首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the dietary medicinal herbs Massa medicata, Crataegi fructus (Cf), Artemisia capillaries, Cnidium officinale and their mixture (HM), on growth and resistance against Vibrio anguillarum were examined using larval red sea bream, Pagrus major. The methanol extracts of Cf and HM inhibited the proliferation of seven infectious bacterial strains including the genera Aeromonas, Edwasiella, Photobavterium, Pseudomonas and Vibrio. Rotifers enriched with emulsified bonito oil containing extracts of Cf and HM lowered the bacterial counts in their body on TCBS medium for the genus Vibrio in comparison with rotifers enriched by emulsified bonito oil alone. Although statistically not significant, larvae fed rotifer fortified with Cf from 3 to 20 days after hatching showed the best growth and final body weight followed by those given rotifer with HM and control enrichment. However, final body length of larvae fed rotifer with Cf was significantly larger than larvae fed on rotifers enriched with other herb extracts. After a challenge test with V. anguillarum, survival of larvae fed rotifer with Cf and HM was significantly higher than for the control treatment. These results revealed that Cf and HM in rotifer is useful to promote growth and resistance against V. anguillarum in red sea bream larvae, providing a new technology for mass production of disease‐resistant fry and fingerlings.  相似文献   

2.
ABSTRACT

The Japanese flounder, Paralichthys olivaceus, is one of the most common finfish cultured in Japan and Korea. Despite the relatively high production of fingerlings, some problems remain, mainly related to the larval feeding and cost of maintaining microalgae and rotifers. In order to determine the effects of different diets on the Japanese flounder larval growth and survival, a series of experiments was carried out related to the size and nutritional value of different live feeds. The larvae culture conditions were at 10 or 20 larvae/L in 50 to 2,000 L tanks, with aeration and with or without “green water,” and a temperature range of 18.5 to 22.5°C. The live foods used were microalgae (Chlorella ellipsoidea and Nannochloris oculata), baker's yeast, experimental n-yeasts, oyster trochophore larvae, three strains of rotifer Brachionus plicatilis (L-type, S-type and U-type) and Artemia nauplii. Variations were detected in size, dry weight, and chemical composition of the three strains of rotifers used. The maximum number of rotifers ingested by flounder larvae increased steadily from 7 individuals, at first feeding (3.13 mm), to 42 individuals at 5.25 mm of total length (6 days after first feeding). There was a relationship between larval total length and size of the rotifers ingested. The effect of rotifer size on larval growth and survival appeared to be limited to the first two days of feeding. Of the diets tested in the growth and survival of larval flounder during 14 days after hatching, rotifers fed on C. ellipsoidea and raised in green-water gave the best results. Rotifers cultured on enriched N. oculata and n-yeasts did not support larval growth and caused higher mortalities. The n-yeasts used as rotifer enrichment appeared to satisfy, partially, the nutritional requirement of 7-day-old flounder larvae, as did n-yeast squid wintering oil the requirements of 14-day-old larvae. From 7-9-days after hatching and throughout the second 14-day period, rotifers and Artemia cultured on N. oculata improved the survival of flounder compared with those fed on rotifers cultured on C. ellipsoidea. Moreover, the larval growth did not vary significantly between both microalgae-rotifer feedings. No clear relation was found between total protein, lipid, amino acids and fatty acids of live feeds with the growth and survival of flounder larvae, although the total lipid was higher in C. ellipsoidea than in N. oculata. The Artemia nauplii San Francisco strain appeared to be more suitable for the growth and survival of flounder larvae, than the Utah strain. The nutritional value of Artemia nauplii (Utah strain) for flounder larvae remained unchanged despite the use of either microalgae as nauplii enrichment.  相似文献   

