首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A study was conducted to determine the optimum dosage of the exogenous cholesterol-loaded cyclodextrins (CLC) to get maximum cryoprotection for bubaline spermatozoa. In the present study, 120 × 106 spermatozoa were incubated in 2, 3 and 4 mg of CLC as grouped as Gr II, III and IV, respectively, and sperm progressive motility, intracellular Ca2+, capacitation status by protein tyrosine phosphorylation (PTP) assay and zona binding per cent (ZBP) and cleavage rate (CR) of the cryopreserved buffalo spermatozoa by in vitro fertility assay were assessed in comparison with an untreated control group (Gr I). Results revealed that there was a significant (p < .05) linear decrease in percentage of sperm population with higher intracellular Ca2+ and percentage of sperm population with medium or high capacitated by PTP in CLC treated from 2 to 3 mg and then increased to 4 mg/120 × 106 spermatozoa whereas sperm progressive motility, percentage of sperm population with low capacitated, ZBP and CR were increased significantly (p < .05) in sperm population treated from 2 to 3 mg CLC and then decreased to 4 mg/120 × 106 spermatozoa. The study has clearly indicated that CLC at 3 mg/120 × 106 spermatozoa has maximum beneficial effects in protection of sperm progressive motility, membrane fluidity (low intracellular Ca2+); prevention of cryocapacitation (low capacitation pattern in immunolocalization) and enhancement of in vitro ZBP and CR. Post-thaw motility of the CLC-treated sperm has shown positively significant (p < .05) correlation with sperm population with low intracellular Ca2+, low capacitated sperm population, ZBP and CR, whereas it was negatively (p < .05) correlated with sperm population with high intracellular Ca2+, medium or high capacitated sperm. The present study has revealed for the first time that incubation of spermatozoa with CLC of higher dose (>3 mg/120 × 106 spermatozoa) had adverse effects on sperm cryopreservation, although incubation of sperm with 3 mg/120 million prior to processing had minimised the freezing–thawing-associated damages in bubaline species.  相似文献   

2.
The aim of the present study was to evaluate the effect that the addition of cholesterol‐loaded cyclodextrins (CLC) to the thawing extender has on the quality of frozen‐thawed boar sperm. Pooled semen (n = 5) from three boars was used for the experiments. The semen was cryopreserved with an egg‐yolk‐based extender, it was diluted after thawing in Beltsville thawing solution (BTS) supplemented with different concentrations of CLC (0, 12.5, 25, 50 or 100 mg/500 × 106 sperm), and these samples were incubated at 37°C for 150 min. The following parameters of sperm quality were evaluated 30 and 150 min after incubation: sperm with intact plasma membrane (SIPM; %), sperm with normal acrosomal ridge (NAR; %), total motile sperm (TMS; %), progressively motile sperm (PMS; %) and kinetic parameters. Both SIPM and NAR increased (p < 0.05) when the thawing extender was supplemented with 12.5, 25 and 50 mg CLC/500 × 106 sperm. Nevertheless, motility decreased (p < 0.05) when the concentration of CLC exceeded 12.5 mg CLC/500 × 106 sperm. In conclusion, our results suggest that the supplementation of thawing extenders with CLC improves sperm viability and reduces acrosome damage after freezing/thawing.  相似文献   

3.
The objective of this study was to optimize protocols for the cryopreservation of sex‐sorted boar spermatozoa. In the experiment 1, we evaluated the effects of a standard boar sperm cryopreservation procedure (3% final glycerol concentration) on the in vitro characteristics of sex‐sorted sperm frozen at low sperm concentrations (20 × 106 sperm/ml; S20 group). Non‐sorted spermatozoa frozen at 1000 × 106 (C1000 group) and 20 × 106 (C20 group) sperm/ml were used as the freezing control groups. In experiment 2, the effects of different final glycerol concentrations (0.16%, 0.5%, 1.0%, 2.0% and 3.0%) on post‐thaw quality of the S20 and C20 groups were evaluated. In both experiments, the samples were evaluated prior to freezing (5°C) and at 30, 90 and 150 min after thawing. Experiment 1 indicated that freezing sperm at low concentrations decreased (p < 0.05) the total motility (TM) and progressive motility (PM) at 90 and 150 min after thawing regardless of whether the sperm were sorted or not. However, the sperm membrane integrity was not affected at any evaluation step. Inexperiment 2, significant effects on the TM and PM because of increased glycerol concentrations in the S20 and C20 groups were observed only at 90 and 150 min after thawing. The samples frozen in 3% glycerol showed lower (p < 0.05) TM and PM values when compared to those frozen in the presence of 0.5% and 1% glycerol. In both experiments, non‐sorted control samples displayed higher percentages of spermatozoa with damaged DNA than sorted spermatozoa. In conclusion, the optimization of cryopreservation conditions by decreasing the glycerol concentrations can improve post‐thaw motility of sex‐sorted spermatozoa frozen at low concentrations.  相似文献   

