首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
In this study,the causal agents were identified from Canna indica viral diseased plants in Yunnan Province.The diseased C.indica plants mainly exhibited the symptoms like veinal chlorosis and yellowing,streak mosaic or interveinal chlorosis,while older leaves always showed veinal necrosis as well as chlorosis.Viral pathogens were detected by RT-PCR/PCR in 24 diseased C.indica samples collected from Kunming and Yuxi City in Yunnan Province.The results indicated that the main C.indica-infecting viruses were canna yellow mottle virus (CaYMV),bean yellow mosaic virus (BYMV),sugarcane mosaic virus (SCMV).CaYMV showed the highest detection rate of 87.5 %,whereas,the BYMV had the lowest rate of 16.7% in the 24 samples.Co-infections of CaYMV+SCMV,CaYMV+BYMV and CaYMV+SCMV+BYMV were also detected in the diseased samples.However,cucumber mosaic virus (CMV),tobamovirus,luteovirus,orthotospovirus,begomovirus and umbravirus were not detected in these samples.This is the first report of CaYMV and SCMV infecting C.indica in Yunnan province.  相似文献   

3.
In this study,the causal agents were identified from Canna indica viral diseased plants in Yunnan Province.The diseased C.indica plants mainly exhibited the symptoms like veinal chlorosis and yellowing,streak mosaic or interveinal chlorosis,while older leaves always showed veinal necrosis as well as chlorosis.Viral pathogens were detected by RT-PCR/PCR in 24 diseased C.indica samples collected from Kunming and Yuxi City in Yunnan Province.The results indicated that the main C.indica-infecting viruses were canna yellow mottle virus (CaYMV),bean yellow mosaic virus (BYMV),sugarcane mosaic virus (SCMV).CaYMV showed the highest detection rate of 87.5 %,whereas,the BYMV had the lowest rate of 16.7% in the 24 samples.Co-infections of CaYMV+SCMV,CaYMV+BYMV and CaYMV+SCMV+BYMV were also detected in the diseased samples.However,cucumber mosaic virus (CMV),tobamovirus,luteovirus,orthotospovirus,begomovirus and umbravirus were not detected in these samples.This is the first report of CaYMV and SCMV infecting C.indica in Yunnan province.  相似文献   

4.
5.
美人蕉黄斑驳病毒巢式PCR检测方法的建立   总被引:1,自引:0,他引:1  
本文以我国台湾进境美人蕉病株为材料,根据已报道的美人蕉黄斑驳病毒Canna yellow mottle virus(CaYMV)基因序列设计2对特异性引物(外侧引物1对、内侧引物1对),建立了巢式PCR快速检测CaYMV的方法,并对进境的50份美人蕉样品进行了检测。结果显示,该方法特异性强,且灵敏度高于常规PCR,是常规PCR的1 000倍,表明该方法能够实现对CaYMV的快速、准确、灵敏检测,适用于口岸快速检测CaYMV。  相似文献   

6.
The prevalence of viruses in pepper crops grown in open fields in the different agro‐ecological zones (AEZs) of Côte d'Ivoire was surveyed. Pepper veinal mottle virus (PVMV; genus Potyvirus) and Cucumber mosaic virus (CMV; genus Cucumovirus) were the most frequent viruses among those surveyed, while tobamoviruses (genus Tobamovirus) were detected at low frequency. PVMV showed a high heterogeneity across AEZs, which may be related to climatic, ecological or agronomical conditions, whereas CMV was more homogeneously distributed. The molecular diversity of CMV and PVMV were analysed from partial genome sequences. Despite the low number of CMV isolates characterized, two molecular groups were revealed, one corresponding to subgroup IA and the other to reassortants between subgroups IA and IB. RNAs 1 and 3 of the reassortants clustered with the IB subgroup of CMV isolates, whereas their RNA 2 clustered with the IA subgroup. Importantly, RNA 1 of CMV isolates of the IB subgroup has been shown to be responsible for adaptation to pepper resistance. The diversity of PVMV in the VPg‐ and coat protein‐coding regions revealed multiple clades. The central part of the VPg showed a high level of amino acid diversity and evidence of positive selection, which may be a signature of adaptation to plant recessive resistance. As a consequence, for efficient deployment of resistant pepper cultivars, it would be desirable to examine the occurrence of virulent isolates in the CMV or PVMV populations in Côte d'Ivoire and to follow their evolution as the resistance becomes more widely deployed.  相似文献   

7.
8.
9.
豌豆病毒病病原研究   总被引:2,自引:0,他引:2  
 1986年至1990年,从豌豆田中采集了150余份病毒病样本,鉴定出蚕豆萎蔫病毒(BB-WV)、芜菁花叶病毒(TuMV)、马铃薯Y病毒组分离物、黄瓜花叶病毒(CMV)、莴苣花叶病毒(LMV)、大豆花叶病毒(SMV)、豌豆花叶病毒(PMV)、菜豆黄花叶病毒(BYMV)和苜蓿花叶病毒(AMV)等9种病毒。样本中,BBWV所占的比例最高,达59.2%,其次为CMV,占15.5%。BBWV常与CMV复合侵染豌豆,LMV发生也较普遍。田间调查表明,豌豆病毒病发病率因种植地区及品种不同而有差异,平均发病率为12.4%。  相似文献   

