首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The first genetic linkage map of Japanese bunching onion (Allium fistulosum) based primarily on AFLP markers was constructed using reciprocally backcrossed progenies. They were 120 plants each of (P1)BC1 and (P2)BC1 populations derived from a cross between single plants of two inbred lines: D1s-15s-22 (P1) and J1s-14s-20 (P2). Based on the (P2)BC1 population, a linkage map of P1 was constructed. It comprises 164 markers – 149 amplified fragment length polymorphisms (AFLPs), 2 cleaved amplified polymorphic sequences (CAPSs), and 12 simple sequence repeats (SSRs) from Japanese bunching onion, and 1 SSR from bulb onion (A. cepa) – on 15 linkage groups covering 947 centiMorgans (cM). The linkage map of P2 was constructed with the (P1)BC1 population and composed of 120 loci – 105 AFLPs, 1 CAPS, and 13 SSRs developed from Japanese bunching onion and 1 SSR from bulb onion – on 14 linkage groups covering 775 cM. Both maps were not saturated but were considered to cover the majority of the genome. Nine linkage groups in P2 map were connected with their counterparts in P1 map using co-dominant anchor markers, 13 SSRs and 1 CAPS.  相似文献   

2.
3.
Sequence-related amplified polymorphism (SRAP) combined with SSRs, RAPDs, and RGAPs was used to construct a high density genetic map for a F2 population derived from the cross DH962 (G. hirsutum accession) × Jimian5 (G. hirsutum cultivar). A total of 4,096 SRAP primer combinations, 6310 SSRs, 600 RAPDs, and 10 RGAPs produced 331, 156, 17 and 2 polymorphic loci, respectively. Among the 506 loci obtained, 471 loci (309 SRAPs, 144 SSRs, 16 RAPDs and 2 RGAPs) were assigned to 51 linkage groups. Of these, 29 linkage groups were assigned to corresponding chromosomes by SSR markers with known chromosome locations. The map covered 3070.2 cM with a mean density of 6.5 cM per locus. The segregation distortion in this population was 9.49%, and these distorted loci tend to cluster at the end of linkage groups or in minor clusters on linkage groups. The majority of SRAPs in this map provided an effective tool for map construction in G. hirsutum despite of its low polymorphism. This high-density linkage map will be useful for further genetic studies in Upland cotton, including mapping of loci controlling quantitative traits, and comparative and integrative analysis with other interspecific and intraspecific linkage maps in cotton.  相似文献   

4.
To generate a genetic linkage map of cassava ( Manihot esculenta Crantz), 58 F1 progenies from a cross between Rayong 90 (female) and Rayong 5 (male) were examined in amplification fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. A total of 469 polymorphic markers consisting of 378 AFLPs generated from 76 primer combinations and 91 SSRs were identified. These markers were analyzed using the joinmap ® 3.0 package program to construct a genetic linkage map. A total of 33 linkage groups of a common map were constructed from 119 AFLPs and 18 SSRs, spanning 1095 cM with an average of 7.99 cM between markers. The genetic linkage map generated in this study will be useful for genetic studies in cassava particularly for the identification of genetic markers linked to traits of interest, although the complex cassava genome suggests that maybe a long term objective.  相似文献   

5.
Genetic mapping for faba bean lags far behind other major crops. Density enhancement of the faba bean genetic linkage map was carried out by screening 5,325 genomic SSR primers and 2033 expressed sequence tag (EST)‐SSR primers on the parental cultivars '91825' and 'K1563'. Two hundred and fifteen genomic SSR and 133 EST‐SSR primer pairs that detected polymorphisms in the parents were used to screen 129 F2 individuals. This study added 337 more SSR markers and extended the previous linkage map by 2928.45 cM to a total of 4516.75 cM. The number of SSR markers in the linkage groups varied from 12 to 136 while the length of each linkage group ranged from 129.35 to 1180.21 cM. The average distance between adjacent loci in the enhanced genetic linkage map was 9.71 cM, which is 2.79 cM shorter than the first linkage map of faba bean. The density‐enhanced genetic map of faba bean will be useful for marker‐assisted selection and breeding in this important legume crop.  相似文献   