4.
The use of cholesterol‐loaded cyclodextrin (CLC) on semen cryopreservation has been related with better sperm viability in several species; however, the effect on fertility is not known in donkey semen. Ejaculates (n = 25) from five donkeys were diluted in S‐MEDIUM with 0, 1, 2 or 3 mg of CLC/120 × 106 spermatozoa. Semen was frozen, and thawed samples were evaluated by computer‐assisted sperm analyser system (CASA), supravital test, hyposmotic swelling test and fluorescent dyes to assess the integrity of sperm membranes. Mares (n = 60) were inseminated with frozen‐thawed semen treated with the doses of 0 or 1 mg CLC. Percentages of sperm with progressive motility and with functional plasma membrane were greater (p < 0.05) in the CLC‐treated groups than in the control. Percentages of intact plasma membrane and intact plasma membrane and acrosome detected by fluorescent dyes were also greater (p < 0.05) in CLC‐treated groups. Although no difference (p > 0.05) in conception rates was detected between groups (control, 3/30, 10%; CLC‐treated, 1/30, 3.3%), fertility was low for artificial insemination programs in mares. Therefore, we firstly demonstrated that frozen semen treated with CLC in S‐MEDIA extender before freezing improves the in vitro sperm viability, but semen treated or not with CLC in S‐MEDIUM extender results in a very low conception rate in mares inseminated with thawed donkey semen.  相似文献   

5.
The aim of this study was to evaluate home‐made and commercial extenders for the cryopreservation of Rusa deer semen. After collection by electroejaculation, six ejaculates were diluted and frozen in TES‐based, Tris‐based and Triladyl® extenders. Subjective motility, viability, morphology, acrosome integrity and membrane functionality were assessed post‐thawing and after 1‐hr incubation at 37°C (Thermal stress test). Total and progressive motility, and kinematic parameters were also assessed through CASA system. Post‐thawing sperm progressive motility (PM), velocity according to the straight path (VSL) and linearity (LIN) showed significant differences, and higher values were detected for spermatozoa diluted with Triladyl® and TES (p < 0.05) as compared with Tris (PM of Triladyl® 14.7% vs. 3.2% TES and 2.5% Tris; VSL 56 for Triladyl®, 59.2 for TES and 41.7 for Tris; LIN 45.6 for Triladyl®, 52 for TES and 36.5 for Tris). Triladyl® and TES extender led to better post‐thawing sperm parameters, but these preliminary results need to be verified through artificial insemination trials.  相似文献   

6.
The present study was conducted with the hypothesis that addition of cholesterol to the extender would stabilize the sperm membranes by increasing the cholesterol-to-phospholipid (C:P) ratio and would result in an improved post-thaw semen quality and reduce oxidative stress in the jack (Martina franca) semen. Forty-eight ejaculates from six jacks were collected and analyzed for the present study. The freshly collected semen sample of each jack stallion was divided into five equal fractions after addition of the primary extender without cholesterol-loaded cyclodextrin (CLC) (C) and with 1, 1.5, 2, and 3 mg/mL CLC to obtain 120 × 106 sperm/mL spermatozoa concentration. The semen was cryopreserved using customized freezing protocols. Evaluation of seminal parameters, the C:P ratio, and the oxidative status of jack spermatozoa was analyzed at all stages of cryopreservation. The oxidative status in the jack semen was evaluated by measuring malondialdehyde, glutathione and total antioxidant capacity levels. The results indicated that the mean percent values for various seminal quality parameters and the oxidative parameters were found to be significantly higher (P < .05) in CLC-treated groups with the highest values for 2 mg of CLC/120 × 106 spermatozoa. In conclusion, the present study revealed that the supplementation of CLC before cryopreservation has significantly reduced the oxidative stress and also increased the C:P ratio during semen cryopreservation process. Furthermore, a reduction in lipid peroxidation levels, reduced damage to the sperm plasma and acrosome membranes and improvement in the post-thaw sperm integrity as well as stability were recorded.  相似文献   