10.
There is a need to develop integrated disease management strategies that are comprehensive and can protect farmers from the economic hardship that arises when epidemics of non-persistently aphid-borne viruses damage their crops. The aim of this review is to provide a model for future programmes to use when developing such strategies for different combinations of non-persistently aphid-borne viruses and crops. The model programme described is a 15-year study to develop integrated management strategies against two non-persistently aphid-borne viruses causing damaging diseases of lupins and to get them adopted by farmers. The success of the programme depended on an interdisciplinary team approach, obtaining a detailed understanding of the factors favouring virus epidemics, field evaluation for virus resistance, and field experiments that determined the effectiveness of individual control measures. The strategies developed were designed to cause few additional labour demands, and minimal disruption to normal farming operations or extra expense.The programme devised integrated management strategies for the diseases caused by Cucumber mosaic virus (CMV) and Bean yellow mosaic virus (BYMV) in crops of narrow-leafed lupin (Lupinus angustifolius) under the conditions of low-input, dryland agriculture in the south-west Australian grainbelt, which has a Mediterranean-type climate. CMV is introduced into lupin crops by sowing virus-infected lupin seed while aphids spread BYMV into the growing crop from adjacent virus-infected, clover-based pastures. Grain yield losses are substantial when virus spread by aphids is sufficient to cause high incidences of infection within crops. The management strategies were gradually improved and expanded as understanding of the epidemiology of viruses in lupins improved and the results of field experiments involving potential control measures became available. The individual measures combined within the integrated management strategy for each virus were: sowing seed stocks with minimal virus contents, sowing cultivars with inherently low seed transmission rates and isolation from neighbouring lupin crops (CMV only); perimeter non-host barriers and avoiding fields with large perimeter : area ratios (BYMV only); nobreak promoting early canopy development, generating high plant densities, adjusting row spacing, direct drilling into retained stubble, sowing early maturing cultivars, maximising weed control and crop rotation (both viruses). Recommendations to apply insecticide were included solely for spraying high value seed crops (CMV only) or virus-infected pastures next to crops (BYMV only). The justification for selection of each individual control measure, its mode of action in either removing or minimising the virus infection source or suppressing virus spread by aphids and the extent to which it has been adopted by farmers is described. The approach used to transfer the strategies to farmers and the need to avoid complacency following the overall success of the work is emphasised. An integrated disease management strategy developed to clean up the lupin breeding programme from seed-borne virus infection and prevent release of infected seed stocks of new cultivars is also described. It can serve as an example of what is needed to tackle seed-borne virus contamination in other plant breeding or selection programmes.  相似文献   

11.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

12.
Replicase-mediated tobacco plants are highly resistant to the Fny strain of Cucumber mosaic virus (CMV) and closely related subgroup IA strains. Two of these subgroup IA strains, Fny- and M-CMV, were co-inoculated with different resistance breaking cucumoviruses to nontransformed and transformed tobacco plants. RT-PCR analyses of single CMV RNAs were performed to study potential complementation of the subgroup IA strains by the resistance breaking cucumoviruses. After co-inoculation of M-CMV with PII-CMV, RNAs 1, 2 and 3 from M-CMV were detected in systemically infected leaves of control plants, whereas in noninoculated parts of replicase-mediated resistant plants only M-CMV RNAs 1 and 3 were found. Western blot studies confirmed the expression of M-CMV coat protein after co-inoculation with PII-CMV in leaves of transgenic plants. These plants also exhibited M-CMV typical yellow spots. M-CMV/TAV co-inoculated transgenic plants contained only M-CMV RNA 3, but no M-CMV RNAs 1 and 2. No M-CMV typical yellow spots were observed in these plants. Our data suggest different types of complementation of M-CMV in replicase-mediated resistant plants by PII-CMV and TAV in trans potentially leading to new RNA combinations in transformed plants compared to nontransformed plants.  相似文献   

13.
Several potyviruses affect lettuce (Lactuca sativa) and chicory (Cichorium spp.) crops worldwide and are important constraints for production because of the direct losses that they induce and/or because of their seed transmission. Here, the molecular and biological properties are described of two potyviruses that were recently isolated from lettuce plants showing mosaic or strong necrotic symptoms in an experimental field in southeastern France. The first potyvirus belongs to the species Endive necrotic mosaic virus and is present in a large number of wild plant species, especially Tragopogon pratensis. It is unable to infect lettuce cultivars with a resistance to Turnip mosaic virus that is present in many European cultivars and probably conferred by the Tu gene. The second potyvirus belongs to the tentative species lettuce Italian necrotic virus and was not observed in wild plants. It infected all tested lettuce cultivars. Wild accessions of Lactuca serriola, Lactuca saligna, Lactuca virosa and Lactuca perennis were identified as resistant to one or the other potyvirus and could be used for resistance breeding in lettuce. No resistance against these two potyviruses was observed in the tested Cichorium endivia cultivars. In contrast, all tested Cichorium intybus cultivars or accessions were resistant.  相似文献   

