首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato and strawberry are the most important protected crops in Lebanon and are seriously affected by grey mould disease, caused by Botrytis cinerea. In the present study, the fungicide sensitivity assays revealed medium to high frequencies of B. cinerea isolates resistant to benzimidazoles, dicarboximides, and anilinopyrimidines on tomato and strawberry. Fludioxonil- and boscalid-resistant mutants were uncommonly found at generally low frequency on both crops. Resistance to fenhexamid was detected in only one site on tomato but in most sites on strawberry with high frequencies, and the occurrence of resistance to QoI fungicides was ascertained on both crops. The majority of the tested isolates (>90%) exhibited multiple fungicide resistance, and isolates resistant to the seven antibotrydial fungicide classes were detected on strawberry in three locations. A high level of resistance was shown by B. cinerea mutants resistant to boscalid, fenhexamid, and QoI fungicides, while two levels of moderate and high resistance to anilinopyrimidines were identified. Genetic analysis revealed point mutations in the target genes commonly associated with resistance in B. cinerea isolates, with all mutants resistant to dicarboximides, fenhexamid, boscalid, and QoI fungicides carrying single-nucleotide polymorphims in BcOS1 (I365S/N, Q369P, and N373S), Erg27 (F412V/I), SdhB (H272R/Y), and cytb (G143A) genes, respectively. The general incorrect use of fungicides has caused the development and spread of fungicide resistance as a widespread phenomenon on protected tomato and strawberry in Lebanon. The implementation of appropriate antiresistance strategies is highly recommended.  相似文献   

2.
A novel, high‐resolution melting (HRM) analysis was developed to detect single nucleotide polymorphisms (SNPs) associated with resistance to fenhexamid (hydroxyanilides) and boscalid (succinate dehydrogenase inhibitors) in Botrytis cinerea isolates. Thirty‐six single‐spore isolates arising from 13 phenotypes were selected and tested for fungicide sensitivity. Germ tube elongation assays showed two distinct sensitivity levels for each fungicide. Sequencing revealed that resistance to fenhexamid was due to a nucleotide change in the erg27 gene, resulting in an amino acid replacement of phenylalanine (F) with serine (S) or valine (V) at position 412 of the protein, whereas in isolates resistant to boscalid, a nucleotide change in the sdhB gene resulted in the replacement of histidine (H) with arginine (R) or tyrosine (Y) at position 272 of the respective protein. In each case, melting curve analysis generated three distinct profiles corresponding to the presence of each nucleotide in the targeted areas. HRM analysis successfully detected and differentiated the substitutions associated with resistance to both fungicides. In vitro bioassays, direct sequencing and high‐resolution melting analysis showed a 100% correlation with detection of resistance. The results demonstrate the utility of HRM analysis as a potential molecular tool for routine detection of fungicide resistance using known polymorphic genes of B. cinerea populations.  相似文献   

3.
The selective fungitoxic actions of prochloraz (an imidazole) and a triazole fungicide, quinconazole (3-(2,4-dichlorophenyl)-2-(1 H- 1,2,4-triazol-1-yl)- 4(3H)-quinazolinone: II ), were studied with selected phytopathogenic fungi. With the exception of Ustilago maydis, all the fungi tested were more sensitive to prochloraz than to II. A number of DMI-resistant mutants of Penicillium digitatum and P. italicum showed positive cross-resistance to both DMIs, but except for P. italicum isolate H17, the levels of resistance to II were much higher than to prochloraz. The generally higher toxicity of prochloraz to the fungi investigated, as compared to II , could not be ascribed to the slightly higher accumulation of prochloraz. With regard to prochloraz, there was no general correlation between the sensitivity of the fungi tested and the amount of fungicide accumulated. A similar situation was evident for II. However, the DMI-resistant mutants of P. italicum did show a reduced accumulation of both azoles, which may account for a low level of acquired DMI-resistance in this fungus. Since accumulation levels of the test compounds in the isolates with different degrees of resistance were the same, additional mechanisms of resistance may be involved in isolates with relatively high degrees of DMI-resistance. No detectable amounts of fungicide metabolites were found in most fungi tested over a 16-hour incubation period. Therefore, fungal metabolism is not generally responsible for the differences in sensitivity between fungi to each azole tested. It also does not generally explain the differential toxicities of prochloraz and II to each individual species. The exception to this was Rhizoctonia solani which metabolized prochloraz to a non-fungitoxic compound. This correlated with its low prochloraz sensitivity.  相似文献   

