首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed polymerase chain reaction (PCR) assays to detect and quantify Phomopsis sclerotioides, the causal agent of black root rot of cucurbits. We used internal transcribed spacers 1 and 2 of the ribosomal DNA (rDNA) from representative isolates to search for target sequences. Primer pairs were selected after testing against 40 fungal isolates including 13 Ph. sclerotioides isolates, 9 Phomopsis isolates other than Ph. sclerotioides, and 18 soilborne fungi that were either pathogenic or nonpathogenic to cucurbits. Conventional PCR assays with the primer pair of CPs-1 (forward) and CPs-2 (reverse) produced target DNA amplicons from all Ph. sclerotioides isolates but none of the other isolates tested. From soil and root samples collected from fields naturally infested with black root rot of cucumber and melon, the CPs-1/CPs-2 primer pair successfully amplified target DNA fragments in conventional PCR assays. Moreover, we applied the CPs-1/CPs-2 primer pair in a real-time PCR assay with SYBR Green I, and PCR-amplified products were successfully quantified by reference to a standard curve generated by adding known amounts of target DNA. Target Ph. sclerotioides DNA fragments were similarly detected in artificially inoculated roots of cucumber, melon, pumpkin, and watermelon, but quantities of Ph. sclerotioides DNA in their hypocotyls of the hosts varied as follows: melon ≥ cucumber ≥ watermelon > pumpkin. These results suggest that Ph. sclerotioides infection is not species-specific but the rate of infection may differ among host species.  相似文献   

2.
An important constraint for crop production in Colombia is the high incidence of anthracnose caused by Colletotrichum species. Although several studies have focused on these fungi, the relationship between the different fungal species within the genus and their hosts and whether they display any host preference or host specificity has yet to be examined. In Colombia, diseases caused by Colletotrichum species are particularly severe in mango (Mangifera indica) and tree tomato (Solanum betaceum) crops. In a previous investigation, the Colletotrichum phylogenetic species attacking these crops were identified. The present study aimed to determine whether isolates collected from tree tomato and mango showed host preference or host specificity by assessing aggressiveness, spore density, latent period, and fitness of each strain on the two hosts. In the departments of Cundinamarca and Tolima, Colombia, isolates were collected from plants that presented typical anthracnose symptoms and were identified as C. acutatum, C. asianum, C. boninense, C. gloeosporioides, C. tamarilloi and C. theobromicola. Inoculation of conidia of each isolate onto both hosts showed isolates had no host preference and only the C. gloeosporioides isolate showed host specificity. However, in general, isolates produced a higher spore density when inoculated on the alternate host, which may indicate a difference in the degree of adaptation to each host. Statistical analyses of the assessed parameter values revealed that isolates use different infection strategies when infecting each host. In light of these results, the implications of using quantitative estimations of fitness when studying fungal pathogens are discussed.  相似文献   

3.
Pot experiments were carried out to characterize the response of two Cucumis metuliferus accessions (BGV11135 and BGV10762) against Mi1.2 gene (a)virulent Meloidogyne arenaria, M. incognita and M. javanica isolates and to determine the compatibility and the effect on physicochemical properties of fruit melons. In addition, histopathological studies were conducted. One week after transplanting, plants were inoculated with one J2 cm?3 of sterilized sand (200 cm3 pots) and maintained in a growth chamber at 25 °C for 40 days. The susceptible cucumber cv. Dasher II or melon cv. Paloma were included for comparison. The number of egg masses and number of eggs per plant were assessed, and the reproduction index (RI) was calculated as the percentage of eggs produced on the C. metuliferus accessions compared to those produced on the susceptible cultivars. The compatibility and fruit quality were assessed by grafting three scions, two of Charentais type and one of type piel de sapo, under commercial greenhouse conditions. The resistance level of both C. metuliferus accessions ranged from highly resistant (RI < 1%) to resistant (1% ≤ RI ≤ 10%) irrespective of Meloidogyne isolates. Melon plants grafted onto C. metuliferus accession BGV11135 grew as self‐grafted plants without negatively impacting fruit quality traits. Giant cells induced by Meloidogyne spp. on C. metuliferus were in general poorly developed compared to those on cucumber. Furthermore, necrotic areas surrounding the nematode were observed. Cucumis metuliferus accession BGV11135 could be a promising melon rootstock to manage Meloidogyne spp., irrespective of their Mi1.2 (a)virulence, without melon fruit quality reduction.  相似文献   

