首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single layer centrifugation (SLC) has been shown to select the most robust spermatozoa from the ejaculate in several species. Here the effects of SLC prior to freezing on various parameters of frozen‐thawed bovine sperm quality are reported. Semen from 8 bulls was layered on top of a species‐specific colloid, Bovicoll. After centrifugation for 20 min at 300 g, the resulting sperm pellet was resuspended in OPTIXcell® (IMV Technologies, l′Aigle, France); the SLC‐selected sperm samples and uncentrifuged controls were frozen. On thawing, all sperm samples were analysed for membrane integrity, production of reactive oxygen species, mitochondrial membrane potential (MMP) and chromatin integrity. The SLC‐treated samples had a higher percentage of live, superoxide‐positive spermatozoa than uncentrifuged samples (27.9 ± 5.1% versus 21.7 ± 6.7%; p = .03). They had a higher proportion of spermatozoa with high mitochondrial membrane potential than uncentrifuged samples (55.9 ± 8.2% versus 40.5 ± 15.1%; p = .03) and also a lower proportion of spermatozoa with low mitochondrial membrane potential than non‐treated samples (42.0 ± 8.5% versus 55.9 ± 14.4%; p = .04). No significant effects of treatment were found for membrane integrity or chromatin integrity. The effect of bull was significant on the proportions of dead, superoxide‐positive spermatozoa and live, hydrogen peroxide‐negative spermatozoa, as well as on membrane integrity, but it was not significant for mitochondrial membrane potential or chromatin integrity. These results suggest that SLC selects the most metabolically active bull spermatozoa from the rest of the population in normal ejaculates; the pattern of reactive oxygen species production may be different in SLC‐selected spermatozoa compared to unselected samples.  相似文献   

2.
Insemination with chilled transported semen has become distinctly important in the horse-breeding industry. To ensure cell survival during cooled storage, semen is diluted with an appropriate extender and the concentration of seminal plasma (SP) is reduced. Nevertheless, SP plays an important immunomodulatory role in the female genital tract and supports sperm fertility. The aim of the present study was to evaluate the effect of the addition of autologous SP after cooled storage to highly concentrated stallion semen. Therefore, SP was removed by simple centrifugation of extended semen, aspiration of the supernatant, and resuspension of the sperm pellet with semen extender. Motion characteristics were evaluated after cooled storage for 48 hours at concentrations of 333 × 106 sperm/mL in comparison with stored samples at concentration of 25 × 106 sperm/mL (control). The highly concentrated semen samples were diluted with an extender containing 0%, 5%, 20%, and 80% SP directly before motility analysis. Dilution of the cooled semen with a fresh semen extender without SP (0%) increased kinematic parameters (curvilinear velocity [VCL] 137.3 vs. 151.8; straight-line velocity [VSL] 49.0 vs. 57.5; average path velocity [VAP] 69.5 vs. 79.4 μm/second; amplitude of lateral head [ALH] 3.1 vs. 3.3 μm; beat cross frequency [BCF] 31.6 vs. 33.5 Hz; P < .05) but not total motility (51% vs. 43%) and progressive motility (46% vs. 36%) compared with controls. The addition of SP after storage for 48 hours decreased sperm total motility and progressive motility regardless of SP concentration: 5 (38% and 34%), 20 (37% and 33%), and 80% SP (27% and 22%; P < .05). In contrast, kinematic parameters were enhanced by extenders containing 5% and 20% SP (VCL: 148.0 and 155.6; VSL: 59.2 and 60.9; VAP: 78.7 and 81.9; BCF: 33.4 and 35.7; ALH: 3.4 and 3.4; P < .05). However, using an extender containing 80% SP was detrimental to kinematic parameters (VCL: 151.2; VSL: 52.2; VAP: 76.9; BCF: 34.8; P < .05) except for ALH, which increased (3.5; P < .05). In conclusion, cooled storage at concentrations of 333 × 106 sperm/mL did not affect sperm motility. The addition of a fresh extender or an extender containing small concentrations of SP to highly concentrated ejaculated sperm increased kinematic values after storage; however, increasing concentrations of SP decreased sperm motility.  相似文献   