6.
B. Saal  G. Wricke 《Plant Breeding》2002,121(2):117-123
Amplified fragment length polymorphisms (AFLPs) are now widely used in DNA fingerprinting and genetic diversity studies, the construction of dense genetic maps and in fine mapping of agronomically important traits. The AFLP markers have been chosen as a source to extend and saturate a linkage map of rye, which has previously been generated by means of restriction fragment length polymorphism, random amplified polymorphic DNA, simple sequence repeat and isozyme markers. Gaps between linkage groups, which were known to be part of chromosome 2R, have been closed, thus allowing the determination of their correct order. Eighteen EcoRI‐MseI primer combinations were screened for polymorphism and yielded 148 polymorphic bands out of a total of 1180. The level of polymorphism among the different primer combinations varied from 5.7% to 33.3%. Eight primer combinations, which revealed most polymorphisms, were further analysed in all individuals of the F2 mapping population. Seventy‐one out of 80 polymorphic loci could be integrated into the linkage map, thereby increasing the total number of markers to 182. However, 46% of the mapped AFLP markers constituted four major clusters located on chromosomes 2R, 5R and 7R, predominantly in proximity to the centromere. The integration of AFLP markers caused an increase of 215 cM, which resulted in a total map length of almost 1100 cM.  相似文献   

7.
Populus adenopoda Maxim. and P. alba L. [section Populus (aspen), genus Populus] are two tree species of ecological and economic value. To date, no high-density genetic maps are available for these two species. In this study, 1100 interspecific hybrids were obtained by controlled crossing and embryo culture. Simple sequence repeat (SSR) and sequence-related amplified polymorphisms (SRAP) were used to genotype 189 F1 individuals. The genetic linkage map of P. adenopoda × P. alba generated from this study includes 212 markers (192 SSRs and 50 SRAPs) and consists of 26 linkage groups spanning 2178.5 cM, with an average distance of 11.7 cM between markers. This is the first SSR- and SRAP-containing genetic linkage map for aspen. The SSRs on the map will serve both as bridges for comparison with the poplar maps published to date and as a direct link to the Populus genomic sequence. Future studies focusing on the data presented here should enhance the density and precision of the map for identifying and localizing quantitative trait loci and promote genomic research on the genus.  相似文献   

8.
一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合   总被引:6,自引:0,他引:6  
本研究是基于“锚定SSR标记”作图策略,利用2个F2群体,选用592对SSR引物,对宛煜嵩等利用重组自交系群体Jinf构建的含有227个SSR标记的图谱的基础上进行整合。整合后的大豆分子遗传图包含315个SSR标记和40个AFLP标记,总图距为1951.7cM,相邻标记间的平均图距为5.48cM。整合后的遗传连锁图归属20个连锁群对应于大豆20条染色体,连锁群长度范围从40.8cM到184.4cM,标记数范围从11到41个。整合后的图谱新增加了87个SSR标记,其中A2、C1、C2、D1b和G连锁群有较多的标记增加。整合后的大豆分子遗传图谱中的标记顺序比原图谱与“公共图谱”有更好的线性符合度。本文还进一步对两种类型的作图群体的配合和不同作图软件的选用等问题进行了比较和深入的讨论。  相似文献   

9.
Physocarpus opulifolius is a deciduous shrub native to North America belonging to the Spiraeoideae subfamily of the Rosaceae. The cultivars ‘Luteus’ and ‘Diabolo’ are grown in gardens for their ornamental foliage, golden and purple respectively. We developed a linkage map of P. opulifolius with a view to detecting markers for the leaf colour genes, which are under major gene control. A total of 162 molecular markers (128 RAPDs, 27 AFLPs, three RGA, three STS markers and one SSR) and the leaf colour genes Pur and Aur were scored in the Physocarpus progeny and used to create a linkage map covering 586.1 cM over nine linkage groups. There was an average of 18.2 markers per linkage group and a mean linkage group length of 65.1 cM. Both leaf colour genes were mapped. This is the first reported linkage map of a member of the Spireaeoideae and the mapping of a small number of transferable markers has demonstrated its utility to comparative mapping, which will complement existing comparative mapping efforts in other rosaceous subfamilies.  相似文献   

