首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generating techniques to enhance the success of blastomere separation is important for bovine economy, because it increases the number of transferable embryos. This study aimed to identify the optimum cryoprotectants for the vitrification of bovine embryos and the separation of blastomeres at different stages. In experiment 1, expanded blastocysts were vitrified in two different vitrification solutions, either (1) ethylene glycol (EG) + propylene glycol (PG) or (2) EG. The survival rate of blastocysts in the EG + PG was higher than that of the EG. In experiment 2, intact two‐cell and eight‐cell stage embryos were vitrified in the same solutions used in experiment 1. The EG + PG produced more dead embryos than the EG (P < 0.05). In the EG, the rate of blastocyst formation was similar for the vitrified two‐ and eight‐cell embryos and the non‐vitrified ywo‐cell embryos. In experiment 3, separated blastomeres of two‐ and eight‐cell embryos were vitrified in EG. There was no difference in the rate of blastocyst formation and total number of cells between the two vitrified groups. In summary, at the blastocyst stage, EG + PG was superior, based on both survival rates and cell numbers; however, at the 2–8 cell stage, the use of EG alone was better than the other groups.  相似文献   

2.
This study assessed the effects of cryoprotectant concentration during equilibration on the efficiency of bovine blastocyst vitrification and the expression of selected developmentally important genes. In vitro produced bovine blastocysts were equilibrated in either 7.5% ethylene glycol (EG) + 7.5% DMSO (Va group) or in 2% EG + 2% DMSO (Vb group) then vitrified on Cryotop® sheets in 16.5% EG + 16.5% DMSO + 0.5M sucrose. After warming, embryos were cultured for 48 hr. Re‐expansion, hatching, and the numbers of total and membrane damaged cells were compared among vitrified groups and a control. There was no significant difference between the vitrified groups in survival, cell numbers and the extent of membrane damage. Vitrification increased the number of membrane‐damaged cells in both groups, however, in a greater extent in the Vb group. Vitrification increased (p < .05) the expression of the HSP70 gene in Va but not in Vb embryos. The expression of IGF2R, SNRPN, HDAC1, DNMT3B, BAX, OCT4, and IFN‐t genes were the same in control and vitrified groups. In conclusion, the concentration of cryoprotectants during equilibration did not affect survival rates; however, normal cell numbers could be maintained only by equilibration in 15% cryoprotectants which was associated with increased HSP70 expression.  相似文献   

3.
The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re‐expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re‐expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p < 0.05). The number of dead cells in vitrified embryos of Gr. 2 and Gr. 3 was higher (42.6 ± 26.2 and 63.2 ± 34.65, respectively) in comparison with Gr. 1 (conventional freezing, 10.1 ± 8.5, p < 0.05). Embryos vitrified with dimethylformamide included the same quality of apoptotic cells that Gr. 1 (conventional freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification.  相似文献   

4.
This study was conducted to examine the utility of vitrification for bovine embryos with low‐quality grade, and simple cryoprotectants dilution method for practitioners. In Experiment 1, survival of frozen embryos was compared with that of vitrified embryos using minimum volume cooling (MVC). Then, vitrified embryos were used to confirm the optimum sucrose concentration in Experiment 2. The survival rates of embryos that had been vitrified following diluted cryoprotectants with the one‐step in‐straw method were compared with those of fresh control embryos in Experiment 3. Frozen‐thawed or vitrified‐warmed blastocysts were cultured with TCM‐199 supplemented with 100 μmol/L beta‐mercaptoethanol +5% fetal bovine serum at 38.5°C in an atmosphere of 5% CO2 in air, their survival after 24 hr were compared. The development to term of fair quality in vivo embryos after vitrification was examined in Experiment 4. Results show that survival rates of frozen‐thawed embryos were lower (< .05) than that of vitrified‐warmed ones. When vitrified embryos were warmed in 0.3 mol/L sucrose in straws, their survival rate was 100%. The total cell numbers of vitrified‐warmed embryos were comparable to those of fresh control embryos. The six calves from 13 vitrified embryos were delivered in Experiment 4. These results indicate that MVC vitrification following one‐step cryoprotectants dilution is utilized to preserve low‐quality bovine embryos.  相似文献   

