首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bacterial disease of Persian (English) walnut (Juglans regia) has been observed in France. This disease, called vertical oozing canker (VOC), is characterized by vertical cankers on trunks and branches of affected walnut trees with oozing exudates. To determine the aetiology of the disease, a study was carried out in 79 walnut orchards and nurseries located in southeastern and southwestern France. Bacterial analysis from diseased samples yielded 36 strains identified as Xanthomonas arboricola and 32 strains identified as Brenneria nigrifluens on the basis of biochemical tests. The causal agent of VOC was identified as X. arboricola by pathogenicity tests on walnut. Fluorescent amplified fragment length polymorphism (F‐AFLP) was carried out on 36 strains of Xarboricola collected in this study, 24 strains of X. arboricola pv. juglandis isolated from walnut blight symptoms and one strain of X. arboricola pv. corylina included as an outgroup. Based on cluster analysis of F‐AFLP data, most X. arboricola strains responsible for main VOC outbreaks showed a high degree of similarity, forming a cluster clearly separate from strains of X. arboricola pv. juglandis isolated from walnut blight symptoms. It is suggested that VOC is caused by a distinct genetic lineage within the pathovar juglandis of X. arboricola that is also able to cause classical bacterial blight symptoms on walnut leaves and fruits.  相似文献   

2.
Xanthomonas arboricola pv. juglandis is the causal agent of walnut blight, one of the most important and widespread diseases of Persian (English) walnut (Juglans regiaL.), causing severe damage to leaves, twigs and nuts. To investigate the genomic variability of X. arboricolapv. juglandis, 66 isolates obtained from different countries (England, France, Italy, The Netherlands, Romania, Spain, USA, and New Zealand) were analysed using the Amplified Fragment Length Polymorphism (AFLP) technique. EcoRI and MseI were used as restriction endonucleases. Primers with a core sequence including endonuclease recognition sites and a 3prime-terminal cytosine selective base for MseI primer, or no selective base for EcoRI primer, were used. Data were analysed by means of a multiple correspondence analysis. A total of 76 amplified polymorphic DNA fragments were used to compute relationships among isolates. The AFLP profiles of X. arboricola pv. juglandis isolates appeared to be reliably distinguishable from X. arboricola pv. pruni and X. arboricola pv. corylina, and from other Xanthomonas species, i.e. X. campestris pv. campestris, X. fragariae, X. hortorum, X. axonopodis pv. vesicatoria. Though this pathogen is associated with one single host genus, a high level of genomic diversity was found. This diversity might be partly explained by the geographic origin. Nevertheless, isolates with different patterns were collected within one country, and similar molecular patterns were found in isolates collected at different sites. However, genetic diversity might be influenced by exchanging vegetative material from different countries. Mixing of X. arboricola pv. juglandis isolates might have partly concealed the influence of the geographic location from which the bacteria were isolated.  相似文献   

3.
Xanthomonas arboricola pv. juglandis (Xaj) is the aetiological agent of walnut diseases causing economic losses on walnut production worldwide. This phytopathogen is spread around the world where walnuts are produced and has a considerable genetic diversity. Using a comprehensive sampling methodology, focusing on factors that could influence the diversity of walnut-colonizing Xaj in Portugal, this work provides new insights on xanthomonad populations on walnut. Genetic diversity was assessed by multilocus sequence analysis (MLSA) and dot blot hybridization patterns on 131 Xanthomonas isolates obtained from 64 walnut trees considering epidemiological metadata such as year of isolation, distinct bioclimatic regions, production regimes, and host-related features. The results showed that the majority of isolates were split into 17 lineages of Xaj, while the other isolates clustered in four MLSA groups that did not include Xaj strains. These four groups were represented by three lineages of X. arboricola, and 11 lineages of Xanthomonas spp., including strains assigned to the recently proposed new species Xanthomonas euroxanthea. Furthermore, distinct Xaj, X. arboricola, and Xanthomonas spp. were isolated from the same walnut tree, suggesting possible genetic admixture within the same host. Phylogenetic analysis through geoBurst revealed the high diversity of these Xanthomonas spp. populations. Assessment of type III effector genes gave the indication that some Xanthomonas spp. strains were nonpathogenic on walnut, with the exception for X. euroxanthea CPBF 424. Altogether, these findings add to the thorough characterization of walnut-associated xanthomonads in Portugal, providing a comprehensive snapshot of the current diversity that could contribute to risk assessment analysis and improve phytosanitary control.  相似文献   