10.
Cashew (Anacardium occidentale) is a widespread tropical tree crop that is grown primarily for its nuts and has a global production of over 2 million Mt. In spite of its economic importance to many countries, however, no linkage map containing STS anchor sites has yet been produced for this species. This is largely attributable to a prolonged juvenile phase of the tree (limiting mapping to F1 progenies) and difficulty in effecting sufficient hand-pollinations to create mapping populations of effective size. Here, we produce an F1 mapping population of 85 individuals from a cross between CP 1001 (dwarf commercial clone) and CP 96 (giant genotype), and use it to generate two linkage genetic maps comprising of 205 genetic markers (194 AFLP and 11 SSR markers). The female map (CP 1001) contains 122 markers over 19 linkage groups and the male map (CP 96) comprises 120 markers assembled over 23 linkage groups. The total map distance of the female map is 1050.7 cM representing around 68% genome coverage, whereas the male map spans 944.7 cM (64% coverage). The average map distance between markers is 8.6 cM in the female map and 7.9 cM in the male map. Homology between the two maps was established between 13 linkage groups of the female map and 14 of the male map using 46 bridging markers that include 11 SSR markers. These maps represent a platform from which to identify loci controlling economically important traits in this crop.  相似文献   

11.
A chicory genetic map of 1208 cM has been created using 247 F2 plants and 237 markers (170 AFLP, 28 SSR, 27 EST‐SNP and 12 EST‐SSR). This map covers 84% of the chicory genome. The chicory‐genic‐markers‐associated sequences were used to find potential orthologs in mapped lettuce ESTs from the Compositae Genome Project Database. Twenty‐seven putative orthologous pairs were retained, pinpointing seven putative blocks of synteny that covered 11% of the chicory genome and 13% of the lettuce genome, opening new perspectives for the analysis of these two species.  相似文献   

12.
A partial resistance to maize mosaic virus (MMV) and maize stripe virus (MStV) was mapped in a RILs population derived from a cross between lines MP705 (resistant) and B73 (susceptible). A genetic map constructed from 131 SSR markers spanned 1399 cM with an average distance of 9.6 cM. A total of 10 QTL were detected for resistance to MMV and MStV, using composite interval mapping. A major QTL explaining 34–41% of the phenotypic variance for early resistance to MMV was detected on chromosome 1. Another major QTL explaining up to 30% of the phenotypic variation for all traits of resistance to MStV was detected in the centromeric region of chromosome 3 (3.05 bin). After adding supplementary SSR markers, this region was found to correspond well to the one where a QTL of resistance to MStV already was located in a previous mapping study using an F2 population derived from a cross between Rev81 and B73. These results suggested that these QTL of resistance to MStV detected on chromosome 3 could be allelic in maize genome.  相似文献   

13.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

14.
In this study, we developed a total of 37 simple sequence repeat (SSR) markers from 11 bacterial artificial chromosome (BAC) clone sequences anchored on chromosome 12 of tomato available at Solanaceae Genomics Network. These SSR markers could group a set of 16 tomato genotypes comprising of Solanum lycopersicum, S. pimpinellifolium, S. habrochaites, and S. pennellii unambiguously according to their known species status. Clear subgroups of genotypes within S. lycopersicum were also observed. A subset of 16 SSR markers representing the 11 BAC clones was used for developing genetic linkage maps of three interspecific F2 populations produced from the crosses involving a common S. lycopersicum parent (CLN2498E) with S. pennellii (LA1940), S. habrochaites (LA407) and S. pimpinellifolium (LA1579). The length of the genetic linkage maps were 112.5 cM, 109.3 cM and 114.1 cM, respectively. Finally, an integrated genetic linkage map spanning a total length of 118.7 cM was developed. The reported SSR markers are uniformly distributed on chromosome 12 and would be useful for genetic diversity and mapping studies in tomato.  相似文献   

15.
Simple sequence repeat (SSR) marker is a powerful tool for construction of genetic linkage map which can be applied for quantitative trait loci (QTL) and marker‐assisted selection (MAS). In this study, a genetic map of faba bean was constructed with SSR markers using a 129 F2 individuals population derived from the cross of Chinese native variety 91825 (large seed) and K1563 (small seed). By screening 11 551 SSR primers between two parents, 149 primer pairs were detected polymorphic and used for F2 population analysis. This SSR‐based genetic linkage map consisted of 15 linkage groups with 128 SSR. The map encompassed 1587 cM with an average genetic distance of 12.4 cM. The genetic map generated in this study will be beneficial for genetic studies of faba bean for identification of marker‐locus‐trait associations as well as comparative mapping among faba bean, pea and grasspea.  相似文献   