14.
In freesia cv. Aurora grown in the field for cutflower production, a disease occurred with symptoms of leaf-yellowing in combination with corm necrosis (LYCN). It is shown that this disease is caused by bean yellow mosaic virus (BYMV).No differences in symptoms of LYCN were observed between the freesia cultivars Aurora, Imperial and Rose Marie. Most BYMV isolates gave rise to LYCN; the isolates from crocus andIxia sp. did not. LYCN was stimulated by a high BYMV concentration in the inoculum, a temperature above 20°C, inoculation soon after emergence of the freesias, and by the absence of freesia mosaic virus. Freesias with mosaic symptoms and infected with a cross-protecting BYMV strain, did not show symptoms of leaf-yellowing and/or corm necrosis after inoculation with BYMV-Cm. The presence of the unknown agent causing leaf necrosis in freesias did not have an influence on symptom development after infection with BYMV.  相似文献   

15.
A putative virus-induced disease showing chlorotic spots on leaves of Phalaenopsis orchids was observed in central Taiwan. A virus culture, phalaenopsis isolate 7-2, was isolated from a diseased Phalaenopsis orchid and established in Chenopodium quinoa and Nicotiana benthamiana. The virus reacted with the monoclonal antibody (POTY) against the potyvirus group. Potyvirus-like long flexuous filament particles around 12–15 × 750–800 nm were observed in the crude sap and purified virus preparations, and pinwheel inclusion bodies were observed in the infected cells. The conserved region of the viral RNA was amplified using the degenerate primers for the potyviruses and sequence analysis of the virus isolate 7-2 showed 56.6–63.1% nucleotide and 44.8–65.1% amino acid identities with those of Bean yellow mosaic virus (BYMV), Beet mosaic virus (BtMV), Turnip mosaic virus (TuMV) and Bean common mosaic virus (BCMV). The coat protein (CP) gene of isolate 7-2 was amplified, sequenced and found to have 280 amino acids. A homology search in GenBank indicated that the virus is a potyvirus but no highly homologous sequence was found. The virus was designated as Phalaenopsis chlorotic spot virus (PhCSV) in early 2006. Subsequently, a potyvirus, named Basella rugose mosaic virus isolated from malabar spinach was reported in December 2006. It was found to share 96.8% amino acid identity with the CP of PhCSV. Back-inoculation with the isolated virus was conducted to confirm that PhCSV is the causal agent of chlorotic spot disease of Phalaenopsis orchids in Taiwan. This is the first report of a potyvirus causing a disease on Phalaenopsis orchids.  相似文献   

16.
Artichoke Italian latent virus (AILV), Artichoke latent virus (ArLV), Artichoke mottled crinkle virus (AMCV), Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV), Pelargonium zonate spot virus (PZSV), Tomato infectious chlorosis virus (TICV), Tobacco mosaic virus (TMV), Tomato spotted wilt virus (TSWV) and Turnip mosaic virus (TuMV) are damaging to artichoke. We have developed a protocol enabling the simultaneous detection of these artichoke viruses by non-isotopic dot blot hybridisation with DNA probes. The probe mix detected all viruses with high specificity and identical to that obtained using individual probes. The approach is proposed for the routine assessment of phytosanitary status for certified nursery production of globe artichoke.  相似文献   

17.
18.
19.
The causative virus (isolate No. 4) of gentian (Gentiana spp.) mosaic, which had been identified previously as Clover yellow vein virus (C1YVV) on the basis of host range and serological reactions, was re-identified as Bean yellow mosaic virus (BYMV) on the basis of the nucleotide sequences of the gene for the coat protein (CP) and the 3′-noncoding region, as well as the predicted amino acid sequence of CP. Received 16 April 2002/ Accepted in revised form 19 June 2002  相似文献   

20.
Two viruses that frequently occur in many Lilium species are Lily mottle virus (LMoV) and Cucumber mosaic virus (CMV), which usually co-infect lilies causing severe disease symptoms. Recent reports have revealed that the viral coat protein (CP) affects chloroplast ultrastructure and symptom development. This study used western blot analysis to confirm that in leaves infected by mixed virus infections of LMoV and CMV, CPs of both viruses were accumulated in lily chloroplasts. Immunogold labelling further demonstrated that both the LMoV CP and CMV CP were localized in the stroma and the thylakoid membranes of the chloroplasts. In addition, it was found that CPs of both viruses were rapidly transported into isolated, intact chloroplasts (in vitro), and their transport efficiencies were positively related to CP concentrations. The lowest transmembrane concentration of CMV CP decreased from 38 μg mL−1 recorded in the single CMV CP import system to 10 μg mL−1 in the mixed import system of LMoV CP and CMV CP. CPs of both viruses exhibited species selection in their transmembrane transport into chloroplasts. This is the first report that the CPs from two viruses (LMoV and CMV) are simultaneously present in lily chloroplasts. Accumulation of high levels of LMoV CP and CMV CP inside the chloroplast appears to contribute to a synergistic interaction inducing the development of mosaic symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号