4.
The fungal genus Alternaria comprises a large number of asexual taxa with diverse ecological, morphological and biological modes ranging from saprophytes to plant pathogens. Understanding the speciation processes affecting asexual fungi is important for estimating biological diversity, which in turn affects plant disease management and quarantine enforcement. This study included 106 isolates of Alternaria representing five phylogenetically defined clades in two sister sub‐generic groups: section Porri (A. dauci, A. solani and A. limicola) and section Alternaria (A. alternata/tenuissima and A. arborescens). Species in section Porri are host‐specific while species in section Alternaria have wider host ranges. For each isolate, DNA sequences of three genes (Alt a1, ATPase, Calmodulin) were used to estimate phylogenies at the population and species levels. Three multilocus haplotypes were distinguished among A. dauci isolates and only one haplotype among A. solani and A. limicola isolates, revealing low or no differentiation within each taxon and strong clonal structure for taxa in this section. In contrast, 37 multilocus haplotypes were found among A. alternata/tenuissima isolates and 21 multilocus haplotypes among A. arborescens isolates, revealing much higher genotypic diversity and multiple clonal lineages within taxa, which is not typical of asexual reproducing lineages. A species tree was inferred using a Yule Speciation model and a strict molecular clock assumption. Species boundaries were well defined within section Porri. However, species boundaries within section Alternaria were only partially resolved with no well‐defined species boundaries, possibly due to incomplete lineage sorting. Significant association with host specificity seems a driving force for speciation.  相似文献   

5.
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post‐bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration.  相似文献   

6.
Variation of Diplodia seriata, a fungal species associated with botryosphaeria dieback of grapevine, was investigated with respect to its genetic, phenotypic and pathogenic characteristics. The inter‐simple sequence repeat (ISSR) technique was used to investigate the genetic diversity of 83 isolates of D. seriata. Five ISSR primers were able to provide reproducible and polymorphic DNA fingerprint patterns, thus showing a relevant genetic variability in the species. Analyses of ISSR data by different clustering methods grouped the isolates into two distinct clusters through the Bayesian and DAPC analyses. No relationships between either geographic or host origin of isolates and genetic clusters were observed. Several representative isolates from each genetic cluster were chosen for studying their conidial dimensions, in vitro mycelial growth, vegetative and mating compatibility, and pathogenicity on detached grapevine canes and potted vines. No significant differences in conidial dimensions were detected among the groups. Vegetative compatibility reactions were observed among isolates but this was not related with the genetic clustering. Production of sexual fruiting bodies in vegetative compatible crossings was not observed under the experimental conditions used in the study. All 14 isolates tested for pathogenicity were confirmed to be pathogenic according to the length of the necrotic lesions that they caused and their reisolation frequencies from the infected plant tissues. Differences in the length of necrosis were detected among isolates, thus revealing the existence of different virulence levels in the species.  相似文献   

7.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

8.
Subterranean clover (Trifolium subterraneum) is an important pasture legume in Australia (29 million ha) and elsewhere. However, severe pasture decline occurs in association with several root pathogens, including Aphanomyces trifolii, that has been misidentified for decades as A. euteiches until recently confirmed as A. trifolii. A series of controlled environment experiments was undertaken to identify host resistance to A. trifolii in subterranean clover and to compare virulence and phylogeny of isolates. In experiment 1, Dalkeith, Bacchus Marsh, Riverina and Yarloop were the most resistant of 38 cultivars with a percentage disease index (PDI) ≤10 for both tap and lateral roots. Experiment 2 confirmed resistance of Yarloop, but a change in some relative varietal resistances suggested physiological specialization among A. trifolii isolates. Experiment 3 confirmed extensive variation in virulence and physiological specialization across 23 isolates of A. trifolii, with three distinct clades, two of which were distinct from isolates collected previously. Experiment 4 identified host resistance(s) effective against a mixture of 20 A. trifolii isolates, but the most resistant cultivars (Antas, Uniwager, Leura) still showed significant disease. This is the first study to show physiological specialization in A. trifolii and to identify host resistance. This study defines A. trifolii as a significant but largely unknown contributor to severe root disease of subterranean clover in southern Australia. Finally, development and calibration of a new soil commercial DNA test not only enables field quantification of the disease, but development of appropriate breeding, selection and farm management strategies to reduce its impact.  相似文献   