5.
This work analyses the effects of a high hydrostatic pressure (HHP) treatment on in vitro survival of in vitro produced (IVP) bovine embryos vitrified with the Cryologic Vitrification Method (CVM). Consequences on embryo quality in terms of cell proliferation and differentiation, and levels of embryonic Heat Shock Protein 70 (Hsp‐70) were also examined. Day 7 and 8 bovine in vitro‐produced blastocysts were submitted to an HHP treatment (60 MPa, at 32°C for 1 h) and allowed to recover for 1 or 2 h in culture medium. The HHP treatment did not improve blastocyst survival rates after vitrification/warming. Survival (24 h post‐warming) and hatching (48 h post‐warming) rates were 79.3 ± 4.9 and 51.8 ± 4.2 vs 73.9 ± 4.2 and 44.7 ± 4.1 for untreated controls and HHP‐treated embryos, respectively. Total cell numbers measured in fresh embryos were reduced after 1 h at 32°C, with or without HHP treatment, indicating that cell proliferation was stopped as a result of stress. Vitrified HHP‐treated embryos that hatched at 48 h after warming showed increased cell numbers in their ICM compared with untreated controls (50.2 ± 3.1 vs 38.8 ± 2.7), indicating higher embryo quality. Treatment of blastocysts with HHP did not alter the level of the Hsp‐70 protein. In our conditions, HHP treatment did not affect the cryoresistance of these embryos. However, combination of HHP treatment and vitrification in fibreplugs resulted in an increase in the ICM cell number of hatched embryos 48 h post‐warming.  相似文献   

6.
This study was carried out to compare the post‐thaw cryosurvival rate and the level of apoptosis in vitro produced zona‐free cloned buffalo blastocysts subjected to slow freezing or vitrification in open‐pulled straws (OPS). Zona‐free cloned embryos produced by handmade cloning were divided into two groups and were cryopreserved either by slow freezing or by vitrification in OPS. Cryosurvival of blastocysts was determined by their re‐expansion rate following post‐thaw culture for 22–24 h. The post‐thaw re‐expansion rate was significantly (p < 0.05) higher following vitrification in OPS (71.2 ± 2.3%) compared with that after slow freezing (41.6 ± 4.8%). For examining embryo quality, the level of apoptosis in day 8 frozen‐thawed blastocysts was determined by TUNEL staining. The total cell number was not significantly different among the control non‐cryopreserved cloned embryos (422.6 ± 67.8) and those cryopreserved by slow freezing (376.4 ± 29.3) or vitrification in OPS (422.8 ± 36.2). However, the apoptotic index, which was similar for embryos subjected to slow freezing (14.8 ± 2.0) or OPS vitrification (13.3 ± 1.8), was significantly (p < 0.05) higher than that for the control non‐cryopreserved cloned embryos (3.4 ± 0.6). In conclusion, the results of this study demonstrate that vitrification in OPS is better than slow freezing for the cryopreservation of zona‐free cloned buffalo blastocysts because it offers a much higher cryosurvival rate.  相似文献   

7.
Nowadays, the efficiency of buffalo oocytes cryopreservation is still low. The purpose of this study was to evaluate effects of two combinations of cryoprotectant agents (CPAs) and two vitrification devices for vitrification of swamp buffalo oocytes on their survival after vitrification warming, and subsequent developmental ability after in vitro fertilization. In vitro matured (IVM) oocytes were vitrified by either Cryotop (CT) or solid surface vitrification (SSV) interacting with vitrification solution A (VA) or B (VB). In the VA or VB solution exposed test, the oocytes showed similar survival rates, but decreased blastocyst rates after in vitro fertilization compared with that of untreated oocytes. After vitrification, the CT method combined with VA solution yielded a higher survival rate (91.3 ± 5.84%) of vitrified oocytes than that combined with VB solution (69.8 ± 4.19%–75.8 ± 4.55%); however, all the vitrification treatments showed lower blastocyst rates (1.1 ± 0.07%–5.2 ± 0.24%) compared with that of untreated oocytes (18.0 ± 1.09%). Our results indicated that combined vitrification treatments in this study did not improve the decreased ability of vitrified oocytes developing to the blastocyst stage.  相似文献   

