首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
汪青  刘敏 《水土保持学报》2015,(1):149-153,230
为探讨不同类型黑碳和生物质炭中的不稳定碳含量及组分特征,以稻草田间堆烧和散烧残留黑碳和实验室内250,350,450,550,650℃下制备的生物质炭为研究对象,分析了水提取碳、重铬酸钾氧化碳和微生物矿化碳3种形式的不稳定碳含量,并对水提取物的红外光谱特征进行研究。水提取碳是指黑碳和生物质炭样品加纯水振荡8h并过0.45μm滤膜后的溶解态总碳;重铬酸钾氧化碳是指样品在55℃下被0.1mol/L K2Cr2O7∶2mol/L H2SO4(1∶1,v∶v)溶液氧化60h所去除的有机碳;微生物矿化碳是指样品加接种液培养一定时间后的累积矿化量。结果表明,黑碳和生物质炭中均含有一定量的水提取碳(3.01~16.52mg/g)、重铬酸钾氧化碳(10.28~94.62mg/g)和矿化碳(1.76~4.08mg/g)。水提取碳和重铬酸钾氧化碳在低温制备生物质炭中的含量总体上大于高温制备生物质炭和田间焚烧残留黑碳中的含量。重铬酸钾氧化碳与另2种不稳定碳之间均存在显著的正相关关系。3种黑碳和生物质炭在81d培养期内的累积矿化量与水提取碳含量在同一数量级;黑碳和生物质炭水提取物成分受制备温度的影响,主要官能团有羟基、羰基、醛基和羧酸根等,没有发现难降解的芳香成分,表明水提取碳是易于被微生物利用的组分。研究认为,高温制备生物质炭中的不稳定碳含量较低,适于固碳减排方面的应用;而低温制备的生物质炭有相对较高的不稳定碳含量,可能更适于保肥增产方面的应用。  相似文献   

2.
对长江三角洲典型地区(无锡和台州)农业表层土壤(0~20cm)中15种美国环境保护署(USEPA)优控的多环芳烃(PAHs)含量和来源进行了研究。结果表明,无锡地区农业土壤中15种PAHs总量的含量范围为1058~9500μgkg-1,PAHs污染较重,主要来源于石油以及石油和草/木材/煤的燃烧,PAHs的组成以4~6环为主;台州地区农业土壤中PAHs的含量范围为128~604μgkg-1,PAHs污染较轻,主要来源于石油以及石油的燃烧,PAHs的组成以3~6环为主。  相似文献   

3.
研究分析了滇池大石坝小流域沉积柱中16种美国环保署(USEPA)优控多环芳烃(PAHs)的垂直分布情况,并对其来源和生态风险进行了初步评估。结果表明:沉积柱不同深度PAHs总量的变化范围为388.64~1 440.38ng/g,其中主要成分为萘(NAP)和菲(PHE)。从多环芳烃环数来看,沉积物中的PAHs以2~3环为主,其含量为127.86~1 130.12ng/g。根据FLA/(FLA+PYR)、BaA/(BaA+CHR)和IcdP/(IcdP+BghiP)三组比值及PAHs各组分含量分析,燃烧过程是沉积物中PAHs的主要来源。生态风险评估表明,大石坝小流域中PAHs不会造成显著的生态风险。  相似文献   

4.
在乌鲁木齐市周边,从乌拉泊到水西沟按不同距离与深度进行土壤样品采集,采用索氏提取法与层析净化法进行预处理,高效液相色谱法测定土壤中16种多环芳烃(PAHs)的含量,并对PAHs进行对比分析、污染评价和来源分析的相关研究。结果表明:总PAHs平均浓度为998.23(306.94~3 652.16)ng/g,污染程度差异不大,处中度污染水平但更接近严重污染水平;16种PAHs的最低检测限为0.20~0.80 ng/g;一些采样点的表层土壤中苯并[a]芘的含量高于土壤质量控制标准。不同层次土壤PAHs的污染程度有所不同,其顺序为表层中层下层;高分子量(4~6环)PAHs占据了总含量的84.1%,低分子量(2~3环)PAHs占据15.9%,得出在乌鲁木齐市周边土壤中PAHs的重要来源是汽车排放,同时煤燃烧排放的贡献也很大。  相似文献   