9.
Genotypic and virulence diversity of Neofusicoccum luteum and N. australe isolates recovered from grapevines displaying symptoms of dieback and decline in New Zealand were investigated. The universally primed PCR (UP‐PCR) method was used to investigate the genetic diversity of 40 isolates of N. luteum and 33 isolates of N. australe. Five UP‐PCR primers produced a total of 51 loci from N. luteum and 57 from N. australe with a greater number of polymorphic loci produced in N. australe (86%) compared with N. luteum (69%). Analysis of UP‐PCR data showed both species found in New Zealand vineyards were genetically diverse at both the inter‐ and intra‐vineyard levels with only a single pair of clonal isolates in N. luteum. Cluster analysis of UP‐PCR data produced four genetic groups in N. luteum and 10 in N. australe (< 0.05). For both species, there was no relationship between the genetic groups and the origin of isolates. The mean genetic diversity (H) of N. luteum was less than for N. australe, being 0.1791 and 0.2417, respectively. Pathogenicity assays of both species using isolates from either the same or different genetic groups inoculated onto either green shoots or grapevine trunks, showed virulence diversity within the population; however, no correlation was identified between genetic groups and virulence.  相似文献   

10.
A collection of 102 Diaporthe isolates was compiled from lesions on carrot, parsley and wild Apiaceae species in France from 2010 to 2014. Molecular typing based on ITS rDNA sequences resulted in the identification of 85 D. angelicae and 17 D. eres isolates. Based on sequences of the 3′ part of the IGS rDNA, intraspecific variability was analysed for 17 D. angelicae and 13 D. eres isolates from diverse plant species, locations in France, and plant tissues. The genetic diversity was greater for D. angelicae isolates than D. eres isolates. In vitro sensitivity of five D. angelicae and four D. eres isolates to each of nine fungicides was similar for isolates of both species, with a marked variation in fungicide sensitivity depending on the active ingredient. To assess the pathogenicity of D. angelicae and D. eres isolates on carrot, one isolate of each species was inoculated onto umbels in a controlled environment. Typical lesions were observed for both isolates. Carrot crop debris collected from a seed production field in France and placed in controlled conditions produced perithecia and ascospores typical of Diaporthe, that were further characterized molecularly as belonging to D. angelicae. Detection of Diaporthe species on seed lots from three carrot production fields in France was investigated. Both species were detected on seeds by conventional PCR assay, with a greater frequency for D. angelicae than D. eres (67% vs 33%, respectively). Overall, the results highlighted that umbel browning in carrot seed crops in France was mainly caused by D. angelicae.  相似文献   

11.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

12.
The structure and temporal dynamics of the virulence of Pseudoperonospora cubensis (causal agent of cucurbit downy mildew) were studied in pathogen populations in the Czech Republic from 2001 to 2010. A total of 398 P. cubensis isolates collected from Cucumis (Cm.sativus, Cm. melo, Cucurbita (Cr.maxima, Cr. pepo, Cr. moschata and Citrullus lanatus were analysed for variation in virulence (pathotypes). Virulence was evaluated on a differential set of 12 genotypes of cucurbitaceous plants. All isolates of P. cubensis were characterized by their level of virulence (classified according the number of virulence factors, VF; low VF = 1–4, medium VF = 5–8, high VF = 9–12): high (75%), medium (24%) and low (1%). The structure and dynamics of virulence in the pathogen populations were expressed by pathotypes using tetrad numerical codes and a total of 67 different pathotypes of P. cubensis were determined. The most susceptible group of differentials was Cucumis spp., while the lowest frequency of virulence was recorded on Cr. pepo ssp. pepo, Ci. lanatus and Luffa cylindrica. A high proportion (c. 90%) of isolates was able to infect cucurbit species Benincasa hispida and Lagenaria siceraria, which are not commonly cultivated in the Czech Republic or elsewhere in central Europe. In the recent pathogen populations (2008–2010) there was prevailing frequency (70–100%) of isolates with high numbers (9–12) of virulence factors. ‘Super pathotype’ 15.15.15 was often observed in the study within the pathogen populations and was one of the four most frequently recorded pathotypes. Pseudoperonospora cubensis populations shifted to a higher virulence over time. From 2009 the pathogen population changed dramatically and new pathotypes appeared able to establish natural and serious infection of Cucurbita spp. and Ci. lanatus, which was not observed in 2001–2008. Generally, virulence structure and dynamics of P. cubensis populations are extremely variable in the Czech Republic.  相似文献   

13.
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C.   truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico.  相似文献   