8.
The aim of this study was to determine whether vitrification is an effective method when used for Japanese Black Cattle (Wagyu) in vivo‐derived embryos, collected following a superovulation treatment and embryo transfer (MOET) programme. In vivo‐derived morula and blastocysts collected on day 7 after artificial insemination, were vitrified using a modified droplet vitrification (MDV) procedure and subsequently warmed for transfer (ET) into synchronized recipients. Fresh embryos, and embryos cryopreserved using a standardized slow freezing procedure (direct thaw/direct transfer, DT) served as ET controls. Two different follicle‐stimulating hormone (FSH) sources, Folltropin® Canada (FSH BAH, 24 donors) and a brand prepared by the Chinese Academy of Science (FSH CAS, 16 donors), were compared in a series of superovulation outcomes following well‐established FSH administration protocols. Following data analysis, the total number of ovulations recorded at the time of embryo flushing (10.5 vs 8.5; p = 0.28) and the total number of transferable embryos (6.2 vs 5.1; p = 0.52) were similar between the two FSH sources. ET for MDV (39.7%, n = 78), DT (35.2%, n = 71) and fresh controls (47.1%, n = 34) resulted in similar pregnancy rates (p > 0.05). When MDV was used, a higher pregnancy rate (42.6%) resulted from the transfer of vitrified morulae, when compared to the DT counterparts (24.3%), (p = 0.05). Transfer of vitrified morulae resulted also in higher pregnancy rate, when compared to the transfer of vitrified blastocysts (42.6% vs. 29.4%; p < 0.05). Transfer of DT blastocysts resulted in higher pregnancy rate than morulae, similarly cryopreserved (47.1% vs. 24.3%, p < 0.05). In conclusion, MDV is an effective alternative methodology for cryopreservation of in vivo‐derived embryos. This study gives also indication that, compared to vitrified blastocysts, MDV of morula stage embryos results in higher pregnancy rates following warming and transfer into synchronized recipients.  相似文献   

9.
This study was designed to evaluate effects of different combinations of cryoprotectants on the ability of vitrified immature buffalo oocytes to undergo in vitro maturation. Straw and open‐pulled straw (OPS) methods for vitrification of oocytes at the germinal vesicle stage also were compared. The immature oocytes were harvested from ovaries of slaughtered animals and were divided into three groups: (i) untreated (control); (ii) exposed to cryoprotectant agents (CPAs); or (iii) cryopreserved by straw and OPS vitrification methods. The vitrification solution (VS) consisted of 6 m ethylene glycol (EG) as the standard, control vitrification treatment, and this was compared with 3 m EG + 3 m dimethyl sulfoxide (DMSO), 3 m EG + 3 m glycerol, and 3 m DMSO + 3 m glycerol. Cryoprotectants were added in two steps, with the first step concentration half that of the second (and final) step concentration. After warming, oocyte samples were matured by standard methods and then fixed and stained for nuclear evaluation. Rates of MII oocytes exposed to CPAs without vitrification were lower (54.3 ± 1.9% in EG, 47.5 ± 3.4% in EG + DMSO, 36.8 ± 1.2% in EG + glycerol and 29.9 ± 1.0% in DMSO + glycerol; p < 0.05) than for the control group (79.8 ± 1.3%). For all treatments in each vitrification experiment, results were nearly identical for straws and OPS, so all results presented are the average of these two containers. The percentages of oocytes reaching telophase‐I or metaphase‐II stages were lower in oocytes cryopreserved using all treatments when compared with control. However, among the vitrified oocytes, the highest maturation rate was seen in oocytes vitrified in EG + DMSO (41.5 ± 0.6%). Oocytes cryopreserved in all groups with glycerol had an overall low maturation rate 19.0 ± 0.6% for EG + glycerol and 17.0 ± 1.1% for DMSO + glycerol. We conclude that the function of oocytes was severely affected by both vitrification and exposure to cryoprotectants without vitrification; the best combination of cryoprotectants was EG + DMSO for vitrification of immature buffalo oocytes using either straw or OPS methods.  相似文献   

