首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Color is a key quality trait of wheat products, and polyphenol oxidase (PPO) is implicated as playing a significant role in darkening and discoloration. In this study, total and soluble PPO activities were characterized in whole kernel assays and bran extracts. In whole kernel assays similar to AACC Approved Method 22–85, four wheat cultivars were ranked the same for both total and soluble (leached) PPO activity with L‐DOPA (diphenol) as the substrate. Total kernel PPO activity was much greater than soluble PPO activity in three hexaploid wheat cultivars, indicating that insoluble PPO was the major contributor to kernel PPO measurements. Tyrosine (monophenol) was an excellent PPO substrate in kernel assays as expected but had no activity as a substrate for soluble PPO. However, soluble PPO activity with tyrosine was activated by the addition of the diphenols chlorogenic acid and caffeic acid. When PPO was assayed in homogenized bran, 89–95% of total PPO activity remained insoluble, associated with the bran particles. The kernel assay detected <2% of PPO measured in an equivalent amount of homogenized bran. However, total PPO activity was 2‐fold higher in Klasic than in ID377s, both when measured in the kernel assay and in homogenized bran, indicating that the kernel assay was an accurate predictor of relative total extracted PPO activity in these two cultivars. Adding detergents (0.1% SDS plus 0.2% NP‐40) to the bran extraction buffer increased both soluble and insoluble PPO activity. Results indicate that relative PPO activities among wheat cultivars are similar in whole kernel and kernel leachate assays, and that the predominant insoluble fraction of PPO, which is relatively uncharacterized, may be largely responsible for wheat product discoloration.  相似文献   

2.
ω‐Gliadins were purified from wheat (Triticum aestivum L. ‘Butte’) flour and characterized. Although reversed‐phase HPLC (RP‐HPLC) separated the 1B‐encoded ω‐gliadins into two fractions, 1B1 and 1B2, these fractions had nearly identical amino acid compositions, three similar protein bands in SDS‐PAGE, 10 similar spots in two‐dimensional PAGE, and two similar N‐terminal amino acid sequences. The main components had a range in mass of 48,900–51,500 when estimated by mass spectrometry, significantly less than the mass estimated by SDS‐PAGE. The 1B fractions were digested with thermolysin, the peptides were separated by RP‐HPLC, the peptide mass was determined, and nine peptides from each fraction were sequenced with nearly identical results for the 1B1 and 1B2 digests. A possible consensus sequence of the 1B‐encoded ω‐gliadin internal repeat was QQQXP, where X was F, I, or L in descending order of occurrence. The 1D‐encoded ω‐gliadins were purified by RP‐HPLC as a single fraction that had one band in SDS‐PAGE, two spots in two‐dimensional PAGE, two components with mass of 41,923 and 42,770 detected by mass spectrometry, and two N‐terminal sequences. Circular dichroism (CD) spectra for the 1B and 1D ω‐gliadins were similar and were suggestive of mainly flexible random structure with a significant amount of the left‐handed polyproline II helical conformation in the 1D components.  相似文献   

3.
Semidry electroblotting is convenient and allows a rapid and efficient protein transfer from two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) gels onto sequencer stable supports for protein microsequence analysis in a gas‐phase sequencer. Using this technique, I determined the amino acid sequences of the endosperm proteins in Japanese hexaploid commercial wheats (Triticum aestivum). Based on sequence determination of the Japanese hexaploid wheats, the endosperm protein could be easily characterized. Wheat endosperm protein, extracted in the presence of 2‐mercaptoethanol and SDS, fractionated into many protein polypeptides using 2D‐PAGE under dissociating conditions. These components were grouped into HMW glutenin subunits, α‐, β‐ or γ‐gliadins, and novel protein polypeptides by using the N‐terminal amino acid sequences. The novel endosperm protein polypeptides were detected, and two new types of N‐terminal amino acid sequences have been found for protein poly‐peptides. These polypeptides have much faster electrophoresis mobility during 2D‐PAGE and are therefore probably a much smaller size than any other peptides of endosperm protein groups found in hexaploid wheat. Ten protein polypeptides have been purified from cultivars of Japanese wheat. Some differences in the contents of amino acids for four protein polypeptide spots were apparent in Japanese wheat.  相似文献   