3.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

4.
The effect of docosahexaenoic acid (DHA) on the growth performance, survival and swim bladder inflation of larval Seriola dumerili during the rotifer feeding period was investigated in two feeding experiments. Amberjack larvae at 3 day post hatching were fed rotifers enriched with (1) freshwater C hlorella (Chlo), (2) a mixture (2:1, v/v) of Chlo and DHA‐enriched C hlorella (DHA‐Chlo), (3) DHA‐Chlo and (4) DHA‐Chlo and commercial DHA emulsion, in triplicate for 7 days. The average DHA contents of the rotifers were 0.0, 0.4, 1.0 and 1.9 mg g?1 DM respectively. The survival rate was improved by the enrichment of rotifers with DHA‐Chlo alone, and DHA‐Chlo and emulsion. Growth and swim bladder inflation of fish fed rotifers enriched with DHA‐Chlo were significantly (< 0.05) improved, however, with increased levels of DHA further improvement was not found. DHA content in the larval whole body proportionally increased with the DHA level in the rotifers. These results suggest that DHA enrichment of rotifers is effective to improve the growth, survival rate and swim bladder inflation of amberjack larvae. The DHA requirement of amberjack larvae is estimated to be 1.5 mg g?1 on a dry matter basis of rotifers.  相似文献   

5.
Studies were carried out to determine the effect of using the rotifer, Brachionus plicatilis (Muller) (S‐type), subjected to different treatments on the growth and survival of blue‐fin sea bream, Sparidentex hasta (Valenciennes), larvae. This was to illustrate the role of mixed algae added to the oil enrichments for the treatment of the rotifers to improve the sea bream larval survival. The highest sea bream larval survival (P < 0.05) was obtained while feeding the larvae with rotifers enriched in a mixture of algae plus half the recommended dose of Super Selco and DHA Protein Selco. No significant difference (P > 0.05) in the larval growth was observed between different treatments. However, larval survival was significantly high (P < 0.05) when rotifers were not treated with antibiotics. The results show that there is no need to use antibiotics to treat the rotifers before feeding the blue‐fin sea bream larvae, providing that the rinsing procedure for rotifers used in this study is followed.  相似文献   

6.
First feeding success is critical to larval marine finfish and optimization of live feed densities is important for larval performance and the economics of commercial hatchery production. This study investigated various rotifer feeding regimes on the prey consumption, growth and survival of yellowtail kingfish Seriola lalandi larvae over the first 12 days post hatch (dph). The common practice of maintaining high densities of rotifers (10–30 ind. mL?1) in the rearing tank was compared to a low density feeding technique, where 5–8 ind. mL?1 of rotifers were offered. A ‘hybrid’ feeding regime offered rotifers at the high density treatment until 5 dph and the lower feeding densities thereafter. There was no significant difference in larval survival (hybrid: 28.9 ± 7%, low density: 17.3 ± 5% and high density: 17.2 ± 9%) or growth (hybrid: 6.12 ± 0.18 mm, low density: 6.03 ± 0.10 mm and high density: 6.11 ± 0.23 mm) between treatments. Rotifer ingestion was independent of rotifer density throughout the trial and increased with larval age, with larvae at 4 dph ingesting 22 ± 1.5 rotifers larvae?1 h?1 and by 11 dph ingesting 59 ± 1.6 rotifers larvae?1 h?1. These data demonstrate that from first feeding, yellowtail kingfish larvae are efficient at capturing prey at the densities presented here and consequently significant savings in rotifer production costs as well as other potential benefits such as facilitation of early weaning and improved rotifer nutritional value may be obtained by utilizing lower density rotifer feeding regimes.  相似文献   

7.
The bioencapsulation of live bacteria in the rotifer Brachionus plicatilis was determined under monoxenic conditions. The first objective was to evaluate the microbiota of the rotifer during intensive production and to obtain sterile rotifer cultures starting from adult females or amictic eggs using PVP-Iodine, Hydrogen peroxide or antibiotic mixtures. In the rotifers, the proportion of vibrios increased significantly during the mass production, displacing other unidentified marine bacteria. Rotifers, in the absence of culturable bacteria were obtained starting from amictic eggs and using Trimetroprim-sulfametoxasole (Bactrim Roche®) at 10 ml l–1. The effect of members of Vibrionaceae on the survival and growth rate of rotifers was determined under monoxenic conditions. The survival of rotifers was not affected in the presence of different isolates, while amictic egg formation occurred and the populations increased when the strains Vibrio proteolyticus C279 and Aeromonas media C226 were tested. All isolates were successfully incorporated in the rotifers, since there was no significant difference between the numbers of bioencapsulated cells of different strains of isolates. The results show that it is possible to replace the microbial community in rotifer cultures, started from disinfected amictic eggs, with selected bacterial strains. This could be used as a tool for future studies to reveal the role of specific bacteria on first larval stages of marine fish species.  相似文献   

