首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
区域蒸散和表层土壤含水量遥感模拟及影响因子   总被引:4,自引:2,他引:4  
以甘肃省武威市为研究区域,应用灌溉前后两景Landsat TM-5卫星遥感数据,采用SEBAL模型进行了区域蒸散估算,综合应用归一化植被指数(NDVI)和地表温度(Ts),计算了该区域的条件植被温度指数(VTCI),并估算了表层土壤含水量(0~20 cm)。在获得区域净辐射通量、地表温度以及植被覆盖度空间分布的基础上,进一步对灌溉前后两景影像中日蒸散和表层土壤含水量的影响因素进行了分析。结果表明,区域蒸散和表层土壤含水量的遥感估算与地面同步观测值比较,能较好地反映研究区域的蒸散和地表含水量的空间变异特征。当土壤较干时,区域蒸散的空间分布变异较大,而表层土壤含水量的空间变异较小。在灌溉前后两景影像中,日蒸散与净辐射通量、地表温度和覆盖度之间都有极显著的相关性,决定系数均在0.90以上,而日蒸散量与表层土壤含水量的相关性以灌溉后较高。此外,表层土壤含水量与地表温度、覆盖度都呈显著的相关性,但比较而言,地表温度指数关系的离散性较小,相关系数也大。但地表温度、覆盖度与表层土壤含水量的相关性都依赖于土壤干湿程度,通常土壤越湿,相关性也越高。  相似文献   

2.
植被指数—地表温度特征空间已被应用于多方面的研究。该文从区域旱情监测的角度分析了该特征空间的生态学内涵,指出地表温度是地表蒸散的函数,推导出了温度蒸散旱情指数(TEDI)的计算方法。利用NOAA数据,以河北省南部平原为研究区域,分别计算出了温度植被旱情指数(TVDI)与温度蒸散旱情指数(TEDI),通过地面实测土壤相对湿度指数(SHI)验证,结果表明温度蒸散旱情指数(TEDI)可以更准确地反映下垫面的土壤墒情状况。  相似文献   

3.
基于MOD16的北洛河流域蒸散发空间格局演变研究   总被引:1,自引:1,他引:0  
[目的]探究北洛河流域地表实际蒸散发年际和年内的时空变化特征,为该区域的生态基准与生态需水量研究、退耕还林效果研究提供理论依据。[方法]基于北洛河流域2000—2014年MOD16遥感数据、气象数据、水文数据和2011年土地利用数据,采用流域水量平衡法、均值法、标准差法和线性趋势法进行蒸散发(ET)时空变化特征分析。[结果]流域年蒸散量在波动中缓慢上升,波动范围为395.4~517.4mm/a,15aET均值为446.74mm/a,年内蒸散量呈单峰型分布,季节性变化特征明显,地表蒸散主要集中在5—9月,最高值出现在8月;经与北洛河流域的实测降水空间插值结果比较,MOD16-ET估算结果的相对误差均值为12.04%,相关系数达到0.81;流域内上游至下游的ET剖面线波动明显,呈不规则的"波动曲线"形态;流域内ET值年际变化空间分布特征明显,中游和上游地区以增加趋势为主,下游以减少趋势为主。[结论]近15a来北洛河流域蒸散发整体呈现增大趋势,主要驱动因素为人类活动,尤其是退耕还林和水土保持等工程的实施。  相似文献   

4.
基于遥感的泾河流域日蒸散量估算   总被引:2,自引:0,他引:2  
蒸散发是陆地水分和能量循环过程中的重要环节。利用遥感数据与传统蒸散发模型相结合的方法,对泾河流域2006年3—10月日实际蒸散量进行动态模拟,并利用LAS站实测数据对模拟结果进行了验证。结果表明:1)基于遥感的P-T方法估算地表实际蒸散发可获得较好的效果。2)泾河流域蒸散发空间上,总体趋势为"南高北低;东西两侧山区高,中部平原低";林地蒸散量最高,其次为农田,最低的是草地。3)时间上,泾河流域蒸散发呈单峰型分布,7月、8月份的蒸散发量最高。4)月均气温、月降雨量和月均植被指数与月均蒸散发量的相关系数分别在0.8,0.5,0.7左右,表明温度、降水和植被是影响泾河流域蒸散发的关键因素。  相似文献   