4.
Polyphenol oxidases (PPOs) from several plant species, including wheat, have been implicated in undesirable brown discolorations of food products. It has been demonstrated that these enzymes are often present in a latent form or are membrane‐associated, necessitating detergent or other treatments to obtain fully active preparations. Here, the influence of different detergents on wheat meal and flour PPOs was investigated. Extraction in presence of 50 mM SDS led to a 5‐ to 15‐fold increase in PPO activity, making quantitative assays in flour from low‐PPO lines more robust. Among a series of additional nonionic, anionic, and cationic detergents tested, only n ‐lauroylsarcosine increased extractable PPO activity to a degree comparable to that of SDS. Additional experiments suggested that a large fraction of wheat meal PPOs may be membrane‐associated and that SDS is able to activate PPOs extracted from high‐activity but not from low‐activity wheat lines. PPO activities assayed after SDS extraction of meal and flour were highly correlated with each other and with activity determined in whole (intact) kernels in absence of SDS. Correlation coefficients between PPO activities measured with all these methods and noodle brightness were about equal, indicating that activities assayed after SDS extraction are useful for germplasm screening and quality prediction.  相似文献   

5.
Proteins were detected in channels of commercial starches of normal maize, waxy maize, sorghum, and wheat through labeling with a protein‐specific dye and examination using confocal laser scanning microscopy (CLSM). The dye, specifically 3‐(4‐carboxybenzoyl)quinoline‐2‐carboxaldehyde (CBQCA), fluoresces only after it reacts with primary amines in proteins, and CLSM detects fluorescence‐labeled protein distribution in an optical section of a starch granule while it is still in an intact state. Starch granules in thin sections of maize kernels also had channel proteins, indicating that proteins are native to the channels and not artifacts of isolation. Incubation of maize starch with protease (thermolysin) removed channel proteins, showing that channels are open to the external environment. SDS‐PAGE analysis of total protein from gelatinized commercial waxy maize starch revealed two major proteins of about Mr 38,000 and 40,000, both of which disappeared after thermolysin digestion of raw starch. Commercial waxy maize starch granule surface and channel proteins were extracted by SDS‐PAGE sample buffer without gelatinization of the granules. The major Mr 40,000 band was identified by MALDI‐TOF‐MS and N‐terminal sequence analysis as brittle‐1 (bt1) protein.  相似文献   

6.
Mutation of the gene coding for the granule bound starch synthase (waxy protein) leads to reduced amylose content in cereal endosperm. Durum wheat (Triticum turgidum L. var. durum) has one waxy locus in each of its two genomes. Full waxy durum wheat is produced when both genomes carry the waxy null alleles. When only one locus is mutated, partial waxy durum wheat is obtained. Partial and full waxy near‐isogenic lines of durum wheat developed by a breeding program were analyzed as to their quality characteristics. Amylose was largely eliminated in full waxy lines; however, no reduction in amylose content was detected in partial waxy lines. The waxy mutation did not affect grain yield, kernel size, or kernel hardness. Full waxy durum lines had higher kernel ash content, α‐amylase activity, and a unique nonvitreous kernel appearance. Protein quality, as evaluated by SDS microsedimentation value, gluten index, and wet gluten was slightly lower in the full waxy lines than in the other genotypes. However, comparisons with current cultivars indicated that protein quality of all derived lines remained in the range of strong gluten cultivars. Semolina yield was lowered by the waxy mutations due to lower friability that resulted in less complete separation of the endosperm from the bran. Waxy semolina was more sensitive to mechanical damage during milling, but modified tempering and milling conditions may limit the damage. Overall, quality characteristics of waxy durum grain were satisfactory and suitable for application testing.  相似文献   

7.
The sodium hydroxide (NaOH) test for determining wheat color class depends on the observation that on soaking in NaOH, red wheat turns a darker red and white wheat turns straw yellow. To understand the mechanism of this test, Raman spectra of wheat bran, wheat starch, ferulic acid, and whole kernels of wheat, before and after NaOH soak, were studied. The major observable components in the whole kernel were that of starch, protein, and ferulic acid, perhaps esterified to arabinoxylan and sterols. When kernels are soaked in NaOH, spectral bands due to ferulic acid shift to lower energy and show a slightly reduced intensity that is consistent with deprotonation of the phenolic group and extraction of a portion of the ferulic acid into solution. Other phenolic acids, alkyl resorcinols, and flavonoids observed in the NaOH extracts of wheat by HPLC were not observed in the Raman spectra. Wheat bran accounts for most of the ferulic acid in the whole kernel, as indicated by the increased intensity of the doublet at 1,631 and 1,600 cm‐1 in the bran. The intense starch band at 480 cm‐1 in whole kernel wheat was nearly absent in the wheat bran.  相似文献   