14.
Papaya ringspot virus type P (PRSV‐P) systemically infects Carica papaya and species belonging to the family Cucurbitaceae. Attempts to recover PRSV‐P from naturally infected cucurbit plants grown near or among diseased papaya trees have shown conflicting results worldwide. This study aimed to evaluate the natural infection of cucurbit species grown among and near papaya trees infected with PRSV‐P in Brazil. Natural infection of cucurbits with PRSV‐P occurred in zucchini squash but not in watermelon and cucumber. However, several attempts to recover PRSV‐P from numerous Cucurbita pepo cv. Caserta (zucchini squash) plants grown 5–80 m from diseased papaya trees in the field failed. Mechanical inoculations of Cucurbita pepo cv. Caserta, Cucurbita maxima cv. Exposição (pumpkin), Cucumis sativus cv. Primepack Plus (cucumber) and Citrullus lanatus cv. Crimson Sweet (watermelon) with five Brazilian PRSV‐P isolates showed that zucchini squash was the most susceptible species followed by watermelon and cucumber, while pumpkin was not infected. The results confirmed the variable susceptibility of cucurbit species to experimental and natural PRSV‐P infection. Given these facts, the control of the disease through roguing should focus mainly on diseased papaya plants, as has been practised successfully in Brazil for many years, and on those cucurbits particularly known to be susceptible to natural infection with PRSV‐P.  相似文献   

15.
Cucurbit powdery mildew (CPM) is caused most frequently by well-differentiated obligate erysiphaceous ectoparasites Golovinomyces orontii and Podosphaera xanthii, which vary in their ecology and virulence. All economically important cucurbit crops host both of these CPM species. Breeding of cucurbits for CPM resistance is highly important worldwide, but adequate knowledge of CPM species determination, as well as virulence structure, population dynamics, and spatiotemporal variation of these pathogens, has not yet been achieved. New tools have been developed to enhance research on CPM virulence variation for more efficient breeding and seed and crop production. A set of differential genotypes of Cucumis melo, with high differentiation capacity, may contribute substantially to understanding of variation in CPM virulence at both individual and population levels. Long-term observations (2001–2012) of CPM pathogens in the Czech Republic were used to analyse virulence variation within and among annual CPM populations and demonstrate the utility of recently developed tools for studying species variability and virulence variation of CPM pathogens worldwide. Detailed analyses of diversity and spatiotemporal fluctuations in the composition of CPM populations provide crucial information for shaping breeding programmes and predicting the most effective sources of race-specific resistance. The primary aim of this work was to create a uniform framework for determination of CPM species structure and diversity, virulence phenotypes, virulence and phenotype frequencies, phenotype complexity, dynamics, and variation within and among CPM populations. In addition, practical advice is presented on how to select the most relevant data and interpret them for use in cucurbit resistance breeding.  相似文献   

16.
Kosman diversity models were applied to analyses of virulence (disease reaction patterns) variation of 115 isolates of two cucurbit powdery mildew (CPM) species, Golovinomyces orontii (Go) and Podosphaera xanthii (Px), collected in the Czech Republic from 2010 through 2012. Diversity within and distances between Go and Px populations and each other in a spatio-temporal context and with regard to original host plant species were analyzed based on virulence patterns of individual isolates on a set of 21 melon (Cucumis melo L.) race differential genotypes. Significant differentiation among the Go and Px pathogen populations was revealed, and the results clearly demonstrate and confirm that the set of differential C. melo genotypes is well composed because of high differentiation capacity. Differentiation of pathogens among years was significant for both species. No significant difference between Go isolates from different host plant species was established due to high variability among Go isolates, but there was significant host-specific differentiation among Px isolates. Differentiation of pathogens among regions was not detected. These results revealed high virulence variation in isolates of Go and Px, and their spatio-temporal fluctuations. High diversity in virulence of Go isolates supports the treatment of Go as a complex of different (sub)species with distinct virulence factors. Similar relationships of selected Go isolates in a UPGMA dendrogram in a previously reported multigene phylogenetic tree support the logic and suitability of the Kosman assignment based approach to population studies of organisms with asexual or mixed modes of reproduction. The approach applied in this study provides a complex view of virulence structures of powdery mildew populations, and when combined with race determination and denomination on melon, it may serve as a base to understandvirulence variation of these CPM species from a spatio-temporal viewpoint.  相似文献   