5.
聊城市城区不同功能区土壤黑碳含量与来源分析   总被引:1,自引:0,他引:1  
为了解聊城市在城市化过程中人类活动对城市土壤碳库的影响,将聊城市城区划分为中心商务区、旅游区、居民文教区和工业区四个功能区,共采集了39个表层土壤样品,分析了土壤有机碳(OC)和黑碳(BC)的含量、分布特征及其相关关系,并对BC的可能来源进行了初步解析。结果表明:聊城市城区表层土壤OC含量范围为11.41~51.00 g kg^-1,平均值为23.76 g kg^-1,BC范围为0.60~28.88 g kg^-1,平均值为8.70 g kg^-1;各功能区OC和BC含量的平均值均表现为:中心商务区>居民文教区>工业区>旅游区,中心商务区OC和BC含量显著高于其他功能区(P <0.05)。城区表层土壤的BC/OC在0.04~0.77之间,平均值为0.31,表明BC来源于生物质燃烧和化石燃料燃烧的共同作用;其中,中心商务区以化石燃料的不完全燃烧为主,而旅游区则以枯枝落叶腐烂及生物质燃烧为主。OC、BC含量和BC/OC两两之间均具有极显著正相关关系(P <0.01),表明黑碳在聊城市城区土壤有机碳的累积过程中发挥着重要作用。  相似文献   

6.
江苏省典型生态示范区土壤中多环芳烃的含量与风险评价   总被引:5,自引:0,他引:5  
采集了江苏省某典型生态示范区内58个监测单元的土壤样品,并对样品中的多环芳烃(PAHs)进行了定量分析。结果表明,生态示范区土壤中的PAHs平均含量较低,但不同土壤样品之间PAHs的变异系数较大,以二苯[a,h]并蒽、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽为主要组成成分。从8个生态类型区分析,工矿企业搬迁区PAHs含量最高,达49.196μg/kg,其次是化工区周边,农业科技园土壤中的PAHs含量最低。工业区的PAHs多来源于石油输入,而以农业为主的生产基地、科技园等,PAHs主要来源于化石燃料的不完全燃烧。生态风险评价结果显示生态示范区内的PAHs处于较低毒性水平,尚未对生物造成不利的影响。  相似文献   

7.
对长江三角洲典型地区(无锡和台州)农业表层土壤(0~20 cm)中15种美国环境保护署(USEPA)优控的多环芳烃(PAHs)含量和来源进行了研究.结果表明,无锡地区农业土壤中15种PAHs总量的含量范围为1 058~9 500 μg kg-1, PAHs污染较重,主要来源于石油以及石油和草/木材/煤的燃烧,PAHs的组成以4~6环为主;台州地区农业土壤中PAHs的含量范围为128~604 μg kg-1,PAHs污染较轻,主要来源于石油以及石油的燃烧,PAHs的组成以3~6环为主.  相似文献   

8.
郑曦  韩宝平 《农业环境保护》2010,(11):2185-2191
采用现场采样及室内高效液相色谱分析测试的方法,探讨了微山湖表层沉积物中多环芳烃(PAHs)的分布,并进行了风险评价。结果表明,微山湖表层沉积物中16种优控PAHs的总量范围在324.93~1576.65ng.g-(1干重)之间,平均值为699.01ng.g-1,属中等污染水平,沉积物中的多环芳烃主要来源于煤炭、木材及石油的不完全燃烧。利用沉积物质量基准法(SQGs)、沉积物质量标准法分别对微山湖沉积物中多环芳烃的风险评价表明,严重的多环芳烃生态风险在微山湖沉积物中不存在,负面生物毒性效应则会偶尔发生,风险主要来源于低环的多环芳烃,以芴(Flu)和苊(Ace)为主。  相似文献   

9.
为深入研究生物质颗粒燃料的燃烧特性,探讨自动燃烧器的燃料适应性,该文基于PB-20型生物质颗粒燃烧器,选择了5种灰分小于25%(空气干燥基)的颗粒燃料,分别研究了燃烧工况中进料量和空气量对燃烧性能的影响。试验结果表明灰分含量大于20%的颗粒燃料燃烧不充分,工况不稳定,效率低,结渣大,易熄火,不适用于此类生物质颗粒燃烧器;灰分含量为12.40%的颗粒燃料推荐参数为进料量4 kg/h,风机转速2 600~2 800 r/min,清渣速度为3 r/min,转5 s/停35 s;灰分在7.21%的颗粒燃料推荐控制参数为进料量3~4 kg/h,风机转速2 600~2 800 r/min,清渣速度相对应为3 r/min,转5 s/停60~55 s;灰分值低于1%的颗粒燃料均以进料量3~4 kg/h,风机转速2 600~2 800 r/min,不需清渣为推荐参数。该研究总结了生物质颗粒燃烧器的燃料适用控制参数,为燃烧器的推广应用提供了数据支持。  相似文献   