4.
5.
Y. Zhang  W. Chen  W. Shao  J. Wang  C. Lv  H. Ma  C. Chen 《Plant pathology》2017,66(9):1404-1412
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating wheat diseases in China. Phenamacril is a novel cyanoacrylate fungicide with a unique chemical structure and specific mode of action against Fusarium spp. In this study, the molecular, biological and physiological characteristics of laboratory‐induced mutants of F. graminearum with resistance to phenamacril were investigated. Compared to the wildtype strains, the phenamacril‐resistant mutants showed obvious defects in various biological and physiological characteristics, including vegetative growth, carbon source utilization, response to oxidative and osmotic stresses, sensitivity to cell wall and cell membrane integrity inhibitors, cell membrane permeability, glycerol accumulation and pathogenicity. The phenotypes of the phenamacril‐resistant mutants exhibited many variations. Sequencing indicated that the three parental strains studied were identical, and the mutants TXR1, TXR2, BMR1, BMR2, SYR1 and SYR2 each had a single point mutation in the amino acid sequence encoded by the myosin‐5 gene (FGSG_01410). These results provide new reference information for future investigations concerning the resistance mechanism of F. graminearum to phenamacril and could offer important relevant data for the management of FHB caused by F. graminearum.  相似文献   

6.
BACKGROUND: Management of grapevine powdery mildew Erysiphe necator Schw. requires fungicide treatments such as sterol demethylation inhibitors (DMIs) or mitochondrial inhibitors (QoIs). Recently, reduction in the efficacy of DMIs or QoIs was reported in Europe and the United States. The aim of the present study was to develop real‐time qPCR tools to detect and quantify several CYP51 gene variants of E. necator: (i) A versus B groups (G37A) and (ii) sensitive versus resistant to sterol demethylase inhibitor fungicides (Y136F). RESULTS: The efficacy of the qPCR tools developed was better than the CAPS method, with a limit of 2 pg for E necator DNA, 0.06 ng for genetic group A and 1.4 ng for the DMI‐resistant allele. The detection limits of qPCR protocols (LOD) ranged from 0.72 to 0.85%, and the quantification limits (LOQ) ranged from 2.4 to 2.85% for the two alleles G47A and Y136F respectively. The application of qPCR to field isolates from French vineyards showed the presence of DMI‐resistant and/or QoI‐resistant alleles in French pathogen populations, linked to genetic group B. CONCLUSION: The real‐time PCR assay developed in this study provides a potentially useful tool for efficient quantification of different alleles of interest for fungicide monitoring and for population structure of E. necator. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
8.
恶苗病是水稻生产上较为严重的种传真菌病害,咪唑类广谱内吸性杀菌剂咪鲜胺是目前防治该病害的主要药剂。以对咪鲜胺抗性及敏感的田间水稻恶苗病菌为试材,研究了其适合度及对几种常用杀菌剂的交互抗性。结果显示:抗性菌株的抗药性可稳定遗传,其温度敏感性与敏感菌株无明显差异,部分抗性菌株在菌丝生长速率、产孢量、孢子萌发率和致病力方面显著高于田间敏感菌株;咪鲜胺与三唑类及2-氰基丙烯酸酯类杀菌剂之间均无交互抗性。研究表明,对咪鲜胺产生抗性的水稻恶苗病菌具有较强的适合度,在田间自然条件下有可能形成优势群体,因此需合理轮换使用不同作用机制的杀菌剂,以延缓其抗药性的发展。  相似文献   