8.
The main by‐product of the wheat germ oil extraction process is a defatted wheat germ meal, which has a relatively high protein content, making it an attractive and promising source of vegetable proteins. Four protein fractions (albumin, globulin, prolamine, and glutelin) and protein isolate from defatted wheat germ flour (DWGF) were fractionated and then characterized by amino acid analysis, SDS‐PAGE, and differential scanning calorimetry (DSC). Albumin was the major fraction (34.5%) extracted, followed by globulin (15.6%), glutelin (10.6%), and prolamine (4.6%). Protein isolate was mainly composed of albumin and globulin. These protein fractions and protein isolate showed an excellent balance of all essential amino acids, with a relatively high level of glutamic acid, arginine, leucine, and glycine, whereas cystine was lacking. All the estimated nutritional quality parameters based on amino acids composition showed that defatted wheat germ proteins had good nutritional quality. Nonreduced and reduced SDS‐PAGE analyses showed that S‐S bonds ere deficient in the structure of wheat germ proteins. The albumin fraction consisted of 19 major polypeptide bands with Mr 14,000–84,000. The globulin fraction showed four distinct polypeptides or polypeptide group bands with Mr 55,000, 37,000–43,000, 24,000, and 12,000–20,000, which may be the components of the 8S‐type and 11S‐like proteins. The prolamine fraction showed a predominant doublet‐like band at Mr 17,000–16,000, while the glutelin fraction showed five major polypeptide bands with Mr 39,000, 20,000, 18,000, 17,000, and 14,000. Protein isolate and DWGF showed very similar SDS‐PAGE patterns. Except for prolamine and glutelin fractions without detectable calorimetric response, the globulin fraction possessed the highest thermal stability (Td = 83.80°C, ΔH =1.36 J/g ), followed by protein isolate (Td = 80.05°C, ΔH = 0.76 J/g), while the albumin fraction was lowest (Td = 69.72°C, ΔH = 0.53 J/g). The findings on defatted wheat germ proteins are important for their potential application as functional food ingredients.  相似文献   

9.
Microwave treatment is a sufficiently alternative technique to be applied widely in food production and cereals protection against insect pests. Water‐soluble proteins were washed out from microwave‐heated wheat grain for the purpose of assaying the influence on biological activities, reducing sugars content, and SDS‐PAGE electrophoresis proteins patterns. The differences between microwave‐heated grain samples were verified by analysis of variance at the P ≤ 0.05 level of significance. Microwave heating of wheat grain within the temperature range of 28–98°C caused a decrease in water‐extractable proteins, statistically significant when grain temperature reached 79 and 98°C. Statistically significant increase in reducing sugars content was noted in grain samples heated only to 48°C; a decrease was noted above this temperature. All biological activities studied (amylolytic and inhibition activities against α‐amylases from insects (Sithophilus granarius L., Tribolium confusum Duv., Ephestia kuehniella Zell.), human saliva, hog pancreas, antitryptic activity) were distinctly diminished in grain samples heated to 79°C. At the highest grain temperature of 98°C, the loss of all biological activities were even more pronounced due to denaturation of ≈45% of extractable proteins. Among the wheat albumins studied by SDS‐PAGE, only eight and nine protein bands were detected in the grains heated to 98 and 28°C, respectively, whereas 12 bands were present in the control. The highest number of protein bands (13) was found in the grains heated to 48 and 64°C, respectively.  相似文献   