7.
This study aimed to evaluate various concentrations of egg yolk (5, 10, or 20%) in combination with different concentrations of glycerol (3% or 6%) added to a Tris‐based extender on the post‐thaw characteristics of sperm obtained from Tayassu tajacu. For this purpose, semen from 10 sexually male mature collared peccaries was collected by electroejaculation and evaluated for sperm motility, vigour, viability, morphology and functional membrane integrity. The ejaculates were initially extended in Tris‐fructose plus egg yolk (5%, 10% or 20%). After cooling, the semen was added to Tris‐egg yolk plus glycerol (6% or 12%), resulting in a final concentration of 3% or 6% glycerol of the extender. Straws were frozen using liquid nitrogen and thawed in a water bath at 37°C for 30 s. The frozen–thawed semen was evaluated as reported for fresh semen. After thawing, a significant decrease was verified for sperm motility and vigour, for all the samples in comparison with fresh semen. However, no differences were evidenced among treatments for any sperm characteristics evaluated (p > 0.05), except for the combination between 10% egg yolk and 6% glycerol, which provided the worst preservation of functional membrane integrity (p < 0.05). The interactions between higher concentrations of egg yolk (20%) and glycerol (6%) and also between lower concentrations of the same substances (5% egg yolk and 3% glycerol) added to the Tris‐based extender negatively affected the preservation of the normal sperm morphology after thawing (p < 0.05). In conclusion, the use of Tris‐based extender added to 10% or 20% egg yolk plus 3% glycerol is recommended for effective sperm cryopreservation in collared peccaries.  相似文献   

8.
The objective was to assess the effect of cooling to different subzero temperatures around ice formation (?5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris‐egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris‐egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 106 cells/ml). Sperm were packaged in 0.5‐ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to ?3, ?5 or ?7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to ?3 or ?5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was ?14.3 ± 2.05°C (mean ± SD); cooling to +5, ?3, ?5 and ?7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, ?3, and ?5°C produced no differences on sperm survival and plasma membrane fluidity after freeze–thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing.  相似文献   

9.
Single layer centrifugation (SLC) has been shown to select the most robust spermatozoa from the ejaculate in several species. Here the effects of SLC prior to freezing on various parameters of frozen‐thawed bovine sperm quality are reported. Semen from 8 bulls was layered on top of a species‐specific colloid, Bovicoll. After centrifugation for 20 min at 300 g, the resulting sperm pellet was resuspended in OPTIXcell® (IMV Technologies, l′Aigle, France); the SLC‐selected sperm samples and uncentrifuged controls were frozen. On thawing, all sperm samples were analysed for membrane integrity, production of reactive oxygen species, mitochondrial membrane potential (MMP) and chromatin integrity. The SLC‐treated samples had a higher percentage of live, superoxide‐positive spermatozoa than uncentrifuged samples (27.9 ± 5.1% versus 21.7 ± 6.7%; p = .03). They had a higher proportion of spermatozoa with high mitochondrial membrane potential than uncentrifuged samples (55.9 ± 8.2% versus 40.5 ± 15.1%; p = .03) and also a lower proportion of spermatozoa with low mitochondrial membrane potential than non‐treated samples (42.0 ± 8.5% versus 55.9 ± 14.4%; p = .04). No significant effects of treatment were found for membrane integrity or chromatin integrity. The effect of bull was significant on the proportions of dead, superoxide‐positive spermatozoa and live, hydrogen peroxide‐negative spermatozoa, as well as on membrane integrity, but it was not significant for mitochondrial membrane potential or chromatin integrity. These results suggest that SLC selects the most metabolically active bull spermatozoa from the rest of the population in normal ejaculates; the pattern of reactive oxygen species production may be different in SLC‐selected spermatozoa compared to unselected samples.  相似文献   