3.
Single layer centrifugation (SLC) through a colloid is a tool for selecting viable mammalian spermatozoa but has not been used previously for fresh dromedary camel sperm. Semen from six camels (2 ejaculates/male) was diluted 1:5 (v:v) or 1:10 (v:v) in a Tris–citrate–fructose buffer for mechanical liquefaction by gentle pipetting. Following liquefaction, semen was processed either by SLC or by centrifugation without a colloid (control). Total and progressive motilities, CASA kinematics, vitality and acrosome integrity (eosin–nigrosin) and plasma membrane integrity (Hypo‐osmotic swelling test; HOST), and fertilizing ability in a heterologous assay (zona‐free goat oocytes) were evaluated. Both total (= .003) and progressive motilities (= .003) were higher in SLC‐processed than in control semen samples, irrespective of dilution. Positive HOST values increased when using colloid in 1:5 (p = .001) and 1:10 dilution (p = .010). Colloid‐selected sperm had higher penetration rates than controls (< .001 and = .02 for 1:5 and 1:10 dilutions, respectively). However, only the SLC sperm at 1:5 dilution showed higher percentages of pronuclear formation (= .02) than controls. Dilution effect was only significant for total motility before in vitro fertilization, with higher values for the 1:5 dilution (p = .033). The recovery rates of motile sperm between dilutions were similar (26.1% vs 35.4%; = .226). In conclusion, SLC is a promising tool for selecting functional dromedary camel sperm and warrants more research.  相似文献   

4.
Several countries have adopted strategies for preventing and/or controlling equine viral arteritis based on vaccination and restricting the breeding activities of carrier stallions. However, in some cases, carrier stallions are only identified after they have transmitted virus to a mare. Therefore, a mechanism for separating virus from spermatozoa in the semen of carrier stallions would facilitate control measures for preventing disease transmission. In this study, the use of several modifications of single‐layer centrifugation (SLC, SLC with an inner tube and double SLC) through Androcoll‐E, a species‐specific colloid were evaluated for their ability to separate spermatozoa from virus in ejaculates from carrier stallions. The three types of SLC significantly reduced the virus titre in fresh semen at 0 h and in stored semen at 24 h (p < 0.001) but did not completely eliminate the virus. Sperm motility parameters such as total motility and progressive motility were significantly increased after colloid centrifugation, whereas curvilinear velocity and amplitude of lateral head deviation were decreased, and the remainder (straight line velocity, average path velocity, straightness, linearity, wobble and beat cross‐frequency) were not significantly affected by the processing. Although virus titres were reduced in the SLC samples, significant levels of infectivity still remained, especially in stallions shedding large amounts of virus. It remains to be determined whether SLC‐processed sperm samples from stallions shedding low virus titres retain sufficient equine arteritis virus to cause infection in mares through artificial insemination.  相似文献   

5.
Although single layer centrifugation (SLC) selects robust spermatozoa from stallion semen, the effect of individual variation has not been studied in detail. The objective of this study was to determine the variation among stallions in the effects of SLC on sperm quality during cooled storage for up to 48 hr. Semen samples from seven stallions (18 ejaculates) were split, with one portion being used for SLC and the other serving as a control (CON). Sperm quality (kinematics, reactive oxygen species (ROS) production, membrane integrity (MI) and chromatin integrity) were analysed at 0, 24 and 48 hr using computer-assisted sperm analysis and flow cytometry. Sperm quality was better in SLC than in CON at all timepoints, especially chromatin integrity and MI (p < .0001 for both), and some categories of ROS production (e.g. proportion of live hydrogen peroxide negative spermatozoa, p < .0001), but the degree of improvement varied among stallions and type of ROS (p < .05–p < .0001). Total and progressive motility were also better in SLC samples than in CON at 24 and 48 hr (p < .0001), although the effect on sperm kinematics varied. The interaction of treatment, time and stallion was not significant. In conclusion, sperm quality was better in SLC samples than in CON, although there was considerable individual variation among stallions. The improvement in sperm quality, particularly in chromatin integrity, was clearly beneficial, and therefore the use of this technique would be warranted for all stallion semen samples.  相似文献   