10.
Artificial insemination (AI) with cryopreserved semen is an important tool to preserve endangered species, including European donkey breeds. Sperm vitrification is an alternative method to conventional freezing using high cooling rates and non-permeable cryoprotectant agents (CPAs). In donkeys, sperm vitrification was firstly developed in spheres by directly dropping the sperm (30 µl) into the liquid nitrogen. The vitrification media contained a combination of sucrose and bovine serum albumin as non-permeable CPAs and resulted in better sperm parameters after warming than extenders containing glycerol. Thereafter, sperm vitrification was optimized using an aseptic protocol, which consists of volumes up to 160 µl vitrified at 300 million sperm/ml using 0.25-ml straws with outer covers, obtaining similar sperm parameters as conventional freezing for total motility (52.7 ± 15.6% versus. 58.2 ± 16.1%), progressive motility (44.3 ± 15.0% versus. 44.7 ± 18.2%) and plasma membrane integrity (49.2 ± 11.2% versus. 55.4 ± 9.0%), respectively. In order to vitrify larger volumes of sperm, a procedure using 0.5-ml straws was evaluated; however, this methodology failed when compared to conventional freezing or other vitrification protocols, obtaining poor sperm quality after warming. Recently, a new methodology was developed for warming 0.25-ml straws in a water bath and after AI using the vitrified sperm, the uterine inflammatory response solved faster, and pregnancy rates were greater (22%) than frozen semen (10%) but not statistically different. In conclusion, all these findings confirm that sperm vitrification can be performed in donkeys as an alternative to conventional freezing for AI in jennies.  相似文献   

11.
The objective of our present study was to determine the effects of insulin‐like growth factor I (IGF‐I) on the development of yak (Bos grunniens) embryos after cumulus–oocyte complex (COC) vitrification and warming followed by in vitro fertilization (IVF). In Experiment 1, the yak COCs underwent vitrification and then IVF. Embryos were incubated in synthetic oviductal fluid (SOF) supplemented with four concentrations (0, 50, 100 and 200 ng/ml) of IGF‐I, while the yak COCs without vitrification or IGF‐I supplementation acted as the control group; the BAX, BCL‐2, AQP3mRNA and aquaporin 3 (AQP3) protein expression levels in the five groups of blastocysts were evaluated using quantitative real‐time PCR and immunofluorescence analyses. In Experiment 2, the groups described above were fertilized and incubated. The cleavage rate, blastocyst rate, total cell count per blastocyst and the rate of growth of the inner cell mass (ICM) and trophectoderm (TE) were evaluated. The results were as follows: (1) the AQP3 gene expression and protein expression in the control and 100 ng/ml IGF‐I treatment groups were the highest. (2) The BAX gene expression was the lowest and the BCL‐2 gene expression was the highest in the control and 100 ng/ml IGF‐I treatment groups. (3) The rates of cleavage and blastocysts in the control and 100 ng/ml IGF‐I groups were higher than those in the other three groups. The total cell count per blastocyst in the vitrified and warmed 100 ng/ml IGF‐I group (106.7 ± 4.9) and the control group (107.3 ± 4.2) was higher than that in the vitrified and warmed 0 ng/ml IGF‐I (91.2 ± 3.1), 50 ng/ml IGF‐I (92.3 ± 3.7) and 200 ng/ml IGF‐I (92.4 ± 3.7) groups. Therefore, we conclude that IGF‐I can improve yak blastocyst developmental ability, cytomembrane permeability and formation of the blastocyst cavity after COC vitrification by improving the BAX, BCL‐2 and AQP3 expression levels.  相似文献   