4.
The objective of this study was to develop a rapid, sensitive detection assay for the quarantine pathogen Xanthomonas arboricola pv. pruni, causal agent of stone fruit bacterial spot, an economically important disease of Prunus spp. Unique targets were identified from X. arboricola pv. pruni genomes using a comparative genomics pipeline of other Xanthomonas species, subspecies and pathovars, and used to identify specific diagnostic markers. Loop‐mediated isothermal amplification (LAMP) was then applied to these markers to provide rapid, sensitive and specific detection. The method developed showed unrivalled specificity with the 79 tested strains and, in contrast to previously established techniques, distinguished between phylogenetically close subspecies such as X. arboricola pv. corylina. The sensitivity of this test is comparable to that of a previously reported TaqMan? assay at 103 CFU mL?1, while the unrivalled speed of LAMP technology enables a positive result to be obtained in <15 min. The developed assay can be used with real‐time fluorescent detectors for quantitative results as well as with DNA‐staining dyes to function as a simplified strategy for on‐site pathogen detection.  相似文献   

5.
Polyphasic analysis exposed important heterogeneity between bacterial strains catalogued as Xanthomonas arboricola pv. fragariae (Xaf) from different culture collections. Two draft whole‐genome sequences revealed pathogenicity related genes of the type‐three secretion system in strain LMG 19146, whereas none were found in the Xaf pathotype strain LMG 19145. Also, considerable sequence divergence was observed in the phylogenetic marker genes gyrB, rpoD, dnaK and fyuA. Further study of 16 Xaf culture‐collection strains showed that co‐classification is not justified. Partial 16S rRNA gene and gyrB sequencing demonstrated that 12 strains belonged to X. arboricola, but that they did not form one homogeneous group within the species. The four remaining strains were identified as Xanthomonas fragariae and Xanthomonas sp. All sequence‐based identifications were confirmed by MALDI‐TOF MS fingerprinting. Also, the pathogenicity genes hrcQ and avrBs2 were detected in only three of the 12 analysed X. arboricola strains. The X. arboricola and Xanthomonas sp. strains showed pectolytic activity, and upon inoculation in strawberry none of the strains reproduced the leaf blight symptoms reported for Xaf. This study demonstrates that (i) no clear criteria exist for the identification of strains as Xaf, (ii) the name Xaf is currently used for a genetically diverse assortment of strains, and (iii) the species X. arboricola holds many undetermined plant‐associated bacteria besides the described pathovars.  相似文献   

6.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

7.
A specific and rapid diagnostic tool has been developed to detect Xanthomonas campestris pv. musacearum, the causal agent of bacterial wilt of banana. PCR primers were developed from intergenic regions of X. campestris pv. musacearum following its partial sequence. A total of 48 primers were tested for specificity to X. campestris pv. musacearum strains collected from various regions in Uganda. These were also tested for specificity against related Xanthomonas species from the vasicola group, Xanthomonas species pathogenic to other crops, and against those existing saprophytically on banana plants. Seven primer sets (Xcm12, Xcm35, Xcm36, Xcm38, Xcm44, Xcm47 and Xcm48) were found to be very specific to X. campestris pv. musacearum. These primer sets directed the amplification of the expected product for all 52 strains of X. campestris pv. musacearum collected from different locations in Uganda. No amplification products were obtained with unrelated phytopathogenic bacteria or endophytic/epiphytic bacteria from banana. A detection limit of 103 CFU mL?1 corresponding to about four cells per PCR reaction was observed when X. campestris pv. musacearum cells were used for all the seven primer sets. The DNA samples from symptomless plant tissues also tested positive with primer set Xcm38. The specific PCR method described here is a valuable diagnostic tool which can be used to detect the pathogen at early stages of infection and monitor disease.  相似文献   

8.
Pseudomonas syringae pv. aptata is the causal agent of bacterial leaf spot disease of sugar beet (Beta vulgaris). During 2013, 250 samples were collected from leaf lesions with typical symptoms of bacterial leaf spot in commercial fields of sugar beet in Serbia, and 104 isolates of Psyringae pv. aptata were obtained. Identification and characterization was performed using biochemical, molecular and pathogenicity tests. Identification included LOPAT tests and positive reactions using primers Papt2F and Papt1R specific for Psyringae pv. aptata. Repetitive (rep) sequence‐based PCR typing with ERIC, REP and BOX primers revealed high genetic variability among isolates and distinguished 25 groups of different fingerprinting profiles. Pulse‐field gel electrophoresis (PFGE) and multilocus sequence analysis (MLSA) of representative isolates showed higher genetic variability than in rep‐PCR analysis and distinguished three and four major genetic clusters, respectively. A pathogenicity test performed with 25 representative isolates on four cultivars of sugar beet confirmed the occurrence of leaf spot disease and showed correlation between the most aggressive isolates and the genetic clusters obtained in MLSA. All these findings point to the existence of several lines of Psyringae pv. aptata infection in Serbia that are genetically and pathologically different.  相似文献   