10.
参照OSL测年和考古与历史学断代,利用黄土—土壤剖面沉积物中炭屑和黑碳(焦炭和烟炱)记录,结合磁化率、有机碳等古环境指标,揭示过去12000年火灾历史演变过程。炭屑和黑碳浓度研究结果表明:全新世早期区域野火活动频繁发生,中期火灾很少,晚期本地火灾频率呈现增长态势。黑碳(烟炱和焦炭)和炭屑分析呈现不平行变化趋势,可能是生物质燃烧的物质排放方式和传输过程的区域差异引起。距今3500~2800年间,黑碳和炭屑颗粒浓度峰值与全新世短尺度恶化气候事件具有明显同步性;同期,先周人部落大规模土地开垦发展旱作农业活动加剧。黄土高原千年尺度火灾变化与季风气候变化之间的关系表明:全新世以来,野火频率变化取决于区域气候有效湿度和人类土地利用及其对气候变化的响应。  相似文献   

11.
以南湖水体中的水、表层沉积物、生物膜和悬浮物为研究对象,对美国EPA规定的16种优控PAHs中13种PAHs的分布与富集特征进行了研究。结果表明,表层沉积物中检出12种PAHs,生物膜和水相中均检出11种PAHs,而悬浮物中只检出7种PAHs;生物膜和悬浮物富集PAHs的能力相近,比表层沉积物的富集能力大一个数量级;相关分析表明,生物膜和悬浮物富集PAHs的能力归因于其有机质(TOC)的含量高于表层沉积物中有机质的含量。根据菲/蒽比值和PAHs环数相对丰度对南湖表层沉积物中PAHs的来源进行了分析,发现南湖沉积物中的PAHs主要来自于化石燃料燃烧释放的污染。  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous toxic organic pollutants in the natural environment that are strongly associated with socioeconomic activities. Exploring the distribution, sources, and ecological toxicity of PAHs is essential to abate their pollution and biological risks. The 16 priority PAHs in different lakeside city estuarine sediments in the northern Taihu Lake in China were determined using gas chromatography-mass spectrometry. Results showed that total concentrations...  相似文献   

13.
以黄石市3种不同类型土壤(红壤土、潮土、水稻土)为研究对象,采用热光反射法测定土壤中黑碳、焦炭和烟炱含量,研究有机碳、黑碳、焦炭和烟炱的空间分布特征,同时分析黑碳、焦炭、烟炱与有机碳之间的相互关系及黑碳的可能来源。结果表明:黄石市表层土壤中黑碳含量的变化范围为0.01~5.79 g/kg,平均值为1.06 g/kg。其中水稻土黑碳含量最高,潮土次之,红壤最低。黑碳在有机碳中所占比例的变化范围为0.53%~89.54%,平均值为25.29%,说明黑碳对土壤有机碳库有较大的贡献。不同土壤类型黑碳/总有机碳(BC/TOC)比值存在较大的差异,红壤BC/TOC平均值最大(36.70%),其次为水稻土(25.25%),潮土最低(18.25%),这可能与土壤质地有关。黑碳、焦炭与烟炱含量和BC/TOC比值的空间变异性与区域的产业结构及工业布局有关。黑碳、焦炭与烟炱含量之间呈显著正相关,说明它们可能有共同的来源。焦炭/烟炱比值(char/soot)分析结果表明土壤中的黑碳受人为源的影响很大,主要来源于化石燃料燃烧(工业燃煤及机动车尾气排放)。  相似文献   

14.
Ma  Junwei  Gao  Chao  Yan  Hongxia  Li  Yuqian  Chen  Jiajun  Zhao  Yan  Xia  Xinghui 《Journal of Soils and Sediments》2019,19(12):3945-3953
Purpose

Without precaution to deal with gas emissions and leachate generation, dumpsites have become a severe environmental problem in many developing countries. The objectives of this study were to investigate the pollution status of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soil in rural areas of China and to verify phytoremediation effectiveness with Sedum alfredii Hance and alfalfa (Medicago sativa L.) under complex pollution conditions in PAH-contaminated soil.

Materials and methods

In this study, we collected soil cores from four dumpsites in rural areas of North China (Hebei Province) for analysis, and correspondingly conducted an in situ phytoremediation experiment using Sedum alfredii Hance and alfalfa (Medicago sativa L.) at one of these sites, monitoring the total PAH concentration in soil.