12.
The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin‐18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open‐pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re‐expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified–warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.  相似文献   

13.
The aim of this study was to determine the most efficient vitrification protocol for the cryopreservation of day 7 in vitro produced (IVP) porcine blastocysts. The post‐warm survival rate of blastocysts vitrified in control (17% dimethyl sulfoxide + 17% ethylene glycol [EG] + 0.4 mol/L sucrose) and commercial media did not differ, nor did the post‐warm survival rate of blastocysts vitrified in medium containing 1,2‐propandiol in place of EG. However, vitrifying embryos in EG alone decreased the cryosurvival rate (55.6% and 33.6%, respectively, p < .05). Furthermore, the post‐warm survival rates of blastocysts vitrified with either trehalose or sucrose as the non‐penetrating cryoprotectant did not differ. There was also no significant difference in post‐warm survival of blastocysts vitrified in control (38°C) media and room temperature (22°C) media with extended equilibration times, although when blastocysts were vitrified using control media at room temperature, the post‐warm survival rate increased (56.8%, 57.3%, 72.5%, respectively, p < .05). The findings show that most cryoprotectant combinations examined proved equally effective at supporting the post‐warm survival of IVP porcine blastocysts. The improved post‐warm survival rate of blastocysts vitrified using media held at room temperature suggests that the cryoprotectant toxicity exerted in 22°C media was reduced.  相似文献   

14.
The objective of this study was to develop an in‐straw dilution method suitable for direct transfer of vitrified bovine sexed embryos. Embryo sexing was performed by molecular diagnosis. Several sexed and vitrified‐warmed embryos were transferred after evaluation of morphologically embryonic survival at warming and in‐straw dilution (Evaluation group). The other embryos were immediately directly transferred to recipients without first being expelled from the straws after in‐straw dilution (Non‐evaluation group). The pregnancy rates of vitrified sexed embryos were 38.7% and 34.8% in the Evaluation group and Non‐evaluation group, respectively, which were not significantly different. The viability of lower quality embryos before vitrification tended to be lower (P = 0.087) than that of the higher quality embryos regardless of evaluating embryos after warming and in‐straw dilution. The abortion rates were similar, and there was no difference between the two groups (13.9% and 12.5%, respectively). These results demonstrate that vitrified bovine sexed embryos can be vitrified and diluted by the in‐straw method and that the vitrified and warmed sexed embryos can develop to term.  相似文献   

15.
The present study evaluated the effect of supplementation of retinol in the vitrification solution on the viability, apoptosis and development-related gene expression in vitrified buffalo preantral follicles. Preantral follicles isolated from cortical slices of ovaries were randomly assigned into three groups: Group1—Control fresh preantral follicles; Group 2—Vitrification treatment (Vitrification solution 1 (VS1) –TCM-199 + 25 mM HEPES + Foetal bovine serum (FBS) 10%, Ethylene glycol (EG): 10%, Dimethyl sulphoxide (DMSO): 10%, Sucrose-0.3 M for 4 min; VS2- TCM-199 + 25 mM HEPES + FBS10%, EG:25%, DMSO: 25%, Sucrose:0.3 M for 45 s); Group3—vitrification treatment +5 μM of Retinol. Preantral follicles were placed in corresponding vitrification medium and plunged into liquid nitrogen (−196°C). After a week, the follicles were thawed and analysed for follicular viability and gene expression. There was no significant difference in the viability rates among the Group 1(Fresh preantral follicles) (91.46 ± 2.39%), Group 2 (89.59 ± 2.46%) and Group 3 (87.19 ± 4.05%). There was a significantly (p < .05) higher mRNA expression of BCL2L1, GDF-9 and BMP-15 in the vitrification + retinol group compared with the control group. There was a significantly (p < .05) higher expression of Caspase-3 and Annexin-5 in the vitrification group and Vitrification + retinol group compared with control group of follicles. It is concluded that the supplementation of 5 μM of Retinol in Vitrification solution was an efficient vitrification procedure for the vitrification of buffalo preantral follicles.  相似文献   