6.
The objective of this study was to improve the quality of cryopreserved–thawed equine sperm using single-layer density centrifugation (SLC). Sperm quality was assessed by DNA integrity, motility, morphology, mitochondrial membrane potential, viability, and plasma membrane alteration. The percentage of DNA-damaged sperm (expressed in % COMP) was lower (P = .001) after SLC (1.6 ± 0.5% vs. 6.8 ± 0.5%). Total sperm motility (80 ± 2.4% vs. 41.7 ± 2.4%) and progressive sperm motility (69.5 ± 2.9% vs. 31.5 ± 2.9%) (P < .001), as well as the percentage of morphologically normal sperm (45 ± 3.9% vs. 27.7 ± 3.9%), increased after SLC compared with control sample. In addition, the proportion of sperm with high mitochondrial membrane potential increased (81.6 ± 1.8% vs. 42.1 ± 1.8%), as did the viability of sperm (71.1 ± 2.4% vs. 39.5 ± 2.4%), after SLC compared with the control sperm. The proportion of sperm with alteration in plasma membrane structure was lower after SLC compared with control sample (6.4 ± 1.1% vs. 18.9 ± 1.1%). Overall, sperm recovery was 72.7 ± 3.6% in the control sample compared with 14.8 ± 3.6% after SLC (P < .001). We conclude that based on the sperm parameters evaluated, SLC improves the quality of cryopreserved–thawed equine spermatozoa.  相似文献   

7.
Seminal plasma (SP) is known to induce motility and capacitation in spermatozoa curtailing their lifespan when preserved. Hence, this study was conducted to examine the effects of removal of SP from sperm surface prior to liquid preservation either by high dilution (1/15) or by washing and the poststorage treatment with SP (15% and 25%, v/v) on the quality attributes of liquid‐preserved ram semen. Over the period of storage, the rapid motility (66.0% and 71.1% vs. 58.3%), straightness (87.1% and 82.1% vs. 79.4%), average path velocity (152.3 and 152.0 µm/s vs. 133.3 µm/s) and the straight‐line velocity (131.3 and 127.8 µm/s vs. 108.5 µm/s) were significantly (p < 0.05) higher in both the high‐dilution and wash groups as compared to the control (1/3 dilution). The functional membrane integrity (82.3% vs. 77.2%) and noncapacitated sperm count (65.0% vs. 58.7%) were also significantly (p < 0.05) higher in the high‐dilution and wash groups, respectively, as compared to the control. The poststorage treatment of sperm with SP significantly (p < 0.05) increased the functional membrane integrity (70.1% vs. 53.8%) and most of the motility attributes as compared to the control (without SP). In conclusion, both the removal of SP prior to liquid preservation and poststorage treatment with SP significantly improved the quality attributes of ram spermatozoa.  相似文献   

8.
One of the basic steps in objective analysis of sperm motility is the subdivision of a motile sperm population into slow, medium and rapid categories based on their velocity. However, for CASA analysis of quail sperm, the velocity values for categorization of slow, medium and rapid sperm have not yet been standardized. To identify the cut‐off values of “velocity curvilinear” (VCL) for quail sperm categorization, we captured and analysed 22,300 tracks of quail sperm using SCA®‐CASA. The median and mean VCL values were 85 and 97 μm/s. To define the VCL cut‐off values, we used two methods. In the first, we identified the upper (rapid sperm) and lower (slow sperm) cut‐off values using: (i) median VCL ± 25% or ± 50% or ± 75% of median VCL value; (ii) first and third quartile values of VCL data (i.e. 25% cut‐off setting); and (iii) 33% and 66% of VCL data. Among these settings, sperm categories and their corresponding motility characteristics recorded using the “25%” setting (i.e. slow ≤36 ≤ medium ≤154 ≤ rapid) were found the most realistic and coherent with male ranking by fertility. In the second method, we calculated heteroscedasticity in the total VCL data using PCA and the two‐step clustering method. With this approach, the mean of the high and low clusters was 165 and 51 μm/s, respectively. Together, the mean from two methods suggested that, for SCA®‐CASA categorization of quail sperm, sperm should be classed as “rapid” at VCL ≥160 μm/s and “slow” at VCL ≤45 μm/s.  相似文献   