9.
Baseline sensitivity to flumorph, a carboxylic acid amide (CAA) fungicide used to control some oomycetes, was examined using 83 Phytophthora capsici isolates, resulting in a unimodal distribution of effective concentration for 50% inhibition of mycelial growth ranging from 0·716 to 1·363, with a mean of 1·033 ± 0·129 μg mL?1. To assess the potential risk of developing flumorph resistance, 13 flumorph‐resistant mutants of P. capsici were obtained using ultraviolet irradiation. Most of these mutants and their progeny had high levels of fitness, including mycelial growth, sporulation and virulence. The resistance to flumorph changed slightly, either increasing or decreasing, after 10 transfers on agar media. Cross‐resistance was found between flumorph and other CAA fungicides (dimethomorph and iprovalicarb), but not between flumorph and non‐CAA fungicides (cymoxanil, metalaxyl, azoxystrobin and cyazofamid). To investigate the genetics of the flumorph resistance, 619 progeny were obtained by self‐crossing and sexual hybridization. Segregation of sensitivity to fungicide was measured as a ratio of sensitive (S) to resistant (R) isolates. Segregation of the progeny, from self‐crossed isolate PCAS1 (flumorph resistant), was 1:15 in the first generation; and 0:1 or 1:15 in the second generation. In sexual hybridization, segregation of progeny was 0:1 and 1:7 for R × R hybridization; and 1:3 for R × S hybridization. Therefore, the resistance of P. capsici against flumorph was controlled by two dominant genes.  相似文献   

10.
Laboratory studies were conducted to evaluate the risk of developing field resistance to zoxamide, a new Oomycete fungicide which acts on microtubules. Zoxamide, metalaxyl and dimethomorph were compared with respect to the ease with which fungicide‐resistant mutants could be isolated and their level of resistance. Attempts to generate mutants of Phytophthora capsici and P infestans with resistance to zoxamide by mycelial adaptation on fungicide‐amended medium were unsuccessful. Similarly, changes in sensitivity to zoxamide were small (resistance factors ≤2.2) in mutants of P capsici isolated by chemical mutagenesis of zoospore cysts. In parallel experiments with metalaxyl, highly resistant mutants were obtained using both adaptation (P capsici or P infestans) and chemical mutagenesis (P capsici). For dimethomorph, chemical mutagenesis (P capsici) yielded moderately resistant mutants (maximum resistance factor = 20.9), and adaptation (P capsici or P infestans) did not induce resistance. It is proposed that failure to isolate mutants resistant to zoxamide results from the diploid nature of Oomycete fungi and the likelihood that target‐site mutations would produce a recessive phenotype. Our studies suggest that the risk of a highly resistant pathogen population developing rapidly in the field is much lower for zoxamide than for metalaxyl. However, as with any site‐specific fungicide, appropriate precautions against resistance development should be taken. © 2001 Society of Chemical Industry  相似文献   

11.
Since 2007, serious damage to tomato from leaf mould caused by Passalora fulva has frequently been observed in commercial greenhouses in Gifu Prefecture, Japan. One of the factors relating to this damage was suspected to be a decrease in azoxystrobin sensitivity of the pathogen. Biological and molecular studies were conducted to characterize fungicide resistance. In in vitro sensitivity tests using mycelial homogenate placed on fungicide‐amended medium, the minimum inhibitory concentrations (MIC) of azoxystrobin for mycelial growth of the isolates divided into two ranges, 0.031–0.5 mg L?1 and 8–32 mg L?1. Isolates with MICs within the two ranges were considered as sensitive and resistant, respectively, to azoxystrobin because, in in vivo tests, the percentage protection conferred by this fungicide (100 mg a.i. L?1) against these isolates was 89.7–100% and 4.5–31.1%, respectively. Resistant isolates had a replacement of phenylalanine with leucine at codon 129 (F129L) in cytochrome b. Forty‐five percent of the 271 isolates collected from 63 tomato greenhouses from 2007 to 2008 were resistant to azoxystrobin. In many greenhouses where the isolation frequency of resistant isolates was 80% or more, azoxystrobin had been used twice per crop for approximately 6 years. In 2012, 27% of the 405 isolates collected were resistant to azoxystrobin, and there was a marked difference in the frequency of occurrence of resistant isolates in the field populations between the three locations sampled. The occurrence of azoxystrobin‐resistant P. fulva isolates (F129L mutants) inflicted considerable damage on greenhouse tomatoes.  相似文献   