5.
河北省土壤干湿状况遥感监测指数比较   总被引:1,自引:0,他引:1  
选用河北省2010年5月Terra/MODIS地表反射率产品MOD09A1计算得到了增强植被指数(EVI),结合同期MOD11 A2地表温度LST数据,计算得到河北省TVDI(温度植被干旱指数)和VSWI(植被供水指数),比较分析TVDI和VSWI监测河北省土壤干湿状况的适宜性.两种指数与同期8d平均降水量数据的定性分析表明TVDI与降水量数据间具有明显的相反趋势,VSWI与降水量数据间趋势关系不明显;定量的相关分析表明,TVDI与降水量数据间表现出较显著的负相关性(P<0.05),而VSWI与降水量数据间的相关不显著.可见,在所选取研究时段内,TVDI指数较VSWI指数监测河北省土壤湿度更为适宜.  相似文献   

6.
基于MOD16的洞庭湖流域2000-2014年地表蒸散时空变化分析   总被引:1,自引:1,他引:0  
张猛  曾永年  齐玥 《农业工程学报》2018,34(20):160-168
地表蒸散是决定土壤-植被-大气之间水循环与能量转换的关键因素,研究流域蒸散量的时空变化对水文、气象和农业等领域的治理和管理具有重要意义。该文基于时间序列MOD16数据集,分析了2000-2014年洞庭湖流域地表蒸散量时空变化,并利用多年降水量及气温数据,采用回归模型探讨了蒸散量与气候因子之间的相关性, 以期为洞庭湖流域热量平衡和气候干湿状况评价提供数据支持。结果表明:1)MOD16地表蒸散量产品数据的精度满足洞庭湖流域蒸散量时空分布研究的需求;2)洞庭湖流域年蒸散量值具有较高的空间分异性,呈现出东北部低、西部和南部高的趋势。洞庭湖流域各年蒸散量多年年平均蒸散量值为636.83 mm/a,多年年均蒸散量整体呈波动下降趋势;3)蒸散量的季节性变化明显,一年中夏季地表蒸散量平均值最高4)洞庭湖流域地表蒸散量年内分布显现为先增大后减小的单峰型分布趋势,蒸散量的高值区主要集中在5-9月,最高值出现在7月,最小值出现在12月;5)地表蒸散量值与降水量和气温的平均相关系数分别是0.67和0.41,表明地表蒸散量与降水量的相关性较高。基于已有的研究表明,总体而言,MOD16产品为全球变化研究提供了较为可靠的、长时间序列蒸散发产品,并可以用于全球范围地表蒸散研究。  相似文献   

7.
土壤干湿状况是监测土地退化的重要指标之一,是植物物生长发育的关键因素;准确地估计土壤湿度在时空上的分布状况对理解生态系统有着重要的意义,且对干旱区农业生产及生态重建也具有重要价值。研究分析了两种植被指数(NDVI,MSAVI)构建的特征空间参数的特征;同时,在考察点尺度上,分析了旱情指数TVDI与土壤含水量的关系;并揭示了研究区TVDI的空间分布规律;结果表明:Ts/MSAVI空间和Ts/NDVI空间干边的拟合系数均大于0.90,湿边拟合的效果稍差,而Ts/MSAVI构成的特征空间其拟合的干湿边更易相交,与地表温度结合,更能表示地表湿度的变化情况;TVDIM与TVDIN同土壤含水量表现为极显著负相关,且TVDIM与土壤含水量的相关性大于TVDIN与土壤含水量的相关性;Ts/MSAVI特征空间和Ts/NDVI特征空间反演的旱情指数TVDI,在空间分布上是较为相似的。  相似文献   