16.
The pregnancy rates obtained after the transfer of cryopreserved in vitro‐produced (IVP) embryos are usually low and/or inconsistent. The objective of this study was to evaluate the pregnancy rates of Holstein, Gyr and Holstein × Gyr cattle after the transfer of vitrified IVP embryos produced with X‐sorted sperm. Seventy‐two Gyr and 703 Holstein females were subjected to ovum pickup (OPU) sessions, followed by in vitro embryo production using semen from sires of the same breeds. Embryos (1636 Holstein, 241 Gyr and 1515 Holstein × Gyr) were exposed to forskolin for 48 h prior to vitrification. The pregnancy rate achieved with Gyr dam and sire was 46.1%, which was similar (p = 0.11) to that of Holstein dam and Gyr sire (40.3%). Crossing Gyr dams with Holstein sires resulted in a pregnancy rate of 38.9% and did not differ (p = 0.58) from the pregnancy rate obtained with the cross between Holstein dams and Gyr sires. The rate obtained with Holstein dam and sire was 32.5%. The average pregnancy rate was 36.6%, and no difference was found in the proportion of female foetuses (88.8%, in average) among breeds (p > 0.05). In conclusion, transfer of cryopreserved X‐sorted embryos represents an interesting choice for dairy cattle. Despite the small differences between pregnancy rates, we highlight the efficiency of this strategy for all of the racial groups studied.  相似文献   

17.
Lipids and proteins can be used for sperm vitrification to preserve the integrity of sperm membranes or to increase the viscosity of the medium. This study evaluated the effect of low‐density lipoproteins (LDL) and milk serum proteins (Pronexcell) for stallion sperm vitrification. Hippex extender (Barex Biochemical Products, The Netherlands), plus 1% of bovine serum albumin and 100 mM of trehalose, was used as control for sperm vitrification. In experiment 1, different concentrations of LDL (L1 = 0.25, L2 = 0.5, L3 = 1%) and in experiment 2 of Pronexcell (P1 = 1, P2 = 5, P3 = 10%) were added to control extender. Vitrification was performed in 0.25‐ml straws directly plunged into liquid nitrogen. Total motility (TM, %) and progressive motility (PM, %) were analysed by CASA, and plasma membrane (IMS, %) and acrosome membrane integrity (AIS, %) were assessed under epifluorescence microscopy. Post‐warmed sperm parameters were compared between treatments by ANOVA. Results were expressed as mean ± SEM. In both experiments, the minimum concentration of LDL and Pronexcell obtained significantly higher values (< 0.01) than the control extender for TM (L1 = 52.95 ± 4.4; P1 = 58.99 ± 4.6; C = 30.88 ± 3.0), PM (L1 = 36.79 ± 5.5; P1 = 47.25 ± 4.3; C = 19.20 ± 2.4), IMS (L1 = 68.88 ± 3.6; P1 = 47.25 ± 4.3; C = 52.81 ± 2.6) and AIS (L1 = 45.88 ± 3.6; P1 = 47.25 ± 4.3; C = 26.00 ± 2.1). No differences in sperm parameters were found among different concentrations of LDL or Pronexcell. In conclusion, the addition of 0.25% LDL and 1% Pronexcell to the vitrification extender is recommended to improve the quality of stallion sperm after vitrification.  相似文献   