12.
BACKGROUND: Didymella bryoniae has a history of developing resistance to single‐site fungicides. A recent example is with the succinate‐dehydrogenase‐inhibiting fungicide (SDHI) boscalid. In laboratory assays, out of 103 isolates of this fungus, 82 and seven were found to be very highly resistant (BVHR) and highly resistant (BHR) to boscalid respectively. Cross‐resistance studies with the new SDHI penthiopyrad showed that the BVHR isolates were only highly resistant to penthiopyrad (BVHR‐PHR), while the BHR isolates appeared sensitive to penthiopyrad (BHR‐PS). In this study, the molecular mechanism of resistance in these two phenotypes (BVHR‐PHR and BHR‐PS) was elucidated, and their sensitivity to the new SDHI fluopyram was assessed. RESULTS: A 456 bp cDNA amplified fragment of the succinate dehydrogenase iron sulfur gene (DbSDHB) was initially cloned and sequenced from two sensitive (BS‐PS), two BVHR‐PHR and one BHR‐PS isolate of D. bryoniae. Comparative analysis of the DbSDHB protein revealed that a highly conserved histidine residue involved in the binding of SDHIs and present in wild‐type isolates was replaced by tyrosine (H277Y) or arginine (H277R) in the BVHR‐PHR and BHR‐PS variants respectively. Further examination of the role and extent of these alterations showed that the H/Y and H/R substitutions were present in the remaining BVHR‐PHR and BHR‐PS variants respectively. Analysis of the sensitivity to fluopyram of representative isolates showed that both SDHB mutants were sensitive to this fungicide as the wild‐type isolates. CONCLUSION: The genotype‐specific cross‐resistance relationships between the SDHIs boscalid and penthiopyrad and the lack of cross‐resistance between these fungicides and fluopyram should be taken into account when selecting SDHIs for gummy stem blight management. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
赣南脐橙绿霉病菌对常用杀菌剂抗性监测   总被引:2,自引:0,他引:2  
 本文研究了来自赣南7个县的柑橘绿霉病菌(Penicillium digitatum)种群对该地区常用杀菌剂抑霉唑、咪鲜胺、甲基硫菌灵和百可得的抗性频率、抗性水平和对抑霉唑的抗性分子机制。结果表明:病菌对抑霉唑和咪鲜胺存在基本一致的抗性;2011和2012年病菌种群对抑霉唑和咪鲜胺的抗性频率分别为82%和90%,平均抗性倍数为51.5倍,抗性分子机制均属于IMZ-R3,即CYP51B基因启动子区发生199 bp插入的突变;病菌种群对甲基硫菌灵的抗性频率分别为82%和91%;病菌种群对百可得均表现敏感。本研究为采后柑橘病害防治药剂选择提供了科学的依据。  相似文献   

14.
Field isolates of Alternaria solani, which causes early blight of potato in Idaho, USA were evaluated in vitro for their sensitivity towards the succinate dehydrogenase inhibitor (SDHI) fungicides boscalid, fluopyram and penthiopyrad. A total of 20 isolates were collected from foliar‐infected tissue in 2009, 26 in 2010 and 49 in 2011. Fungicide sensitivity was tested using the spiral‐gradient end point dilution method. The frequency of boscalid‐resistant isolates (>50% relative growth when using a spiral dilution gradient starting at 507 mg L?1) drastically increased over the duration of this study (15% in 2009, 62% in 2010 and 80% in 2011). Increasing resistance to fluopyram and penthiopyrad was observed. However, cross‐resistance was only observed between boscalid and penthiopyrad. The target site of this fungicide class is the succinate dehydrogenase (SDH) enzyme complex, which is vital for fungal respiration. Sequence analysis of the SDH complex revealed mutations in the subunits B and D that were correlated with the emergence of boscalid resistance in potato fields in Idaho. In particular, H277R and H133R were identified in SDH subunits B and D, respectively. The presence of restriction sites in the gene sequences allowed the development of a rapid PCR‐RFLP method to assess boscalid sensitivity in Asolani populations.  相似文献   