9.
Yellow-pigmented bacteria isolated from blight-affected pomegranate leaves and fruit across seven Indian states in epidemics during the years 2008–2016 were characterized and identified using phenotypic and genotypic tools. All bacterial isolates shared phenotypic traits such as colony morphology, NaCl and pH sensitivity and fuscan production, and caused typical lesions on pomegranate plants upon artificial inoculation. Analysis of 16S ribosomal DNA and 16S–23S rDNA intergenic spacer sequences confirmed their identity as Xanthomonas axonopodis pv. punicae. The new isolates collected after 2000 were compared with an old isolate from the 1950s using polyphasic taxonomic approaches including multilocus sequence analysis (MLSA). Nucleotide polymorphism in 24 isolates for nine genomic loci (dnaK, fyuA, gyrB (Young), gyrB (Almeida), rpoD, fusA, gapA, gltA and lepA) showed minor variations in loci fyuA and gyrB. Isolates were grouped into four nearly identical sequence types, ST1, ST2, ST3 and ST4, based on their allelic profiles, ST3 being widespread in Indian states. Molecular phylogenetic analysis of concatenated 5690 bp with other Xanthomonas pathovars revealed its close genetic similarity with the X. citri group. The blight outbreak in diverse geographical locations is attributed to a re-emerged clonal population of X. axonopodis pv. punicae on a genetically homogenous pomegranate cultivar. The latently infected vegetative planting material of elite pomegranate cultivars contributed to the dissemination of the bacterial inoculum. This study highlights and forewarns of the role played by the clonally propagated elite pomegranate cultivars in disseminating and sustaining clonal populations of this bacterial plant pathogen in many Indian states.  相似文献   

10.
Xanthomonas campestris pathovars are widely distributed throughout the globe and have a broad host range, causing severe economic losses in the food and ornamental crucifers markets. Using an approach based on multilocus sequence typing, phylogenetic diversity and population structure of a set of 75 Portuguese and other Xanthomonas campestris isolates from several cruciferous hosts were assessed. Although this population displayed a major clonal structure, neighbour‐net phylogenetic analysis highlighted the presence of recombinational events that may have driven the ecological specialization of X. campestris with different host ranges within the Brassicaceae family. A high level of genetic diversity within and among X. campestris pathovars was also revealed, through the establishment of 46 sequence types (STs). This approach provided a snapshot of the global X. campestris population structure in cruciferous host plants, correlating the existing pathovars with three distinct genetic lineages. Phylogenetic relationships between the founder genotype and remaining isolates that constitute the X. campestris pv. campestris population were further clarified using goeBURST algorithm. Identification of an intermediate link between X. campestris pv. campestris and X. campestris pv. raphani provided new insights into the mechanisms driving the differentiation of both pathovars. Wide geographic distribution of allelic variants suggests that evolution of X. campestris as a seedborne pathogen was not shaped by natural barriers. However, as Portuguese isolates encompass 26 unique STs and this country is an important centre of domestication of Brassica oleracea crops, a strong case is made for its role as a diversification reservoir, most probably through host–pathogen coevolution.  相似文献   

11.
A multilocus sequence analysis (MLSA) was performed on five housekeeping genes (fusA, gapA, gltA, lacF and lepA) of 22 Xanthomonas euvesicatoria strains recently isolated from alfalfa, pepper and tomato plants in Iran. In addition, 161 strains isolated worldwide from pepper, poinsettia, rose and tomato plants were included in the analysis. All X. euvesicatoria pv. perforans isolates from tomato plants in Iran clustered in a monophyletic group, although five MLSA haplotypes were detected among them. The Iranian tomato strains presented 10 nucleotide differences in the lepA gene sequences compared to the known worldwide population of X. euvesicatoria pv. perforans. Statistical analyses revealed a recombination event that had occurred in the lepA gene of the strains isolated from tomato in Iran. BOX‐PCR analysis confirmed the inclusion of Iranian tomato strains within X. euvesicatoria pv. perforans. Furthermore, X. euvesicatoria pv. euvesicatoria strains isolated from pepper in Iran differed in one nucleotide in the lepA gene sequence from the known worldwide population of the pathovar, and clustered in a group containing strains isolated in Nigeria. The strains isolated from alfalfa in Iran clustered with the type strain of X. euvesicatoria pv. alfalfae. Altogether, the results reveal the existence of a phylogenetically novel population of X. euvesicatoria pv. perforans in Iran which needs further in‐depth analysis to pinpoint the epidemiological impact of these strains.  相似文献   