17.
Although the causal agent of black root rot of Cucurbitaceae in Japan has been proposed as Phomopsis sclerotioides, the species identification of the pathogen has remained inconclusive because of a lack of spore formation. We confirmed that a Japanese isolate of Phomopsis sp. obtained from a diseased pumpkin root produced pycnidia containing α spores in sterilized bean pods. In phylogenetic analyses of rDNA-ITS regions, nine Japanese Phomopsis sp. isolates from melon, watermelon grafted onto bottle gourd, and pumpkin diagnosed with black root rot, formed a single clade with P. sclerotioides standard isolates. We identified the causal agent of the black root rot of melon, pumpkin, bottle gourd, and watermelon in Japan as P. sclerotioides and propose the Japanese name “Phomopsis-negusare-byo” for the disease. Patterns of random amplified polymorphic DNA (RAPD) of these Japanese isolates were also similar to those of P. sclerotioides, thus supporting the species identification. However, mycelial incompatibilities were found for many combinations among these P. sclerotioides isolates, suggesting some genotypic variations of this fungus in Japan at a level that the RAPD analyses cannot discriminate. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB201430 to AB201444  相似文献   

18.
Nine accessions of three cucurbit species, ten of eight legume species, three of lettuce (Lactuca sativa) and 34 of 14 Solanaceae species were inoculated with a Dutch isolate of the tomato powdery mildew fungus (Oidium lycopersici) to determine its host range. Macroscopically, no fungal growth was visible on sweet pepper (Capsicum annuum), lettuce, petunia (Petunia spp.) and most legume species (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Vicia faba, Vigna radiata, V. unguiculata). Trace infection was occasionally observed on melon (Cucumis melo), cucumber (Cucumis sativus), courgette (Cucurbita pepo), pea (Pisum sativum) and Solanum dulcamara. Eggplant (Solanum melongena), the cultivated potato (Solanum tuberosum) and three wild potato species (Solanum albicans, S. acaule and S. mochiquense) were more heavily infected in comparison with melon, cucumber, courgette, pea and S. dulcamara, but the fungus could not be maintained on these hosts. All seven tobacco (Nicotiana tabacum) accessions were as susceptible to O. lycopersici as tomato (Lycopersicon esculentum cv Moneymaker), suggesting that tobacco is an alternative host. This host range of the tomato powdery mildew differs from that reported in some other countries, which also varied among each other, suggesting that the causal agent of tomato powdery mildew in the Netherlands differ from that in those countries. Histological observations on 36 accessions showed that the defense to O. lycopersici was associated with a posthaustorial hypersensitive response.  相似文献   

19.
The future existence of common ash (Fraxinus excelsior), an important tree species throughout temperate Europe, is threatened. An invasive fungal disease (ash dieback) has spread through much of the distribution area of common ash. The causal agent of the disease is Hymenoscyphus fraxineus, a necrotrophic ascomycete, most probably introduced from Asia in the early 1990s. Hymenoscyphus fraxineus infects ash trees and saplings through their leaves, from which it grows into the stem. The fungus was studied intensively in recent years but there is still a need to address the topic from an evolutionary perspective. In this overview, some key evolutionary aspects of ash dieback are discussed, from the Red Queen dynamics of host–pathogen interactions to the probable consequences for virulence evolution of multiple infections. The progression of ash dieback in Europe does not show spatial differences, but studies show variation in susceptibility within host populations, a probable consequence of genetic differences, thus providing material for evolution of disease resistance or tolerance. Breeding programmes need to maintain the genetic diversity of Fraxinus, to enable it to withstand further threats such as climate change and the emerald ash borer. Because H. fraxineus reproduces exclusively sexually, the pathogen is likely to overcome a narrow genetic resistance. The introduction of further strains of H. fraxineus to Europe and the movement of infected plant material should be avoided. This case study shows that the integration of evolutionary ecology considerations would benefit plant disease management and biosecurity in general.  相似文献   

20.
The effects of root‐knot nematodes on black root rot of watermelon and bottle gourd were studied using field surveys and co‐inoculation tests with Meloidogyne incognita (southern root‐knot nematode) and Diaporthe sclerotioides. The results of the field survey suggested that root‐knot nematodes had little effect on either the severity of black root rot or infection with D. sclerotioides. None of the three fields showed a significant positive correlation between disease severity and nematode gall index, with low correlation coefficients. Co‐inoculation experiments under controlled conditions found no significant effect of root‐knot nematodes on black root rot of watermelon and bottle gourd based on area under disease progress curves (AUDPC). These results were supported by the quantities of DNA of the two agents in root tissues because no significant difference was found between dual‐ and single‐inoculation treatments with M. incognita and/or D. sclerotioides. These findings suggest that root‐knot nematodes probably do not affect the infection of watermelon or bottle gourd roots by D. sclerotioides or the incidence of black root rot in these crops caused by this fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号