15.
Zymoseptoria tritici is the causal agent of septoria tritici blotch (STB), a foliar wheat disease important worldwide. Succinate dehydrogenase inhibitors (SDHIs) have been used in cereals for effective control of STB for several years, but resistance towards SDHIs has been reported in several phytopathogenic fungi. Resistance mechanisms are target‐site mutations in the genes coding for subunits B, C and D of the succinate dehydrogenase (SDH) enzyme. Previous monitoring data in Europe indicated the presence of single isolates of Z. tritici with reduced SDHI sensitivity. These isolates carried mutations leading to amino acid exchanges: C‐T79N, C‐W80S in 2012; C‐N86S in 2013; B‐N225T and C‐T79N in 2014; and C‐V166M, B‐T268I, C‐N86S, C‐T79N and C‐H152R in 2015. The current study provides results from microtitre and greenhouse experiments to give an insight into the impact of different mutations in field isolates on various SDHIs. In microtitre tests, the highest EC50 values for all tested SDHIs were obtained with mutants carrying C‐H152R. Curative greenhouse tests with various SDHIs confirmed the findings of microtitre tests that isolates with C‐H152R are, in general, controlled with lower efficacy than isolates carrying B‐T268I, C‐T79N and C‐N86S. SDHI‐resistant isolates of Z. tritici found in the field were shown to have cross‐resistance towards all SDHIs tested. So far, SDHI‐resistant isolates of Z. tritici have been found in low frequencies in Europe. Therefore, FRAC recommendations for resistance management in cereals, including a limited number of applications, alternation and combination with other MOAs, should be followed to prolong SDHI field efficacy.  相似文献   

16.
BACKGROUND: Grey mould caused by the fungus Botrytis cinerea Pers. ex Fr. is one of the major diseases in grapes. The use of fungicides is a simple strategy to protect grapes against B. cinerea disease. However, phenotypes exhibiting resistance to fungicides have been detected in B. cinerea populations. The variation of fungicide‐resistant B. cinerea isolates renders B. cinerea disease control difficult in grapevine fields. RESULTS: The authors have developed a nested polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) method to detect fungicide‐resistant B. cinerea isolates at an early growth stage of grapes in grapevine fields. The nested PCR‐RFLP method was carried out to detect benzimidazole‐, phenylcarbamate‐ and/or dicarboximide‐resistant B. cinerea isolates from grape berries and leaves at Eichorn–Lorenz growth stage 25 to 29. This method successfully detected fungicide‐resistant B. cinerea isolates at an early growth stage of grapes. In addition, only 8 h was required from tissue sampling to phenotyping of fungicide resistance of the isolates. CONCLUSION: It is proposed that the early diagnosis of fungicide‐resistant B. cinerea isolates would contribute to further improvement of integrated pest management against B. cinerea in grapevine fields, and that the nested PCR‐RFLP method is a high‐speed, sensitive and reliable tool for this purpose. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Mycosphaerella fijiensis Morelet causes black sigatoka, the most important disease in bananas and plantains. Disease control is mainly through the application of systemic fungicides, including sterol demethylation inhibitors (DMIs). Their intensive use has favoured the appearance of resistant strains. However, no studies have been published on the possible resistance mechanisms. RESULTS: In this work, the CYP51 gene was isolated and sequenced in 11 M. fijiensis strains that had shown different degrees of in vitro sensitivity to propiconazole, one of the most widely used DMI fungicides. Six mutations that could be related to the loss in sensitivity to this fungicide were found: Y136F, A313G, Y461D, Y463D, Y463H and Y463N. The mutations were analysed using a homology model of the protein that was constructed from the crystallographic structure of Mycobacterium tuberculosis (Zoff.) Lehmann & Neumann. Additionally, gene expression was determined in 13 M. fijiensis strains through quantitative analysis of products obtained by RT‐PCR. CONCLUSION: Several changes in the sequence of the gene encoding sterol 14α‐demethylase were found that have been described in other fungi as being correlated with resistance to azole fungicides. No correlation was found between gene expression and propiconazole resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
经过药剂驯化10代后,从对苯醚菌酯(ZJ0712)敏感的小麦白粉病菌Blumeria graminis f.sp.tritici 3个菌株中获得3个抗药突变体,突变体的抗性指数均大于80,且其抗性能够通过无性繁殖稳定遗传。室内接种试验发现,突变体的致病力与亲本菌株无明显差异。细胞色素b (cyt b)基因片段序列分析发现,突变体cyt b基因的第143位密码子均由敏感菌株的GGT(丙氨酸)突变成了GCT(甘氨酸)。研究结果表明,小麦白粉病菌对苯醚菌酯存在较高的抗性风险,该药剂在使用过程中需注意采取相应的抗性治理措施,以延缓抗性发生。  相似文献   