9.
Reasons for performing study: A new, simpler, technique of colloidal centrifugation has recently been developed, designated single layer centrifugation (SLC). This technique requires evaluation by comparison with a density gradient for its ability to select the best quality spermatozoa and its practicality of use on studfarms. Objective: To compare the effect of 2 methods of colloidal centrifugation, density gradient centrifugation and single layer centrifugation, on stallion sperm motility, yield and survival, using freshly collected extended stallion semen. Methods: Aliquots of extended stallion semen from 10 stallions (38 ejaculates) were processed by the 2 methods of colloidal centrifugation. For both uncentrifuged and centrifuged samples, sperm yield was calculated and subjective sperm motility assessed over several days to provide an estimate of sperm survival. Some stored semen samples, held at 4°C overnight, were also available for testing. Results: For fresh, extended semen, a similar recovery yield of motile spermatozoa was seen for the 2 methods of preparation for single layers and density gradients, respectively. Sperm motility and survival rate were significantly improved by colloidal centrifugation compared to unprocessed ejaculate, without any significant difference between methods (SLC vs. gradient). However, the yield was reduced by 18–20% when cold‐stored semen was used for centrifugation compared to fresh semen; and more variation between ejaculates was observed than for fresh ejaculates. Again, sperm motility and sperm survival were improved in the centrifuged sperm preparations compared to stored, unprocessed ejaculates. Potential relevance: The 2 colloid centrifugation techniques produce equivalent sperm preparations in terms of sperm quality. However, the SLC method would be more practical and convenient for use in the field.  相似文献   

10.
Current study was carried out to examine the protective effects of quercetin against toxicity induced by hydrogen peroxide in rooster semen in vitro. Semen samples were collected from ten roosters (Ross 308 broiler breeder males, 32 weeks old) twice a week by abdominal massage method. Samples with ≥70% progressive motility were selected, pooled, diluted and used for the study. Experimental groups consisted of negative control, control that received solvent of quercetin, H2O2 (40 μM) and combination groups which incubated with constant dose of H2O2 (40 μM) plus various levels of quercetin (20, 40 and 80 μM). Measurement of total hydroperoxide (HPO), malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (TAC) and superoxide dismutase activity as well as routine sperm tests were done at 0, 24 and 48 hr of storage at 4°C. Results revealed that exposure to hydrogen peroxide significantly increased HPO (138.43 ± 7.32 vs. 66.08 ± 3.97 μmol/g protein), MDA (7.21 ± 0.08 vs. 5.71 ± 2.16 μmol/g protein) and NO (0.367 ± 0.013 vs. 0.215 ± 0.011 μmol/g protein) levels and decreased sperm progressive motility (27.28 ± 1.21 vs. 47.49 ± 1.29%), and amounts of TAC (11.49 ± 0.39 vs. 15.70 ± 0.79 mmol/g protein) compared to control at 24 hr (p < 0.05). Changes at mentioned variables were repeated at 48 hr of storage. Also, co‐administration of quercetin (especially at 40 and 80 μM) with hydrogen peroxide restored the toxic effects of hydrogen peroxide on rooster semen parameters such as primary and secondary lipid peroxidative indicators and other evaluated variables. The study concluded that rooster semen enrichment with quercetin would protect lipid peroxidative and nitrosative hydrogen peroxide‐mediated damage during cold liquid storage of rooster semen.  相似文献   