8.
Pigfish (Orthopristis chrysoptera Linnaeus) are a commonly used baitfish in the southeastern United States. Aquaculture methods for broodfish spawning and juvenile grow‐out have been developed but there is still a paucity of information regarding larval culture methods. Five, short duration (10 days) experiments were conducted to determine effective strategies to yield high larval survival and growth during early development. Experiment one examined the rotifer enrichments Ori‐Green, DHA Protein Selco, and AlgaMac 3050 as well as a non‐enriched control along with corresponding fatty acid levels in the enriched rotifers and pigfish larvae. Experiment two evaluated three, once daily feeding frequencies of either 5, 10 or 20 rotifers mL?1. Experiment three compared feeding 20 rotifers mL?1 once daily to feeding 5 rotifers mL?1 twice daily. Experiment four examined four different larval stocking densities: 50, 75, 100, or 125 larvae L?1. Experiment five examined green water strategies using either live Tahitian strain Isochrysis galbana (Parke) or Nannochloropsis oculata (Hibberd) paste at either 250 000 or 500 000 cells mL?1 as well as a clear water control. Results indicated rotifer enrichment with DHA Protein Selco and green water application using live T‐ISO at 500 000 cells mL?1 had the highest survival of pigfish during early stages of larval culture. A once daily rotifer feeding regime of 20 rotifers mL?1 and stocking density of 50 larvae L?1 also improved survival. These results provide producers with methods to improve efficiency for pigfish larval culture and provide researchers with new foundational data, such as potential fatty acid requirements.  相似文献   

9.
The aim of this study was to determine whether orally administered V. anguillarum cells could survive passage through the intestinal tract of feeding turbot, and thereafter, proliferate in the released faeces. In addition, the growth of the pathogen in turbot faeces in the presence of a Carnobacterium sp. with inhibitory effects against a number of bacterial fish pathogens was studied. It was found that V. anguillarum cells survived the acidic environment of the stomach for several hours, persisted in the intestine and readily proliferated in the released faeces. The antagonistic Carnobacterium sp. inhibited the growth of V. anguillarum during co-culture in turbot faecal extracts. From the results, it was concluded that the turbot intestinal tract and faeces can serve as an enrichment site for V. anguillarum, and the use of intestinal bacteria with antagonistic activity against vibrios may be used to reduce the load of fish pathogenic vibrios in turbot hatcheries.  相似文献   

10.
The rotifer Brachionus plicatilis was fed in experimental conditions with a small celled (2–5 μm) Chlorella sp. and a large celled (16–22 μm) Asteromonas gracilis algae. The specific growth rate (SGR) of rotifers fed Asteromonas (maximum 0.79) was statistically higher than that for rotifers fed Chlorella (maximium 0.61). The filtration and ingestion rates using different rotifer and algal densities exhibited certain maxima depending on the species, the cell density and the condition of the rotifers. The filtration rate was higher with Asteromonas and, although ingestion rate was lower than with Chlorella, the ingestion in terms of cell volume was 10‐fold higher. It seems that B. plicatilis ingests the larger cell diameter algal species more efficiently than the smaller species that is usually used for its mass culture.  相似文献   

11.
Gamma‐aminobutyric acid (GABA) has been shown to enhance the reproduction of the rotifer Brachionus plicatilis Muller in stressful culture conditions. During the enrichment of rotifers for feeding to marine fish larvae, they are usually stressed as a result of exposure to different marine oils and high population densities. This typically results in decreased rotifer survival, reproduction and swimming activity. In the present study, we used GABA to increase rotifer reproduction and the swimming activity of rotifers in enrichment cultures. GABA treatment 24 h before high density enrichment enhanced reproduction during enrichment culture, but not when carried out simultaneously with enrichment. Swimming activity was not significantly affected by GABA treatment 24 h before or simultaneously with nutrient enrichment.  相似文献   