10.
High and low molecular weight glutenin subunits (HMW‐GS and LMW‐GS, respectively) are the main factors determining the viscoelastic properties of wheat dough. The mechanical and viscoelastic properties of 29 samples of wheat kernels differing in HMW‐GS were evaluated with load‐compression tests. Samples were grouped by genotypes differing in HMW‐GS composition (allelic variants: Glu‐A1: null, 1, 2*; Glu‐B1: 7, 7+8, 7+9, 13+16, and 17+18; Glu‐D1: 5+10, 2+12). Groups representing Glu‐A1 1 and 2*; Glu‐B1 7, 7+9 and 17+18; and Glu‐D1 5+10 generally possessed hard grain and showed the largest kernel elasticity values, while those representing subunits Glu‐A1 null; Glu‐B1 7+8; and Glu‐D1 2+12 had soft kernels and showed lower elastic work values. Genotypes possessing HMW‐GS 1, 17+18 and 5+10 gave large SDS‐sedimentation values and better dough viscoelastic properties than those with allelels: null, 7+8, and 2+12. Kernel hardness showed significant correlation with the dough‐strength‐related parameters: SDS‐sedimentation; dough mixing time; and the alveographic parameters, W and P. There was a negative correlation between kernel plastic work and dough mixing time and the dough tenacity/extensibility parameters, P/L. The significant relationship between sedimentation tests and kernel elastic work seems to indicate that elastic work is related to genotype (protein composition). The general tendency was that higher values in kernel elastic work and size corresponded to better dough rheological quality. Mechanical properties of the kernel were significantly related to the elastic behavior measured in a single wheat kernel. The use of the compression test on individual kernels is easy, rapid and nondestructive and therefore seems to show potential use as a rapid tool in breeding to improve wheat quality.  相似文献   

11.
Grains of two wheat (Triticum aestivum L.) cultivars, Sunco and Sunsoft, were stored at 4°C and 30°C for 270 days to examine changes in proteins during storage. When whole meal flour extracted from the grains was analyzed using an unfractionated protein extraction procedure, no significant changes were found in protein content or SDS‐PAGE profile for either cultivar in samples stored at 30°C compared with those stored at 4°C. Fractionation of the flour samples from stored grain into soluble and insoluble proteins revealed increases in soluble protein content for both cultivars stored at 30°C compared with 4°C. The soluble protein content, expressed as a percentage of the total protein, increased by 1.5% (P = 0.032) for Sunco and by 8.0 % (P = 0.158) for Sunsoft during storage at 30°C compared with those samples stored at 4°C. Analysis by SDS‐PAGE and subsequent protein identification revealed that the most evident change that occurred during storage at 30°C was an increase in the content of high molecular weight glutenin subunits (HMW‐GS) in the soluble fraction. The potential effect of changes in solubility of HMW‐GS on functional properties is discussed.  相似文献   

12.
Solvent retention capacity (SRC) was investigated in assessing the end use quality of hard winter wheat (HWW). The four SRC values of 116 HWW flours were determined using 5% lactic acid, 50% sucrose, 5% sodium carbonate, and distilled water. The SRC values were greatly affected by wheat and flour protein contents, and showed significant linear correlations with 1,000‐kernel weight and single kernel weight, size, and hardness. The 5% lactic acid SRC value showed the highest correlation (r = 0.83, P < 0.0001) with straight‐dough bread volume, followed by 50% sucrose, and least by distilled water. We found that the 5% lactic acid SRC value differentiated the quality of protein relating to loaf volume. When we selected a set of flours that had a narrow range of protein content of 12–13% (n = 37) from the 116 flours, flour protein content was not significantly correlated with loaf volume. The 5% lactic acid SRC value, however, showed a significant correlation (r = 0.84, P < 0.0001) with loaf volume. The 5% lactic acid SRC value was significantly correlated with SDS‐sedimentation volume (r = 0.83, P < 0.0001). The SDS‐sedimentation test showed a similar capability to 5% lactic acid SRC, correlating significantly with loaf volume for flours with similar protein content (r = 0.72, P < 0.0001). Prediction models for loaf volume were derived from a series of wheat and flour quality parameters. The inclusion of 5% lactic acid SRC values in the prediction model improved R2 = 0.778 and root mean square error (RMSE) of 57.2 from R2 = 0.609 and RMSE = 75.6, respectively, from the prediction model developed with the single kernel characterization system (SKCS) and near‐infrared reflectance (NIR) spectroscopy data. The prediction models were tested with three validation sets with different protein ranges and confirmed that the 5% lactic acid SRC test is valuable in predicting the loaf volume of bread from a HWW flour, especially for flours with similar protein contents.  相似文献   