Results and discussion

Results showed generally moderate pollution by PAHs in soil samples from dumpsites with pockets of heavy pollution. PAH concentrations in dumpsite soil ranged from 827 to 1101 ng/g (dry weight). High-molecular-weight PAHs were present in higher proportions at oldest dumpsite in operation. Certain molecular ratios of PAHs can be used to diagnose the source of PAHs in soil, and it indicated that the main sources were combustion of domestic coal and biomass, as well as the automobile exhaust and kitchen exhaust. A 17-month in situ phytoremediation experiment resulted in the effective removal of PAHs in the Sedum alfredii and alfalfa plots, with total PAH concentrations decreasing by 82.4% and 81.3%, respectively. Furthermore, PAH concentrations in plants correlated to plant growth conditions.

Conclusions

This study indicated that the soils of the dumpsites were generally moderately polluted by PAHs, and some parts of the area were heavily polluted. Both Sedum alfredii and alfalfa absorbed PAHs from soil, and PAH concentrations in these two plants correlated to the growth conditions of the plants. Phytoremediation can effectively be used for PAH removal in open dumpsites.

  相似文献   

15.

Goal, Scope and Background

Distribution of hydrophobic organic contaminants in abiotic compartments is essential for describing their transfer and fate in aquatic ecosystems. Taihu Lake is the third largest freshwater lake in China. Water quality of Taihu Lake has deteriorated greatly during the last decades and has threatened the water supply. The aim of the present study was to investigate the partitioning of polycyclic aromatic hydrocarbons (PAHs) among overlying water, suspended particulate matter (SPM), sediments, and pore water in Meiliang Bay, Taihu Lake and to provide useful information for the ecological engineering in this area.

Materials and Methods

Overlying water and surface sediment were sampled from six sites in Meiliang Bay, Taihu Lake, China. Within 72 h of sampling, sediments were centrifuged to obtain the pore water. Overlying water samples were filtered to separate dissolved and SPM samples. After extraction, samples were purified following a clean-up procedure. PAH fraction was obtained by elution with a mixture of hexane: DCM (7:3, V/V) and analyzed by GC/MS.

Results

PAHs concentrations in overlying water varied from 37.5 ng/L to 183.5 ng/L. Concentrations of PAHs in pore water were higher than those in overlying water. The total concentrations of 16 priority PAHs in sediments ranged from 2091.8 ng/g-dw to 4094.4 ng/g-dw. PAHs concentrations on SPM were decreased with suspended solid concentrations (SSC). Total PAHs concentrations on SPM varied in the range of 3369.6 ng/g-dw to 7531.1 ng/g-dw. The partition coefficients between sediment and overlying water (log K oc) for PAHs with log K ow<5 were positively correlated with their octanol-water partition coefficients (log K ow) (n=39, r=0.79, p<0.0001). Partition coefficients between sediment and pore water (log K oc′) for all PAHs were also significantly correlated with their log K ow values (n=48, r=0.82, p<0.0001).

Discussion

In general, PAHs derived from combustion sources tend to bind strongly to soot particles in natural sediment. Consequentially, K oc values observed in the natural environment could be orders of magnitude higher than those predicted by linear correlation relationships under laboratory conditions. In the present study, the ratio of log K oc values to log K ow values falls consistently above 1, indicating that the sediment soot carbon in the bay was more attractive for PAHs than n-octanol. The log K oc′ was also higher than that predicted under laboratory conditions, suggesting that the measured pore water PAH concentrations were lower than those predicted. That is to say, not all the sediment PAHs can be available to partition rapidly into sediment pore waters. A variation in soot content is a possible reason. Furthermore, concentrations of PAHs on SPM were higher than those in sediments. The compositions of PAHs on SPM and in sediments were similar, indicating the importance of re-suspension process of sediments in the partitioning process of the shallow lake.

Conclusions

The results indicated the equilibrium partitioning model could be used to predict PAHs distribution in various phases of a shallow lake in the stagnation period, but re-suspension processes should be considered to modify the relationship between log K ocs and log K ows.