11.
Metformin is clinically used to treat diabetes. Given its role‐impacting metabolism, metformin has been also added to semen cryopreservation media showing specie‐dependent effects. We aimed to investigate metformin effects in both fresh (38.5°C for 2, 24 hr) and refrigerated (17°C for 10 days) boar spermatozoa. Metformin (2 hr) does not affect fresh sperm viability, membrane lipid organization nor acrosome integrity. However, metformin (24 hr) blocks sperm ΔΨm and significantly reduces % motile spermatozoa (65%), % progressive spermatozoa (50%), % rapid (100%), velocities VCL (69%), VSL (86%), VAP (78%) and motility coefficients. Metformin‐including extender does not modify sperm viability, membrane lipid organization or acrosome integrity. Furthermore, it significantly reduces high ΔΨ‐population spermatozoa at refrigeration day 4. Metformin also significantly reduces sperm motility during refrigeration. Summarizing, metformin inhibits both boar sperm ΔΨ and motility in any sperm condition studied: fresh and refrigerated. These findings dissuade metformin as an additive to improve boar sperm quality.  相似文献   

12.
The maintaining of the epididymis at lower temperatures during storage and transport improves sperm quality. Our study aimed to test whether epididymis storage temperature (post‐mortem) and sperm cryopreservation affect sperm kinetics, membrane integrity, mitochondrial potential and fertility capacity. Thirty‐six epididymides were collected from 18 bulls after slaughter and divided into two groups: at 4 or 34°C for 2–3 hr. The sperm was collected from the epididymis cauda. The evaluation consisted of computer‐assisted sperm analysis (CASA), SYBR14/PI/JC1 to evaluate membrane integrity, mitochondrial membrane potential (MMP) and measurement of lipid peroxidation (TBARS). The sperm was then frozen using an automatic device. After thawing, sperm samples were evaluated by the same variables and further in vitro fertilization rates. Cryopreservation negatively affected sperm motility in samples stored at 4 and 34°C. Nevertheless, the 4°C samples yielded higher rates of blastocyst formation. Pre‐freeze sperm motility, progressive motility and velocity were higher in sperm from epididymis stored at 4°C while post‐thaw sperm motility, progressive motility and velocity remained the same among samples from epididymis stored at 4 or 34°C. However, with regard to the kinetic patterns, samples collected from epididymis stored at 34°C had lower values when compared to those stored at 4°C prior the cryopreservation process. Our results indicate that epididymis handling conditions after cryopreservation may affect sperm quality after thawing, especially due to compromised MMP in sperm collected from epididymis stored at higher temperatures.  相似文献   

13.
Motility is the most widely used indicator of sperm quality. Computer‐Assisted Semen Analysis (CASA) allows the objective evaluation of sperm motility parameters. CASA technology is a common tool to predict semen doses in farm animal reproduction. The kinds of video cameras used until now for image acquisition have presented limited frame rates (FR), which have a negative influence on the quality of the obtained data. The aim of the present work was to define the optimal frame rate for a correct evaluation of boar sperm motility and its subpopulation structure. Eighteen ejaculates from nine mature boars of the Pietrain breed were used. Using the ISAS®v1 CASA‐Mot system, with a video camera working up to 200 Hz, six FRs (25, 50, 75, 100, 150 and 200 fps) were compared. ISAS®D4C20 counting chambers, warmed to 37°C, were used. FR affected all the kinematic parameters, with curvilinear velocity (VCL) and BCF the most sensitive ones. All the parameters showed differences among animals. Non‐linear correlation showed the asymptotic level for VCL at 212 fps, being the highest FR for all the parameters. For future studies based just on progressive motility, almost 100 fps FR for 0.5 s must be used, while when kinematics must be considered, almost 212 fps for one‐second should be analysed. Three principal components were obtained (velocity, progressivity and oscillation), being similar at 50 and 200 fps. Cells were grouped in four subpopulations but with different kinematic and cellular distribution at both FRs.  相似文献   