12.
Bacterial blight disease of Persian walnut (Juglans regia, L.), caused by Xanthomonas arboricola pv. juglandis (Xaj), leads to significant nut losses in northern, central and western areas of Iran. To identify the natural sources of resistance to disease in the endemic walnut genotypes of Iran, sixteen walnut genotypes, collected from different areas of Hamedan province, were inoculated with Xaj in a randomized complete block design with five replicates for each genotype. Two-year old genotypes were gently sprayed with a suspension of bacteria adjusted to approximately 2 × 109 cfu ml−1 of distilled water in May. Infected leaves were rated for disease 28 and 42 days after inoculation, using a 0 to 5 severity scale, based on the number, size and distribution of lesions on the leaves. Data analyses showed that there were variations among genotypes in response to pathogen. Upon inoculation by bacterial suspension genotype 94 showed the highest resistance to both disease incidence and its progress after 4–6 weeks of infection. Genotype 65 showed high susceptibility to disease and genotype 69 showed high susceptibilities both to disease incidence and its progress after 4–6 weeks of infection.  相似文献   

13.
Walnut (Juglans regia) is economically important for both its wood and nut nutritional value, but it is susceptible to diseases such as walnut bacterial blight, caused by Xanthomonas arboricola pv. juglandis (Xaj). Walnuts contain many phenolic compounds, providing a good model on which to study polyphenol oxidase (PPO). We inoculated the detached walnut fruits of cultivars Ford, Chandler, Franquette, Robert Livermore, and Payne with Xaj and measured the induction of PPO activity in infected sites and adjacent to infected sites. Compared to infected and uninfected sites, PPO activity was induced significantly in areas adjacent to infected sites in all cultivars except Ford. Ford and Franquette, presenting the lowest and highest PPO activity, showed the largest and smallest mean diameter spots in response to Xaj, respectively. Polyacrylamide gel electrophoresis confirmed monophenol oxidase activity of walnut PPO in the assessed tissues. Then, we revealed the antipathogenic potential of walnut PPO through Agrobacterium tumefaciens-mediated walnut JrPPO1 gene transfer into tobacco (Nicotiana tabacum). Two transformed tobacco lines overexpressing the JrPPO1 gene were regenerated successfully and challenged with Pseudomonas syringae pv. tabaci. Transgenic lines showed significantly higher PPO activity and lower disease severity to the pathogen compared to the control. However, a significant difference in disease severity and PPO activity level was observed between the two transgenic lines. Our results demonstrate a potential defence-related role of PPO in transgenic tobacco and its induction in areas adjacent to infection sites in walnut cultivars treated with Xaj.  相似文献   

14.
A detection method specific for Xanthomonas oryzae pv. oryzae, the pathogen responsible for bacterial blight of rice, was based on the polymerase chain reaction (PCR) and designed by amplifying the 16S–23S rDNA spacer region from this bacterium. The nucleotide sequence of the spacer region between the 16S and 23S rDNA, consisting of approximately 580-bp, from X. oryzae pv. oryzae, X. campestris pv. alfalfae, X. campestris pv. campestris, X. campestris pv. cannabis, X. campestris pv. citri, X. campestris pv. cucurbitae, X. campestris pv. pisi, X. campestris pv. pruni and X. campestris pv. vitians, was determined. The determined sequences had more than 95% identity. Therefore, a pair of primers, XOR-F (5′-GCATGACGTCATCGTCCTGT-3′) and XOR-R2 (5′-CTCGGAGCTATATGCCGTGC-3′) was designed and found to specifically amplify a 470-bp fragment from all strains of X. oryzae pv. oryzae isolated from diverse regions in Japan. No PCR product was amplified from X. campestris pathovars alfalfae, campestris, cannabis, carotae, cucurbitae, dieffenbachiae, glycines, pisi, pruni, vitians or zantedeschiae, except for pathovars citri, incanae and zinniae. The method could also detect the pathogen in infected rice leaves within 3 hr, at a detection limit of 4×101 cfu/ml. Received 17 December 1999/ Accepted in revised form 10 April 2000  相似文献   