Recommendations and Perspectives

Concentration, particle size and composition of resuspended particles could affect the relationship between log K ocs and log K ows. Further work should be done under field conditions, especially where a steady thermodynamic equilibrium state could be assumed.
  相似文献   

16.
2006年和2007年雨季,作为农村非点源污染研究的组成部分,以北京西北郊区城乡结合部的公路绿化带为采样点,对雨水和树冠穿透水中多环芳烃(PAHs)的污染特征和通量进行了研究。共采集10场降雨,分析了雨水和树冠穿透水中溶解相和颗粒相PAHs的浓度。结果显示,树冠穿透水中颗粒相∑16PAHs浓度大于雨水,而溶解相∑16PAHs浓度则小于雨水。降雨过程中树冠叶面对颗粒相PAHs具有释放作用;对溶解相PAHs则有截留作用,降雨后期截留作用的影响减弱。净通量计算结果表明,各场降雨树冠穿透水中溶解相PAHs的净通量大多为负值,颗粒相PAHs的净通量多为正值,树冠穿透水中PAHs的净通量主要来自于颗粒相PAHs。  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in the urban atmosphere. In particular, atmospheric pollution has increasingly become severe in China due to its rapid urbanization and industrialization. In recent years, a few studies have presented information about POPs (such as PAHs, PCBs, OCPs) in aerosols at a molecular level in a limited number of cities such as Beijing, Qingdao and Guangzhou, as well as Hong Kong. Whereas, these cities are located in northern and southern China, respectively, where characteristics of atmospheric pollution might be different from those in the eastern cities, such as Shanghai. Atmospheric particle pollution is a persistent problem in Shanghai, a typical metropolis of China, which has several huge industrial regions. In order to gain a comprehensive understanding of the present state, properties and sources of PAHs pollution in Shanghai, PM10 samples were collected at Coal-Fired Power Plant (CFP), Chlor-Alkali Chemical factory (CAC) and Coking and Chemical factory (CCF) in an industrial area, during the period, November 2004–September 2005. The concentrations of 16 PAHs were analyzed using the HPLC with UV visible detector. The results showed that the mean value of total PAHs in the industrial area was 64.85 ng m?3; 3-ring PAHs were found at low levels, while 4-, 5- and 6-ring PAHs were found at high levels. The levels of BaP were 3.07 and 7.16 ng m?3 at Chlor-Alkali Chemistry Factory and Coking and Chemistry Factory sites, respectively. PAHs levels exhibited distinct seasonal variation, with the highest level in autumn and the lowest in summer. The major source of PAHs at the industrial area was fossil fuel combustion, coal-burning, industrial furnaces including others. There was a very significant correlation of PAHs levels between CCF and CAC (R 2?=?0.91). The average concentration of BaP in the industrial area during the sampling period was 5.95 ng m?3. It could be concluded the local population appears to be exposed to significantly high cancer risk (exceeding 2 ng m?3 in autumn and winter) as compared to the population of other areas.  相似文献   

18.
Purpose

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Havana were quantified and analyzed in relation to possible emission sources to assess metropolitan soil contaminations in a highly dynamic, urban environment. The results of this study will serve Cuban legislators as a basis to develop environmental quality standards for organic pollutants in soils.

Materials and methods

Possible emission sources as, e.g., the vicinity to roads or industrial plants and the influence of the land use were related to the organic contaminants concentrations. Therefore, 28 topsoils in the Havana urban and semi-urban area were sampled at agricultural (n?=?12), organoponic (urban gardens in the capital, n?=?8), public park (n?=?7), and remediation (on-site bioremediation of an oil refinery, n?=?1) sites. Their PAH and PCB concentrations were measured with gas chromatography mass spectroscopy and the total organic carbon (TOC) and black carbon (BC) concentrations with the chemo-thermal oxidation.

Results and discussion

The sum of the 16 PAH concentrations ranged from 0.04 mg/kg in agricultural and organoponic soils to up to 72 mg/kg in a public park at about 1.5 km distance from an oil refinery. The lowest sum of the seven PCB congener concentrations was also measured in organoponic soils (0.002 mg/kg) and the highest in an arable patch of land between the rail roads and a main road (0.1 mg/kg). Both, PAH as well as PCB soil concentrations in Havana were almost up to two orders of magnitudes higher compared to a soil monitoring in the neighboring province of Mayabeque, but overall in the typical range of urban soils reported by other studies. The pollutants showed no relationship between TOC and BC except for PAHs with BC. For PAHs, combustion was the main source.

Conclusions

A comparison of the pollutant concentrations with regulatory guidance values (RGV) of other countries revealed PCB concentrations in Havana soils far below these RGV. In contrast, some concentrations of benzo[a]pyrene, the most carcinogenic PAH, in agricultural and park soils in Havana exceeded some RGV. Thus, some public parks pose a risk according to the Canadian quality guidelines when people have direct contact with these soils but not if they were consuming products thereof.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号