dry weight and 100-grain weight showed that PASP application improved the crop growth. In PASP3, NUE reached 46.1%, almost double of that in NPK (28.6%). Moreover, there were significantly less N losses in the forms of NH3 volatilization and NO2 emission following PASP amendment than regular urea application. Another positive impact revealed that PASP inhibited the transformation of NH4+-N to NO3N. Among the three PASPs, PASP-3 with the highest MW overall presented optimal effects, implying that MW was a major driving factor for PASP performance on maize production.  相似文献   

13.
根区一次施氮提高水稻氮肥利用效率的效果和原理   总被引:6,自引:2,他引:6  
我国水稻氮肥施用量大,农民习惯氮肥表面撒施,氮肥通过氨挥发以及径流等途径损失严重,造成经济损失和环境污染。农村劳动力缺乏,土地流转迅速,省时省力、节肥高效的施肥方式亟待探索和推广。大田条件下,在环太湖水稻高施氮区,比较常规氮肥用量下(225 kg/hm2)的农民习惯分次施用(40%︰30%︰30%分次施用)与根区一次施用(偏根系5 cm,土表下10 cm穴施)两种施肥方式对水稻产量及氮肥利用率的影响。结果表明不种植水稻的前提下,习惯施氮处理表层土壤NH_4~+-N最高,自表层向下逐渐降低,各层养分均随时间推移而下降。根区一次施氮可显著提高施肥点周围土壤中的NH_4~+-N含量及其贮存时间,施肥后30,60和90 d,根区施氮处理NH_4~+-N最高值分别达到542.6、412.1和39.8 mg/kg。且根区一次施氮处理施肥点周围土壤高NH_4~+-N含量至少可保持60 d。种植水稻后,相对习惯分次施氮而言,根区一次施氮显著提高水稻分蘖数、各器官的氮含量、氮积累量及氮肥利用效率。根区一次施氮处理水稻氮积累量高达196.7 kg/hm2,相对习惯施氮增加34.9%。氮肥表观利用率分别达到59.8%(差值法)和42.5%(15N标记法),相对习惯施肥分别增加22.6和30.6个百分点。肥料氮损失由分次施用的73.0%下降到29.7%。根区一次施氮显著增加肥料养分在土壤中的贮存时间,降低肥料养分损失的风险,提高水稻氮肥利用效率,是一种节肥高效的施肥方式,值得进一步研发施肥机械和推广应用。  相似文献   

14.
氨挥发是稻田氮素损失的一个重要途径,有效控制稻田氨挥发对水稻增产减排具有重要意义。界面阻隔材料具有环境友好性和低成本的特点,可以作为一种截然不同的氨挥发减排方法。本研究比较分析了3种界面阻隔材料对水稻产量、氮肥利用率和氨挥发排放的影响,以期为水稻降本增效及减少环境污染提供技术支持。通过在稻田喷施表面分子膜材料和覆盖稻糠,比较了两种表面分子膜材料——聚乳酸(PLA)和卵磷脂(LEC)及稻糠(RB)施用后水稻产量及其构成、稻田田面水pH和铵态氮及硝态氮含量动态、稻田氨挥发及氮肥吸收利用的变化特征。结果表明, 3种界面阻隔材料均显著增加了水稻产量,与常规施肥对照(CKU,无添加界面阻隔材料)相比增幅分别为13.0%(RB)、21.0%(PLA)和24.1%(LEC)。增产主要是因为有效穗数的增加,其中RB和PLA处理与CKU处理差异达显著水平;每穗粒数和结实率均无显著差异。LEC处理显著提高了氮肥利用率(19.0%),但RB处理氮肥利用率显著低于CKU。与CKU处理相比,3种界面阻隔材料的添加减少12.3%~19.9%的氨挥发量。PLA处理氨挥发减排效果最佳,达显著水平;其次为LEC处理。氨挥发减排可能与界面阻隔材料添加导致的田面水pH、铵态氮浓度变化和土壤铵态氮含量的增加有关。与CKU处理相比,所有处理均增加了田面水铵态氮浓度,但同时降低了田面水pH,且在水稻分蘖期影响较明显。其中PLA处理还提高了土壤铵态氮含量。本研究表明,稻田施加界面阻隔材料是稻田氨挥发减排以及增产增效的另一种可行的技术途径。  相似文献   