13.
Flour milling separates endosperm from bran through repeated roller milling and sifting, in which the size distribution of particles produced by the initial breakage of the wheat kernels critically affects the process. The double normalized Kumaraswamy breakage function (DNKBF), previously developed to describe wheat breakage during roller milling, was extended to refine the modeling of the effect of roll gap on breakage. The DNKBF describes two populations of particles arising from roller milling of wheat, a narrow peak of mid‐sized particles and a wider distribution of both small and very large particles. A new dataset was obtained from milling a set of wheat samples bred to give a range of shapes by cross‐breeding a conventional wheat, Cappelle, with an almost spherical wheat, Triticum sphaerococcum. A residual analysis showed a statistically significant effect of kernel shape on breakage using this new dataset. This analysis supports earlier suggestions that more elongated kernels break to give slightly larger particles than more spherical kernels of equivalent hardness, because of the relatively greater bran content of elongated kernels. The extended DNKBF was also used to model effects of moisture content, showing a distinct disjunction at around 16% moisture that aligns with commercial practice for wheat milling.  相似文献   

14.
Polyphenol oxidase (PPO) causes Asian noodles to lose their bright color over time. Null Ppo‐A1 and Ppo‐D1 alleles are available that confer very low kernel PPO levels. Our goal was to characterize the effect of the Ppo‐A1i and Ppo‐D1f null alleles on the color and texture profile of white salted noodles. A white‐seeded spring wheat carrying Ppo‐A1i/Ppo‐A2d and Ppo‐D1f was crossed to a hard white‐seeded isoline of Choteau spring wheat with Ppo‐A1b/Ppo‐A2a and Ppo‐D1b and to a hard white‐seeded isoline of Vida spring wheat with Ppo‐A1a/Ppo‐A2b and Ppo‐D1b. Resultant lines homozygous for the null‐Ppo alleles or for the alternate parent Ppo alleles were selected and grown in replicated trials. The null‐Ppo alleles had no detrimental effects on kernel or flour traits. Noodles prepared from straight‐grade or whole wheat flour from the null‐Ppo allele class were less cohesive and softer than noodles from the alternate parent Ppo allele class for the White Choteau but not the White Vida population. Noodles prepared from straight‐grade and whole wheat flour from the null‐Ppo class were brighter, more red, and more yellow after 24 h and showed less change in L* with time than noodles prepared from the alternate parent Ppo class. The relative difference between the two genotype classes for change in L* with time (0–24 h) exceeded 3.5 L* for noodles from both types of flour, which was an improvement over existing low‐Ppo alleles. Incorporating the null‐Ppo alleles into wheat varieties could improve the color profile of Asian noodles.  相似文献   

15.
Polyphenol oxidases (PPOs) present in mature wheat (Triticum aestivum L.) kernels have been implicated in the undesirable darkening of cereal products such as Asian noodles. To accelerate the functional characterization of wheat PPOs and allow the identification of those PPO genes that are primarily involved in food biochemistry, several basic local alignment search tool (BLAST) searches of expressed sequence tag (EST) databases were performed using a known wheat PPO sequence as a search argument; identified ESTs were resequenced and aligned. Results from this study suggest the presence of at least six PPO genes in hexaploid wheat, falling into two clusters with three similar sequences each. Based on the tissues used for cDNA library preparation, three genes (all members of one cluster) are expressed during kernel development and may therefore influence cereal product quality; the remaining three genes (belonging to the second cluster) were isolated from nonkernel cDNA libraries and may not be expressed at high levels during grain development. Discovery of these genes represents an essential first step in the functional characterization of wheat PPOs.  相似文献   

16.
The effect of flour type and dough rheology on cookie development during baking was investigated using seven different soft winter wheat cultivars. Electrophoresis was used to determine the hydrolyzing effects of a commercial protease enzyme on gluten protein and to evaluate the relationships between protein composition and baking characteristics. The SDS‐PAGE technique differentiated flour cultivars based on the glutenin subunits pattern. Electrophoresis result showed that the protease degraded the glutenin subunits of flour gluten. Extensional viscosities of cookie dough at all three crosshead speeds were able to discriminate flour cultivar and correlated strongly and negatively to baking performance (P < 0.0001). The cookie doughs exhibited extensional strain hardening behavior and those values significantly correlated to baking characteristics. Of all rheological measurements calculated, dough consistency index exhibited the strongest correlation coefficient with baking parameters. The degradation effects of the protease enzyme resulted in more pronounced improvements on baking characteristics compared with dough rheological properties. Stepwise multiple regression showed that the dough consistency index, the presence or absence of the fourth (44 kDa) subunit in LMW‐GS and the fifth subunit (71 kDa) subunit in HMW‐GS were predominant parameters in predicting cookie baking properties.  相似文献   