15.
16.
Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits, is a regulated quarantine pathogen in the European Union, listed as an A2 pest by the European and Mediterranean Plant Protection Organization (EPPO). Because detection and identification of this pathogen is key for its management and to ensure the production of pest free propagation material, it should be based on reliable tests, in particular when dealing with symptomless material. The current EPPO diagnostic Standard (PM 7/64) does not provide specific molecular methods for detection of this pest. The present paper summarizes the results of a test‐performance study (TPS) to validate, at a national level, a detection procedure for this bacterium. A working group was established in order to evaluate the performance criteria for tests included in the current EPPO Standard, and for a conventional PCR. On the basis of the obtained performance criteria, a diagnostic procedure was elaborated and then applied to perform an inter‐laboratory comparison. Screening tests for the detection of the bacterium on symptomless plant material based on IF and/or PCR were proposed, in parallel with isolation on agar media. For identification two methods were suggested: a molecular test or IF. This paper reports on the results of the TPS and proposes a flow diagram for the detection and identification of X. arboricola pv. pruni.  相似文献   

17.
Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, the causal agents of the common and fuscous bacterial blight of beans, appear to be phenotypically identical except that the latter can produce a melanin-like pigment in culture. Ten isolates of X. campestris pv. phaseoli and 12 isolates of X. campestris pv. phaseoli var. fuscans were examined using pulsed-field gel electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP). The average genome sizes for X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were 3850.6±48.9 and 3584.3±68.1kb respectively. The genetic relatedness of the isolates was determined from macrorestriction patterns generated using XbaI. Cluster analysis indicated that the non-fuscous and fuscous strains are distinct. RFLP results, based on the highly conserved hrp genes and a pectate lyase gene from Xanthomonas, also indicated that the two bacteria are genetically different. The results obtained in this study suggest that this pathovar can be segregated into two subgroups under a recently proposed reclassification of the Xanthomonas genus.  相似文献   

18.
In the spring of 2012, symptoms of a disease resembling citrus blast and citrus black pit were observed in some orchards in Tunisia. The epidemic spread rapidly in the following years. Twenty‐four commercial citrus orchards from four Tunisian regions showing characteristic symptoms of bacterial diseases were surveyed during a 3‐year study. Eighty‐eight Pseudomonas‐like bacterial isolates were successfully obtained from the northeast and west of Tunisia. No isolates were recovered from the central region. Overall, 46 isolates were identified as Pseudomonas syringae pv. syringae and most of them showed similar phenotypic and genetic profiles. The virulence of three selected isolates differed from one plant cultivar to another as well as from the type of plant organ used for the inoculation. In a bioassay test, all isolates produced syringomycin, which was confirmed by molecular detection based on the syrB and syrD genes. Only EC122 possessed syrD but not syrB. DNA fingerprints, based on repetitive sequence‐based polymerase chain reaction (rep‐PCR) and PCR melting profile (PCR MP), were used to determine the potential genetic diversity among strains. Clustering of PCR MP fingerprinting data matched with rep‐PCR fingerprinting data. The generated distribution tree showed that Tunisian isolates were closely related to the citrus reference strain LMG5496. In contrast, EC112, isolated from citrus, and the almond isolate EC122 were distantly related to the type strain LMG1247T isolated from lilac. Such studies have not been reported until now for P. syringae from citrus.  相似文献   

19.
Novel primers for rep-PCR were developed with the original software and based on `ancient diverged periodical sequences'. Rep-PCR with these primers was applied to study genetic relationships among 51 Xanthomonas campestris strains. The strains were collected from different countries including Russia, Japan, UK, Germany and Hungary. Reference strains of three X. campestrispathovars and five other Xanthomonas species were included. Based on qualitative differences in amplification profiles, the strains were divided into four major groups. Two subgroups recognised within X. campestrispopulation were similar to RFLP haplotypes. The third subgroup included strains of two other pathovariants and Japanese isolates of X. campestris pv. campestriswhile the fourth group comprised the other species of Xanthomonas. The analysis of the diversity within X. campestris resulted in the conclusion that isolates belong to distinct clonal populations (subgroups). The differences between the subgroups of X. campestris were only slightly smaller than between species of Xanthomonas. A PCR fragment about 600 bp amplified by primer KRPN2 was found in nearly all tested strains of X. campestris.SCAR primers designed for this marker produced a single specific band for strains of X. campestris, but not for other Xanthomonas, Pseudomonas and Erwiniastrains tested. Application of the new primer set for rep-PCR offers a rapid, simple and reproducible method for identification of bacterial strains. The X. campestris-specific SCAR primers may be used in diagnostics of this important plant pathogen.  相似文献   

20.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号