15.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

16.
采用田间小区试验,监测夏玉米不同生长期土壤水分和硝态氮剖面含量变化,研究不同施氮量对其时空变化及籽粒产量、水肥利用效率的影响,探讨氮肥对水肥资源高效利用的调节作用。结果表明:不同施氮处理,土壤剖面水分和硝态氮随土壤深度的变化趋势基本一致,即表层50 cm土壤水分和硝态氮含量较高且呈降低态,50-110 cm相对较低且波动较小,灌浆期二者均达到最低值;各生长期表层50 cm土壤含水量呈不施氮处理均高于施氮处理,50-110 cm土层则相反;施氮能提高土壤硝态氮含量,土壤硝态氮运移受土壤水分状况和含量的影响,含量越高,向下移动越深;施氮能显著提高水分利用效率及籽粒产量,增产效果明显(增产28.52%-37.86%),二者均以施氮240 kg/hm^2处理最高;随施氮量的增加籽粒产量及籽粒吸氮量和水分利用效率增幅均表现为先升高后降低之趋势,当施氮量超过240 kg/hm^2后,籽粒产量和水分利用效率提高并不显著;不施氮与施氮处理氮素生产力、氮肥利用率之间均存在极显著差异。在本试验条件下,从控制土壤硝态氮积累及取得较高的产量和氮素利用率综合考虑,夏玉米的适宜施氮量范围应控制在120-240 kg/hm^2较好。  相似文献   

17.
太湖地区稻田氨挥发及影响因素的研究   总被引:63,自引:7,他引:63       下载免费PDF全文
应用微气象学方法研究太湖地区水稻三个不同施肥期施用尿素后的氨挥发损失 ,并对其影响因素 (气候、田面水中NH 4 N浓度和作物覆盖等 )的作用进行了分析研究。结果表明 ,水稻施用尿素后的氨挥发损失为各时期施氮量的 18 6 %~ 38 7% ,其中以分蘖肥时期损失最大 ,其次为基肥 ,穗肥氨挥发损失最小。氨挥发损失主要时期是在施肥后 7d内。在水稻不同生长期 ,各因素对氨挥发的影响能力大小并不一样 ,三个施肥期的氨挥发损失通量与施肥后田面水中铵态氮浓度呈显著正相关。  相似文献   

18.
朱文彬  曾科  田玉华  张超  李晓  葛仁山  尹斌 《土壤》2023,55(4):729-738
本研究以太湖地区稻田为研究对象开展连续两年的田间试验,通过设置不施氮肥(CK)、常规施氮(CN)、减氮表施(RN)、减氮侧深施(RNS)和减氮穴施(RNP)5种施氮处理,探究不同深施方式对稻田氨挥发与氮肥利用率的影响。结果表明,与表施处理(CN和RN)相比,RNS和RNP通过降低田面水NH4+-N浓度和pH分别减少30.95%~41.54%和66.71%~72.23%的氨挥发排放(P<0.05)。相较于RN处理,RNP促进水稻根系生长并增加根区土壤有效氮含量,进而增加水稻产量(6.23%),提高氮肥利用率(50.15%),降低土壤氮盈余(63.92%)(P<0.05)。与CN处理相比,RNS显著降低土壤氮盈余(29.20%)(P<0.05),但水稻吸氮量和氮肥利用率均未显著增加。相较于RNS,RNP进一步降低氨挥发损失(50.84%)和土壤氮盈余(51.07%),提高氮肥利用率(40.40%)(P<0.05)。综上所述,RNP的农学和环境效益最高,但因穴施机械及肥料造粒技术等因素的限制,尚难应用于实际生产;而侧深施肥在我国水稻大规模集约化生产中效益较高且切实可行。  相似文献   

19.
有机肥无机肥配施对稻田氨挥发和水稻产量的影响   总被引:64,自引:17,他引:64  
在南方红壤区双季稻田进行田间试验,研究等氮、磷、钾量条件下,有机无机肥配施对稻田氨挥发及水稻产量的影响。结果表明,有机无机肥配合施用能显著地降低稻田氨挥发,减少氮素损失,提高氮肥利用率。单施化肥(尿素),其氨挥发损失达37.8%,而单施有机肥和有机无机肥各半配合施用,氨挥发损失分别为0.7%-1.0%和7.2%-18.2%。田间氨挥发持续的时间,早稻约在施肥后20d,晚稻为9-10d。虽然有机无机肥各半配合施用的水稻产量与单施化肥的相近,均比对照提高约70%,但前者的氮损失少,其氮肥利用率为34.9%,高于化肥处理(33.2%)和有机肥处理(28.0%)。有机无机肥配合施用对提高水稻产量和降低氮肥环境负效应的综合效应最佳。  相似文献   

20.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号