10.
The objectives of this study were to investigate the effects of polyvinyl alcohol (PVA) as a chemically defined compound in egg yolk (EY)‐free extender by determining the appropriate concentration of PVA and the effect of pH adjustment in EY‐free PVA extenders on dog spermatozoa. Spermatozoa (1 × 108 cells/ml) were frozen with EY‐free extenders supplemented with 0 (control), 0.025, 0.05, 0.1, 0.2 or 0.3 g/100 ml PVA. Sperm progressive motility (PM) was assessed immediately after thawing (IAT) and post‐thaw incubation (PTI), while viability, acrosome integrity and reactive oxygen species (ROS) levels were evaluated after PTI. Additionally, spermatozoa were frozen using EY‐free PVA extenders before pH adjustment (6.45) and after adjustment of pH (6.85). Viability, PM, ROS and gene expression (BCL2 and SMCP) were assessed. Supplementation with 0.05 g/100 ml or more PVA significantly increased PM compared to the control group in the IAT and PTI. Post‐thaw incubation significantly increased sperm motility in all groups. The acrosome integrity in all PVA groups was higher (p < .05) than the control without an effect on ROS and viability. Adjustment of the pH to 6.85 improved (p < .05) sperm PM compared to the non‐adjusted groups without affecting viability, ROS or expression of BCL2 and SMCP. We suggest that PVA supplementation in EY‐free Tris extenders can effectively protect dog spermatozoa during freezing and can maintain higher motility and acrosome integrity. Adjustment of pH in EY‐free PVA extenders can improve post‐thaw sperm motility. Therefore, PVA can be used as a compound in EY‐free extender for the cryopreservation of dog spermatozoa.  相似文献   

11.
The study was designed to evaluate AndroMed® for the freezability and fertility of Nili‐Ravi buffalo semen. Semen was collected from four adult Nili‐Ravi buffalo (Bubalus bubalis) bulls for 3 weeks (replicate). Semen ejaculates from each buffalo bull were divided into three aliquots. One aliquot was used for evaluation of motility, plasma membrane integrity, livability, viability, DNA integrity and normal apical ridge. Remaining two aliquots were diluted (37°C; 50 × 106 spermatozoa/ml) in tris‐citric egg yolk or AndroMed® extender and cryopreserved in 0.5 ml French straws. After thawing, per cent post‐thaw motility (47.9 ± 0.8, 49.2 ± 1.7), plasma membrane integrity (44.4 ± 1.2, 46.8 ± 1.8) and normal apical ridge (81.4 ± 0.3, 83.2 ± 0.3) were recorded similar (p > .05) in tris‐citric egg yolk and AndroMed® extender. Higher (p < .05) percentage of sperm livability (70.5 ± 1.4 and 64.4 ± 1.0), viability (67.5 ± 1.5 and 61.5 ± 0.6) and DNA integrity (97.0 ± 0.3 and 93.4 ± 0.21) were recorded in AndroMed® compared to tris‐citric egg yolk post‐thaw. Values for all the aforementioned spermatozoal quality parameters were observed lower (p < .05) in frozen‐thawed compared to fresh semen irrespective of the experimental extenders. Fertility rates of buffalo semen did not differ (p > .05) either cryopreserved in tris‐citric egg yolk or AndroMed® extender (45.5% vs. 49%). It is concluded that AndroMed® is capable in protecting the buffalo bull sperm during freeze‐thawing process and can be adopted safely for routine use replacing the tris‐citric egg yolk extender in artificial insemination programme.  相似文献   

12.
Successful sex‐sorting of goat spermatozoa and subsequent birth of pre‐sexed kids have yet to be reported. As such, a series of experiments were conducted to develop protocols for sperm‐sorting (using a modified flow cytometer, MoFlo SX®) and cryopreservation of goat spermatozoa. Saanen goat spermatozoa (n = 2 males) were (i) collected into Salamon's or Tris catch media post‐sorting and (ii) frozen in Tris–citrate–glucose media supplemented with 5, 10 or 20% egg yolk in (iii) 0.25 ml pellets on dry ice or 0.25 ml straws in a controlled‐rate freezer. Post‐sort and post‐thaw sperm quality were assessed by motility (CASA), viability and acrosome integrity (PI/FITC‐PNA). Sex‐sorted goat spermatozoa frozen in pellets displayed significantly higher post‐thaw motility and viability than spermatozoa frozen in straws. Catch media and differing egg yolk concentration had no effect on the sperm parameters tested. The in vitro and in vivo fertility of sex‐sorted goat spermatozoa produced with this optimum protocol were then tested by means of a heterologous ova binding assay and intrauterine artificial insemination of Saanen goat does, respectively. Sex‐sorted goat spermatozoa bound to sheep ova zona pellucidae in similar numbers (p > 0.05) to non‐sorted goat spermatozoa, non‐sorted ram spermatozoa and sex‐sorted ram spermatozoa. Following intrauterine artificial insemination with sex‐sorted spermatozoa, 38% (5/13) of does kidded with 83% (3/5) of kids being of the expected sex. Does inseminated with non‐sorted spermatozoa achieved a 50% (3/6) kidding rate and a sex ratio of 3 : 1 (F : M). This study demonstrates for the first time that goat spermatozoa can be sex‐sorted by flow cytometry, successfully frozen and used to produce pre‐sexed kids.  相似文献   