14.
The composition of seminal plasma and the localization of the ATP‐binding cassette transporter A1 (ABCA1) in spermatozoa from good and bad freezers were compared to frozen–thawed spermatozoa from the same dog. Ejaculates were obtained from 31 stud dogs, and the sperm‐rich fraction (SRF) was kept for analysis. One aliquot was used for the analysis of concentration, progressive motility (P; CASA), viability (V; CASA) and leucocyte count, and the analysis was performed by flow cytometry (FITC‐PNA/PI), SCSA and HOST. In seminal plasma, concentration of albumin, cholesterol, calcium, inorganic phosphate, sodium, potassium, zinc and copper was measured. Semen smears were prepared and evaluated for the expression of ABCA1. The remainder of each ejaculate was frozen. After thawing, the quality assessment was repeated and further smears were prepared. According to post‐thaw semen quality, dogs were assigned to good freezers (n = 20) or bad freezers (n = 11), the latter were defined as < 50% progressive motility and/or > 40% morphologically abnormal sperm and/or < 50% viability. Bad freezers were older than good freezers (5.3 vs 3.4 years, p < 0.05). In bad freezers, the percentage of sperm with ABCA1 signal in the acrosome was lower (26.3% vs 35.7%, p < 0.01) and the percentage of sperm with complete loss of ABCA1 signal higher (46.7% vs 30%, p < 0.01); the percentage of dead spermatozoa was higher (36.1% vs 25.5%, p < 0.05), and the concentration of cholesterol and sodium in seminal plasma was lower than in good freezers (p < 0.05). We conclude that in thawed bad freezer sperm, an increase in acrosome damages coincided with an increased loss of cholesterol transporters and cell death, and a lower cholesterol concentration in seminal plasma. Follow‐up studies revealed whether a relation exists between these findings.  相似文献   

15.
This study was conducted to evaluate the response of Bali bulls (Bos javanicus) to different semen collection methods and their effects on fresh and post‐thawed semen quality. The collection methods employed were electro‐ejaculation (EE), transrectal massage (RM) and RM followed by EE (RM + EE). A total of 25 untrained Bali bulls (age between 2 and 4 years old) were subjected to the different semen collection methods. Fresh semen samples from all the 25 bulls were evaluated for volume, pH, general motility, live/dead ratio and abnormality using the conventional method. For fresh and frozen samples collected by EE and RM from 10 bulls, computer‐assisted semen analysis system was used for precise quantitative measurement of motility, velocity and forward progression. Accucell photometer was used to measure sperm concentration in all samples, regardless fresh and frozen. Semen samples were obtained 100% of the attempts using EE, 84% using RM and 96% using RM + EE. There were no differences among the collection methods for fresh semen quality characteristics, including motility, morphology and viability, but pH and volume were higher for EE than RM and RM + EE. Higher sperm concentration was observed in semen collected by RM than the other two methods. Different age groups (2–3 and >3–4 years old) of the bulls did not show significant differences in volume, pH, sperm concentration, percentages in motility, live/dead ratio and normal sperm morphology. The quality of semen for general and progressive motility, VAP, VSL and VCL and acrosomal integrity after thawing was higher for RM than EE. In conclusion, Bali bulls appeared to respond best to EE and the combination of RM + EE than RM, as a method of semen collection, with a shorter time of stimulation required. Differences in age of the Bali bulls did not affect the semen quality.  相似文献   

16.
The use of foetal bovine serum (FBS) in cell culture media is quite common. However, little is known about the effect of FBS on sperm. The severe difficulties in alpaca reproduction demand the search of new methods for in vitro reproductive management. In the present study, we use for the first time FBS as a supplement in the culture medium for sperm in alpaca, and the effect of FBS on motility, acrosome reaction and sperm binding to the zona pellucida in this species was evaluated. A concentration of 10% v/v FBS was used. The sperm motility with FBS at the first hour was 32.8% (vs. control = 30.0%), whereas at the second hour sperm motility with FBS was 30.2% (vs. control = 28.8%). The acrosome reaction reached an average of 44.0% for treatment with FBS (vs. control = 30.1%). The sperm‐zona pellucida binding assay showed that the samples incubated with FBS had an average of 2.7 bound sperm (vs. control = 1.7). Only a significant difference was observed for sperm motility at the first hour and for the acrosome reaction. It is concluded that FBS favours the capacitation of sperm in alpaca.  相似文献   