18.
We report the cryopreservation of oocytes from Ban miniature pigs which are endemic in Vietnam. Immature cumulus‐oocyte complexes were collected from antral follicles of 7–8 mo old female cyclic Ban pigs and vitrified in micro‐drops. Oocyte morphology, lipid content, post‐warming survival, nuclear maturation, and embryo development were compared to those of oocytes from commercially slaughtered Landrace × Large white hybrid pigs. The size of oocytes in the two breeds was similar. However, significantly lower amounts of intracellular lipid were detected in Ban oocytes. There was no difference (p > 0.05) between Ban and Landrace × Large white oocytes in percentages of post‐warming survival (93.1 ± 3.4% vs. 70.7 ± 16.7%, respectively) and nuclear maturation after in vitro maturation (80.4 ± 5.1% vs. 90.0 ± 1.3% respectively). Similarly, cleavage (30.8 ± 7.8% vs. 10.3 ± 6.1%, respectively) and blastocyst development rates (9.4 ± 5.0% vs. 0.79 ± 0.79, respectively) were not different (p > 0.05) between vitrified Ban and Landrace × Large white oocytes after in vitro fertilization and embryo culture. In conclusion, high survival and maturation rates were achieved after vitrification of immature Ban oocytes and their cryo‐tolerance was similar to that of Landrace × Large white oocytes, despite the difference in lipid content. We succeeded to generate reasonable rates of blastocysts from vitrified Ban oocytes by in vitro fertilization.  相似文献   

19.
The present study evaluated the effect of Ovarian Tissue Cryosystem (OTC) on follicular morphology and density, as well as on stromal cell density of vitrified canine ovarian tissue. Canine ovarian fragments collected from adult female dogs in stages of the random oestrous cycle were fixed (FC, fresh control) or vitrified (VIT) with an OTC device. After vitrification and warming, the fragments were fixed for histological analysis. Overall, the mean percentage of normal pre-antral follicles decreased after vitrification procedure (FC: 74.5% ± 1.6% vs. VIT: 52.05% ± 1.5%). Although the rates of normal primordial (71.1% ± 1.8%) and secondary (0.7% ± 0.4%) follicles vitrified showed a reduction (p < .05), vitrification using OTC showed considerable preservation of follicles, when compared to the fresh control (81.1% ± 1.5% and 2.3% ± 0.6%, respectively). The mean follicular density was maintained after vitrification (FC: 199.65 ± 12.8 vs. VIT: 199.68 ± 10.8), whereas the stromal cell density decreased in the VIT group. Based on the results, we recommend the use of OTC for vitrification of canine ovarian tissue.  相似文献   

20.
Camel fertility faces many problems, which could be solved by assisted reproductive technologies (ARTs). We designed the experiment to explore the effect of different cryoprotectant concentrations and combinations on viability and maturation rates of vitrified/warmed camel oocytes. We collected ovaries directly after slaughtering from local abattoir and transported them to laboratory in a thermo‐flask containing normal physiological saline. We aspirated the oocytes from follicles, which is 2–8 mm in diameter, washed three times in TCM‐199 and then examined under stereo‐microscope for selection. We selected morphologically normal oocytes with an evenly granulated cytoplasm and a compact cumulus cell layer. We equilibrated morphologically normal oocytes in equilibration solution (ES), which is half concentration of vitrification one. After equilibration, We transported oocytes to vitrification solution using ethylene glycol (EG, 40%), dimethyl sulphoxide (DMSO, 40%) and EG 40% + DMSO 40%. The obtained results revealed that addition of EG 40% + DMSO 40% resulted in the best quality of vitrified/warmed oocytes, which is demonstrated by higher per cent survival rate (90.16%) and maturation rate (58.95%). While DMSO 40% resulted in 62.79% and 29.54%, respectively, EG 40% reported 86.11% and 53.47%, respectively. We could conclude that vitrification of immature camel oocytes by using 40% EG + 40% DMSO is suitable methods to limit drawbacks of vitrification methods, and we need further studies to assess the ability of in vitro‐produced blastocyst to develop in vivo and establish pregnancy after embryo transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号