16.
Integration of AFLP markers into an RFLP-based map of durum wheat   总被引:5,自引:0,他引:5  
C. Lotti    S. Salvi    A. Pasqualone    R. Tuberosa  A. Blanco 《Plant Breeding》2000,119(5):393-401
Amplified fragment length polymorphism (AFLP) is a powerful technique which can readily be applied to a wide range of species for mapping purposes. AFLPs were added to a linkage map of durum wheat constructed using restriction fragment length polymorphisms (RFLPs). The mapping population included 65 recombinant inbred lines derived from a cross between the durum wheat cultivar ‘Messapia’ and accession ‘MG4343’ of the wild Triticum turgidum ssp. dicoccoides (Körn.). Genomic DNA was digested with MseI (4‐cutter) and Sse83871 (8‐cutter). Using a silver‐staining protocol, 14 primer combinations revealed 421 clearly scorable amplicons including 100 polymorphisms. The presence of nine pairs of bands linked in repulsion phase with each pair generated by one primer combination suggested the presence of codominant alleles; sequence analysis of four band pairs confirmed their codominant nature. The integration of 80 AFLP loci extended the map in several telomeric regions, reduced the size of four large gaps present in the previous map, and eliminated one gap. The new map obtained after the inclusion of the 80 AFLP loci and eight additional RFLP loci spans 2063cM which represent a 52.6% increment compared with the previous map. Compared with the distribution of RFLPs, no significant clustering of AFLP markers was observed.  相似文献   

17.
18.
Amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) techniques were used to map the _RGSpeking gene, which is resistant to most isolates of Cercospora sojina in the soya bean cultivar ‘Peking’. The mapping was conducted using a defined F2 population derived from the cross of ‘Peking’(resistant) בLee’(susceptible). Of 64 EcoRI and MseI primer combinations, 30 produced polymorphisms between the two parents. The F2 population, consisting of 116 individuals, was screened with the 30 AFLP primer pairs and three mapped SSR markers to detect markers possibly linked to RcsPeking. One AFLP marker amplified by primer pair E‐AAC/M‐CTA and one SSR marker Satt244 were identified to be linked to ResPeking. The gene was located within a 2.1‐cM interval between markers AACCTA178 and Satt244, 1.1 cM from Satt244 and 1.0 cM from AACCTA178. Since the SSR markers Satt244 and Satt431 have been mapped to molecular linkage group (LG) J of soya bean, the ResPeking resistance gene was putatively located on the LG J. This will provide soya bean breeders an opportunity to use these markers for marker‐assisted selection for frogeye leaf spot resistance in soya bean.  相似文献   

19.
An AFLP-based linkage map of Zoysiagrass (Zoysia japonica)   总被引:7,自引:0,他引:7  
H. Cai    M. Inoue    N. Yuyama  S. Nakayama 《Plant Breeding》2004,123(6):543-548
To construct an amplified‐fragment length polymorphism (AFLP)‐based molecular linkage map of zoysiagrass, the selfed progenies of a clone consisting of 78 individuals were analysed using 471 AFLP markers derived from 126 PstI/MseI primer combinations. Of these markers, 364 were grouped into 26 linkage groups. The maps covered a total length of 932.5 cM, with an average spacing of 2.6 cM between markers. This information proves useful for gene targeting, quantitative trait loci mapping, and marker‐assisted selection in zoysiagrass.  相似文献   

20.
An SSR-based molecular genetic map of cassava   总被引:7,自引:2,他引:7  
E. Okogbenin  J. Marin  M. Fregene 《Euphytica》2006,147(3):433-440
Summary Microsatellites or simple sequence repeats (SSR) are the markers of choice for molecular genetic mapping and marker-assisted selection in many crop species. A microsatellite-based linkage map of cassava was drawn using SSR markers and a F2 population consisting of 268 individuals. The F2 population was derived from selfing the genotype K150, an early yielding genotype from an F1 progeny from a cross between two non-inbred elite cassava varieties, TMS 30572 and CM 2177-2 from IITA and CIAT respectively. A set of 472 SSR markers, previously developed from cassava genomic and cDNA libraries, were screened for polymorphism in K150 and its parents TMS 30572 and CM 2177-2. One hundred and twenty two polymorphic SSR markers were identified and utilized for linkage analysis. The map has 100 markers spanning 1236.7 cM, distributed on 22 linkage groups with an average marker distance of 17.92 cM. Marker density across the genome was uniform. This is the first SSR based linkage map of cassava and represents an important step towards quantitative trait loci mapping and genetic analysis of complex traits in M. esculenta species in national research program and other institutes with minimal laboratory facilities. SSR markers reduce the time and cost of mapping quantitative trait loci (QTL) controlling traits of agronomic interest, and are of potential use for marker-assisted selection (MAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号