17.
18.
The aim of this study was to evaluate home‐made and commercial extenders for the cryopreservation of Rusa deer semen. After collection by electroejaculation, six ejaculates were diluted and frozen in TES‐based, Tris‐based and Triladyl® extenders. Subjective motility, viability, morphology, acrosome integrity and membrane functionality were assessed post‐thawing and after 1‐hr incubation at 37°C (Thermal stress test). Total and progressive motility, and kinematic parameters were also assessed through CASA system. Post‐thawing sperm progressive motility (PM), velocity according to the straight path (VSL) and linearity (LIN) showed significant differences, and higher values were detected for spermatozoa diluted with Triladyl® and TES (p < 0.05) as compared with Tris (PM of Triladyl® 14.7% vs. 3.2% TES and 2.5% Tris; VSL 56 for Triladyl®, 59.2 for TES and 41.7 for Tris; LIN 45.6 for Triladyl®, 52 for TES and 36.5 for Tris). Triladyl® and TES extender led to better post‐thawing sperm parameters, but these preliminary results need to be verified through artificial insemination trials.  相似文献   

19.
Sperm from fertile donkeys have been successfully frozen in absence of permeable cryoprotectants. The aim of this study was to determine whether this cryopreservation method is suitable for subfertile donkeys in comparison to conventional sperm freezing with glycerol. Ejaculates were collected from four Andalusian Donkeys: three fertile and one subfertile. Semen was frozen with an extender containing glycerol (GLY), or adding instead sucrose 0.25 molar and 1% bovine serum albumin (SUC) as non‐permeable cryoprotectants. After thawing, samples were assessed for total (TM, %) and progressive (PM, %) sperm motility by CASA, plasma membrane integrity (PMI, %) by epifluorescence microscopy and DNA integrity (DFI, %) by SCSA. Results (mean ± SD) were compared between extenders in fertile and subfertile donkeys using the Student's t test. No differences between GLY and SUC treatments were found in the fertile group for the sperm parameters assessed. In subfertile donkey ejaculates, GLY resulted in significantly higher values than SUC for TM (25.5 ± 3.1 vs. 19.6 ± 1.9) and PM (13.3 ± 5.1 vs. 4.0 ± 1.2), respectively. In conclusion, considering all the sperm parameters assessed, sperm freezing in absence of permeable cryoprotectants may not be still an option for cryopreservation of subfertile donkey sperm.  相似文献   

20.
Stallion spermatozoa are highly dependent on oxidative phosphorylation for ATP production to achieve normal sperm function and to fuel the motility. The aim of this study was to evaluate the response of equine sperm under capacitating conditions to the inhibition of mitochondrial complex I by rotenone and to test whether epigallocatechin‐3‐gallate (EGCG), a natural polyphenol component of green tea, could counteract this effect. After 2‐h incubation of stallion spermatozoa in modified Tyrode's medium, rotenone (100 nm , 500 nm and 5 μm ) and EGCG (10, 20 and 60 μm ), alone or in combination, did not induce any significant difference on the percentage of viable cells, live sperm with active mitochondria and spermatozoa with intact acrosome. The inhibition of complex I of mitochondrial respiratory chain of stallion sperm with rotenone exerted a negative effect on heterologous ZP binding ability. EGCG at the concentrations of 10 and 20 μm (but not of 60 μm ) induced a significant increase in the number of sperm bound to the ZP compared with that for control. Moreover, when stallion sperm were treated with rotenone 100 nm , the presence of EGCG at all the concentrations tested (10, 20 and 60 μm ) significantly increased the number of sperm bound to the ZP up to control levels, suggesting that this green tea polyphenol is able to reduce the toxicity of rotenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号