12.
The suitability of the freshwater rotifer Brachionus calyciflorus as starting food for the larviculture of African catfish, Clarias gariepinus Burchell, was investigated through studies of growth and fatty acid profiles in relation to different feeding sequences combining live food and dry diet in various proportions and during different mixed feeding periods. The best results for survival were observed when rotifers were supplied during the first week of feeding, i.e. sequences R2 (exclusive supply of rotifers, then dry diet from day 8, onwards) and R5 (50% rotifers+50% dry diet until day 7, then dry diet 100%), reaching 99.2% and 96.3%, respectively. The specific growth rate of larvae was largely dependent on the duration of preliminary feeding with the rotifers. A feeding with rotifers as a unique food source did not produce satisfactory growth during the first week of feeding. A precocious weaning showed that the highest growth rate and protein efficiency ratio (PER) can be obtained by feeding the larvae rotifers in association with a dry diet. The best PER and protein productive value (PPV) were recorded with feeding sequences R2 and R5. On the other hand, the series of polyunsaturated fatty acids was characterized by a relatively constant concentrations, and represented about 11.6% of the total fatty acids in sequence R2 because of the presence of the acids of the linoleic series, which apparently originated from the food. The R5 regime provided larvae with significant amounts of highly unsaturated fatty acids, such as linolenic acid C18:3n-3.  相似文献   

13.
The effect of feeding scheme and prey density on survival and development of Eriocheir sinensis zoea larvae was studied in three experiments. Different combinations and densities of rotifers (Brachionus rotundiformis) and newly hatched Artemia nauplii were fed to zoea larvae. Average survival at each stage, larval development (larval stage index, LSI), duration of zoeal stage and individual megalopa dry weight were compared among treatments. This study revealed that, under the experimental conditions, rotifers should be replaced with Artemia between the zoea 3 (Z3) and the zoea 4 (Z4) stage. The optimal rotifer feeding densities for zoea 1 (Z1) and zoea 2 (Z2) were 15 and 20 mL?1 respectively, while the optimal Artemia feeding density for Z3, Z4 and zoea 5 (Z5) was 3, 5 and 8 mL?1 respectively. Further trials in production scale are recommended.  相似文献   

14.
15.

Larvae of Japanese smelt Hypomesus nipponensis have unique salinity adaptability and a small gape size; consequently, no system has been developed to feed them for stable high growth and survival. Therefore, suitable conditions for larval growth of Japanese smelt remain to be studied. In an earlier study, we developed a Japanese smelt rearing method using a closed recirculating system. Using that system for this study, we examined recirculation rate effects on Japanese smelt larval growth because the recirculation rate can affect larval feeding opportunities through regulation of the rotifer retention time in the rearing tanks. Using 0.2–0.3% salinity and water temperatures of less than 20 °C, we fed Japanese smelt larvae with SS-type rotifer and commercial feed. Results indicated that larval growth with a recirculation rate of less than 648% per day (LR) is superior to that achieved at a rate of over 2160% per day (HR). Moreover, rotifer density under the LR condition declines more slowly than under the HR condition. These results demonstrated that the recirculation rate affects their growth, perhaps by affecting the opportunities for larvae to ingest the rotifers. Furthermore, SS-type rotifers are available for feeding teleosts in a wide range of water temperatures and salinities.

  相似文献   

16.
Two experiments were conducted examining the population structure of Brachionus ‘Nevada’ under feeding conditions commonly applied in hatcheries, using 4-day rotifer batch cultures. In the first experiment two diets were supplied: yeast with Tetraselmis suecica (treatment A) or Culture Selco® with T. suecica (treatment B). The second experiment (treatments C, D, E) differed in the phytoplankton quantity used (20?times higher): treatment C was analogous to A and treatments D and E to B. Initial rotifer density differed among treatments and was about 200 individuals ml?1 in A, C and E, and 60 individuals ml?1 in B and D. Multivariate analysis discriminated A and C from B, D and E. In treatments A and C, a 24-h cycle in ovigerous females, immature individuals and E/F ratio was observed, showing a high reproductive rate. Treatments B, D and E displayed a 48-h cycle in the aforementioned parameters, indicating a lower reproductive rate. The latter treatments had a significantly higher number of females with multiple eggs for most of the samplings, compared to A and C, except for treatment E until 40 h of sampling. Specific growth rate was significantly higher in treatments B and D (Culture Selco® diet) compared to A and C (yeast diet), while treatment E had intermediate rates. Initial rotifer density influenced the abundance of females with multiple eggs, but resulted in slight variations in growth rate and population structure. The type of dry food greatly affected the population structure of rotifers, leading to significant differences in the growth rate.  相似文献   