19.
L Pan  J Li  T Zhang  D Zhang  L Y Dong 《Weed Research》2015,55(6):609-620
Beckmannia syzigachne (American sloughgrass) is a competitive grass weed found in China. Fenoxaprop‐P‐ethyl is widely used for control of this species in China. Resistance to fenoxaprop‐P‐ethyl in B. syzigachne has been reported to be conferred by an isoleucine(Ile)‐1781‐leucine(Leu) substitution in the gene encoding the herbicide target, acetyl‐CoA carboxylase (ACCase). In this study, three mutations were detected by derived cleaved amplified polymorphic sequence (dCAPS) method in fenoxaprop‐P‐ethyl‐resistant B. syzigachne populations: Ile‐1781‐Leu in population JCWL‐R, Ile‐2041‐Asn in JCJT‐R and Gly‐2096‐Ala in JYJD‐R. The data indicated they were genetically homogeneous (homozygous mutant) at the ACCase locus. The use of cytochrome P450 inhibitors was shown to slightly reduce the GR50 value of fenoxaprop‐P‐ethyl‐resistant populations, from which we inferred a combination of target‐site resistance (TSR) and non‐target‐site resistance (NTSR) was involved in fenoxaprop‐P‐ethyl‐resistance. We characterised the cross‐resistance patterns to ACCase inhibitors in B. syzigachne. The plants in the JCWL‐R population were highly resistant to all tested APPs (aryloxyphen‐oxypropionates), sethoxydim and pinoxaden, and moderately resistant to clethodim. The plants in the JCJT‐R population were highly resistant to fluazifop‐P‐butyl, clodinafop‐propargyl, cyhalofop‐butyl, metamifop and pinoxaden; moderately resistant to haloxyfop‐R‐methyl, quizalofop‐P‐ethyl and sethoxydim; and sensitive to clethodim. The plants in the JYJD‐R population were highly resistant to clodinafop‐propargyl, metamifop and pinoxaden; moderately resistant to haloxyfop‐R‐methyl, cyhalofop‐butyl, quizalofop‐P‐ethyl, fluazifop‐P‐butyl and sethoxydim; and sensitive to clethodim. If resistance to ACCase inhibitors is present in B. syzigachne populations in the field, then our results indicate that clethodim should be used. While we demonstrated the cross‐resistance patterns of TSR resulting from three mutations in B. syzigachne, we also demonstrated that NTSR plays a role in resistance, which will complicate weed management.  相似文献   

20.
The plant‐pathogenic fungus Sclerotinia sclerotiorum has a broad host range and a worldwide distribution. Boscalid, an inhibitor of succinate dehydrogenase in the electron transport chain of fungi, is highly effective in controlling sclerotinia stem rot caused by S. sclerotiorum. The current study characterized the S. sclerotiorum boscalid‐resistant (BR) mutants obtained by fungicide induction. Among the bioactive fungicides against S. sclerotiorum, cross‐resistance was not detected between boscalid and dimethachlon, fluazinam or carbendazim; positive cross‐resistance was detected between boscalid and carboxin; and negative cross‐resistance was detected between boscalid and kresoxim‐methyl. Compared to their parental isolates, BR mutants had slower radial growth, no ability to produce sclerotia, lower virulence and oxalic acid content but higher mycelial respiration and succinate dehydrogenase (SDH) activity. Moreover, BR mutants had decreased sensitivity to salicylhydroxamic acid (SHAM) but not to oxidative stress. All the results indicated that the risk of resistance to boscalid in S. sclerotiorum is low to moderate. DNA sequence analysis showed that all of the BR mutants had the same point mutation A11V (GCA to GTA) in the iron sulphur protein subunit (SDHB). Interestingly, expression of the cytochrome b (cytb) gene was reduced to different degrees in the BR mutants, and this might be correlated with the negative cross‐resistance between boscalid and kresoxim‐methyl. Such information is vital in the design of resistance management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号