17.
《Cereal Chemistry》2017,94(2):215-222
Durum wheat (Triticum turgidum subsp. durum ) production worldwide is substantially less than that of common wheat (T. aestivum ). Durum kernels are extremely hard; thus, most durum wheat is milled into semolina, which has limited utilization. Soft kernel durum wheat was created by introgression of the puroindoline genes via homoeologous recombination. The objective of this study was to determine the effects of the puroindoline genes and soft kernel texture on flour, water absorption, rheology, and baking quality of durum wheat. Soft Svevo and Soft Alzada, back‐cross derivatives of the durum varieties Svevo and Alzada, were compared with Svevo, a hard durum wheat, Xerpha, a soft white winter wheat, and Expresso, a hard red spring wheat. Soft Svevo and Soft Alzada exhibited soft kernel texture; low water, sodium carbonate, and sucrose solvent retention capacities (SRCs); and reduced dough water absorptions similar to soft wheat. These results indicate a pronounced effect of the puroindolines. Conversely, SDS flour sedimentation volume and lactic acid SRC of the soft durum samples were more similar to the Svevo hard durum and Expresso samples, indicating much less effect of kernel softness on protein strength measurements. Alveograph results were influenced by the inherent differences in water absorption properties of the different flours and their genetic background (e.g., W and P were markedly reduced in the Soft Svevo samples compared with Svevo, whereas the puroindolines appeared to have little effect on L ). However, Soft Svevo and Soft Alzada differed markedly for W and L . Soft durum samples produced bread loaf volumes between the soft and hard common wheat samples but larger sugar‐snap cookie diameters than all comparison samples. The soft durum varieties exhibited new and unique flour and baking attributes as well as retaining the color and protein characteristics of their durum parents.  相似文献   

18.
Baking and 2‐g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2‐g direct‐drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW‐GS] composition by SDS‐PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R2 values of 0.862–0.866. In particular, three new spring wheat strains (CHD 502a‐c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10‐min bandwidth.  相似文献   

19.
Molecular weight distribution (MWD) of proteins extracted from hard red spring wheat was analyzed by size‐exclusion HPLC to investigate associations with wheat and breadmaking quality characteristics. Certain protein fractions were related to associations between wheat and breadmaking parameters, specifically when effect of quantitative variation of protein on those parameters was statistically eliminated by partial correlation analysis. SDS‐unextractable high molecular weight polymeric proteins had positive partial correlations with percent vitreous kernel content and breadmaking parameters, including mix time and bread loaf volume. SDS‐extractable protein fractions that were eluted before the primary gliadin peak had positive partial correlations with kernel hardness and water absorption parameters. The proportion of main gliadin fractions in total protein had a negative partial correlation with bread loaf volume and positive correlations with kernel hardness and water absorption parameters. Intrasample uniformity in protein MWD and kernel characteristics was estimated from three kernel subsamples that were separated according to single kernel protein content within individual wheat samples by a single‐kernel near‐infrared sorter. Wheat subsamples were significantly different in protein MWD. Intrasample uniformity in protein MWD did not differ greatly among wheat samples.  相似文献   

20.
Antibodies specific for wheat proteins were used to identify protein fractions modified during extrusion of Hard Red Spring wheat flour (14% protein) under four different combinations of extrusion conditions (18 and 24% feed moisture and 145 and 175°C die temperature). Antibody binding was assessed on immunoblots of proteins extracted from flour and extrudates separated by SDS‐PAGE. Antibodies to high molecular weight glutenin subunits (HMW‐GS) and to B‐group low molecular weight glutenin subunits (LMW‐GS) recognized intact subunits from both flour and extrudates. Antibodies to C‐group LMW‐GS had diminished binding to extruded proteins. Glutenin‐specific antibodies also recognized protein in the extrudates migrating as a smear at molecular weights higher than intact subunits, indicating cross‐linked proteins. Antibodies recognized albumins or globulins in flour but not in extrudates, evidence that these fractions undergo significant modification during extrusion. Acid‐PAGE and antibody reaction of gliadins extracted in 1M urea and in 70% ethanol revealed total loss of cysteine‐containing α, β, γ‐gliadins but no obvious effects on sulfur‐poor ω‐gliadins, suggesting gliadin modification involves replacing intramolecular disulfides with intermolecular disulfide cross‐links. Identifying protein fractions modified during different extrusion conditions may provide new options for tailoring extrusion to achieve specific textural characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号