17.
In mass culture of Pacific bluefin tuna Thunnus orientalis, a marked growth variation is observed after they start feeding at 6–7 mm in body length (BL) on yolk‐sac larvae of other species, and the growth variation in tuna larvae is a factor leading to the prevalence of cannibalism. To examine the relationship between prey utilization and growth variation, nitrogen stable isotope ratios (δ15N) of individual larvae were analysed. A prey switch experiment was conducted under two different feeding regimes: a group fed rotifers (rotifer fed group), and a group fed yolk‐sac larvae of spangled emperor, Lethrinus nebulosus (fish fed group) from 15 days after hatching (6.87 mm BL). The fish fed group showed significantly higher growth than the rotifer fed group. Changes in the δ15N of the fish fed group were expressed as an exponential model and showed different patterns from those of the rotifer fed group. The δ15N of fast‐growing tuna larvae collected in an actual mass culture tank after the feeding of yolk‐sac larvae was significantly higher than those of the slow‐growing larvae, indicating that slow glowing larvae depended largely on rotifers rather than the yolk‐sac larvae.  相似文献   

18.
A strain of the lineage Brachionus ‘Nevada’ was batch cultured with two diets, differing in biochemical composition: baker's yeast (treatment 1), which has higher protein:lipid ratio compared with CULTURE SELCO (treatment 2). The biochemical composition (DNA, RNA, lipid, protein content) and fatty acid profile of rotifers of both treatments was analysed and related to previously published population structure data. CULTURE SELCO‐fed rotifers showed higher DNA, RNA, lipid, n‐3 highly unsaturated fatty acids (HUFA) average content, compared with yeast‐fed rotifers, which had higher protein content. Rotifer lipid content showed significant diurnal variation in yeast‐fed rotifers. Rotifer lipid and n‐3 HUFA content was associated with reproductive output. DNA and RNA content was related to embryonic development while protein content, to somatic growth and mixis. The saturated and monounsaturated fatty acid rotifer content was stable irrespective of feed, in contrast to eicosapentanoic acid (EPA) and DHA. The levels of AA were similar in both rotifer populations, but those of EPA and docosahexaenoic acid (DHA) were about half in yeast‐fed compared with CULTURE SELCO‐fed rotifers. CULTURE SELCO resulted in a temporally stable rotifer lipid profile and a better enriched parthenogenetic population.  相似文献   

19.
It currently remains unclear if rotifers contain sufficient mineral levels to meet larval fish requirements. In this study, rotifers were enriched with a commercial enrichment (control), or with additional iodine, iodine and copper, or iodine, copper and manganese, and the effects of feeding these rotifers to Atlantic cod (Gadus morhua) larvae from 3 to 18 days post hatch were investigated. Rotifer enrichment with minerals was successful, but Mn enrichment also increased rotifer zinc levels. No differences were observed between treatments in larval growth or survival, or in the mRNA levels in the majority of the redox system genes analysed. Only Zn levels increased in cod larvae in response to mineral enrichment of rotifers. Apart from Zn, little evidence was found to suggest that cod larvae require increased concentrations above the control rotifer levels of the essential elements studied here.  相似文献   

20.
In this study, an effective method to enrich the rotifer Brachionus plicatilis with copper was developed as a feed for the Chinese mitten crab Eriocheir sinensis zoea larvae. Changes in the concentrations of other minerals in rotifers were also examined when copper was added for rotifer enrichment. The ability of Chlorella to absorb waterborne copper is much higher than that of rotifers, and hence, copper was preaccumulated in Chlorella before its ingestion by rotifers. The copper content in rotifers was comparable to the dietary copper requirement of the crab larvae when the rotifers were enriched with 0.1 mg Cu g−1 Chlorella for 12 h. Further enrichment in rotifers with Cu‐enriched Chlorella and lipid emulsions did not significantly change the profile of major fatty acids and mineral composition in the rotifers. Evidence shows the feasibility of copper enrichment in rotifers using microalgae that can accumulate copper. This study indicates that copper in rotifers can be enriched by feeding copper‐enriched algae at a concentration of 0.1–0.2 mg Cu g−1 Chlorella. The developmental rates of E. sinensis can be improved by feeding zoea larvae with copper‐enriched rotifers, but survival rates were not affected by dietary copper enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号