8.
应用Penman-Monteith公式和土壤湿度指数估算区域地表蒸散   总被引:4,自引:4,他引:0  
孙亮  陈仲新 《农业工程学报》2013,29(10):101-108
准确计算地表蒸散对于水资源合理利用具有重要意义。Penman-Monteith公式具有坚实的理论基础,被广泛应用于计算地表蒸散,但表面阻抗计算的复杂性阻碍了其向区域应用的进一步推广。本文首先利用地表温度(Ts)-植被指数(Fv)特征空间计算土壤湿度指数,进而计算土壤阻抗,改进和发展了Penman-Monteith蒸散算法,简称为PM-SMI。将该算法与地表温度-植被覆盖特征空间蒸散算法以及Penman-Monteith系列另一种算法(PM-Yuan)进行比较。利用美国南部大平原12个波文比观测数据进行模型比较和验证。研究区域主要覆盖农田和草地,植被覆盖度较低。结果表明在瞬时和日值两个时间尺度PM-SMI整体上都优于其他两种算法,PM-SMI方法适合用于区域地表蒸散估算。  相似文献   

9.
蔡庆空  李二俊  陶亮亮  王果  陈超 《土壤通报》2021,52(5):1069-1077
土壤水分作为土壤的重要组成部分,是气候、农业和生态系统的关键组成要素。快速、大面积和实时地监测土壤含水量,对旱情预报、农田灌溉和作物估产有着十分重要的作用。本文主要结合Landsat 8光学影像数据对地表土壤含水量进行反演,在温度植被干旱指数(TVDI)的地表温度-植被指数特征空间基础上引入分形覆盖度,构建地表温度-分形覆盖度特征空间,从而计算得到改进温度植被干旱指数(ITVDI),采用研究区实测土壤含水量数据对计算的结果进行对比分析。为了分析TVDI和ITVDI与土壤体积含水量的关系,分别制作TVDI、ITVDI与土壤体积含水量的散点图并分析相关性。研究结果表明:在小麦拔节期内,研究区域大部分地区处于干旱状态,轻旱地区主要分布在研究区西部、北部以及中部的高植被覆盖地区;重旱地区主要分布在城市中心及部分裸露地面和小麦种植地区。TVDI和ITVDI与地表土壤含水量线性相关显著,两者均可表征研究区干旱的实际情况。但ITVDI引入分形植被覆盖度参数,在一定程度上避免干旱指数受到地表覆盖类型的限制,使得ITVDI与实测土壤含水量的相关性和反演精度都高于TVDI。因此,ITVDI能够更好地反映研究区域土壤含水量的状况,更适合高植被覆盖度地区土壤含水量反演。  相似文献   

10.
蒸散发是连接地表水循环和能量循环的纽带,淮河流域地表蒸散量的时空变化分析对深入理解中国气候过渡带水循环对全球变化的响应具有重要价值。该文基于流域水量平衡原理,利用流域水文数据对淮河流域GLEAM产品进行精度验证;并利用GLEAM(global land-surface evaporation:the Amsterdam methodology)产品分析1980-2011年淮河流域地表蒸散发年际和年内的时空变化。结果表明:1)淮河流域及其水资源二级分区的降水实测值与GLEAM产品估算结果比较,平均相对偏差为8.0%,相关系数高达0.94,GLEAM产品对于淮河流域的模拟精度较高;2)淮河流域1980-2011年多年平均年地表蒸散量为673 mm;3)淮河流域多年平均年地表蒸散量空间变化范围为528~848 mm,空间差异显著,呈从西南向东北逐渐减少,淮河以南地表蒸散量大于淮河以北地表蒸散量,四个季节地表蒸散发具有类似的空间分布特征;4)近32 a淮河流域平均的年地表蒸散量变化范围为588.6~767.8 mm,且存在显著的上升趋势;地表蒸散量的季节变化大致呈单峰型分布,峰值出现在8月,最小值出现在12月;且季节变化较为明显,夏季(272.0 mm)春季(191.4 mm)秋季(144.3 mm)冬季(65.0 mm);5)基于栅格尺度年地表蒸散量的变化速率主要受春季主导,依次为夏季、秋季,冬季的影响最小,淮河流域大部分区域地表蒸散发量呈增加趋势。该研究可为淮河流域洪涝、干旱等极端水文气象事件的监测与预警提供科学依据,同时为该流域水资源管理提供参考及决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号