13.
Egg yolk (EY) and glycerol are common constituents of extenders used for sperm cryopreservation. It has been demonstrated that using cholesterol-loaded cyclodextrins (CLC) improves sperm cryosurvival in several species. However, standard freezing extenders might not be the most appropriate for CLC-treated sperm. This study evaluated the EY and glycerol requirements for freezing CLC-treated boar spermatozoa. Semen samples from 34 ejaculates coming from 4 boars were used. Each ejaculate was split into three aliquots: one was used untreated (control), and the other two were treated with 1 mg of CLC or methyl-β-cyclodextrin/120 × 106 sperm for 15 min at 22 C prior to cryopreservation. Our results indicated that reducing the concentration of EY was detrimental for sperm viability after thawing (31.57 ± 2 vs. 19.89% ± 2 for 20 and 10% EY, respectively; P <0.05), even in semen treated with CLC. On the other hand, it was observed that the traditional concentration of glycerol (3%) was not the appropriate for freezing CLC-treated sperm (61.10 ± 3 vs. 47.87% ± 3 viable sperm for control and CLC-treated sperm, respectively; P <0.05). Thus, CLC-treated sperm showed a higher tolerance to high glycerol concentrations (5%) in terms of sperm viability (59.19% ± 3) than non-treated sperm (45.58% ± 3; P<0.05). Therefore, it could be necessary to modify the freezing extenders for CLC-treated sperm. Nevertheless, additional studies will be needed to evaluate alternative cryoprotectants and to determine the effect of high glycerol concentrations on sperm functionality.  相似文献   

14.
Extending the shelf life of chilled rabbit spermatozoa is vital for the expansion of the farmed rabbit industry. This study evaluated the relationship between sperm concentration and packaging on in vitro quality of chilled rabbit semen over 96 h. Semen was collected from adult bucks (n = 4) and pooled at 37°C following evaluation. Pooled ejaculates were diluted with a Tris‐based extender supplemented with 100 μm quercetin to a concentration of 15, 30 or 60 × 106 spermatozoa/ml, packaged into plastic tubes or 0.5‐ml straws and stored at 15°C. Sperm quality was assessed by computer‐assisted sperm Analysis [total motility (tMOT)] and flow cytometry [viability, acrosome integrity, H2O2 production, plasma membrane disorder, apoptosis and DNA fragmentation index (DFI)] at 0, 48, 72 and 96 h. From 48 h, concentrations of 30 and 60 × 106 spermatozoa/ml reported the highest tMOT, irrespective of storage vessel (p < 0.05). Storage in straws reduced oxidative stress and improved plasma membrane stability. The %DFI, mean DFI and SD‐DFI were increased in spermatozoa stored in tubes compared with straws (p < 0.05). Although the use of low sperm concentrations in artificial insemination doses would facilitate greater dispersion of genetically superior rabbit bucks, dilution to 15 × 106 spermatozoa/ml had a detrimental impact on motility. As such, chilled storage at 30 × 106 spermatozoa/ml may provide a suitable balance between motility and H2O2 production to best maintain overall sperm function and should be evaluated in a large‐scale AI trial.  相似文献   

15.
This study assessed the influence of three different anaesthetic protocols on semen quality obtained from the epididymis. Sixty male dogs undergoing to routine sterilization were assigned to three anaesthetic protocols: thiopental group (TG, n = 20), propofol group (PG, n = 20) and ketamine–dexmedetomidine group (KDG, n = 20). Immediately after orchidectomy, the cauda epididymides and vas deferent ducts were isolated and then a retrograde flushing was performed to collect spermatozoa. In experiment 1, after the initial evaluation of the semen (sperm concentration, sperm motility and the percentages of live spermatozoa, abnormal spermatozoa and acrosome membrane integrity), semen samples were diluted in Tris‐glucose‐egg yolk extender and chilled for 48 hr, and the sperm motility was assessed at 6, 24 and 48 hr. In experiment 2, semen samples were diluted in Tris‐glucose‐egg yolk extender and chilled for 24 hr, and then samples were frozen in two extenders with different glycerol concentrations, to reach a final concentration of 50–100 × 106 spermatozoa ml?1, 20% egg yolk, 0.5% Equex and 4% and 5% glycerol, respectively. Mean values of total sperm concentration, sperm viability and the percentages of intact acrosome and abnormal spermatozoa were not significantly different between experimental groups, and therefore, the anaesthetic protocols assessed did not affect sperm parameters mentioned above. However, our study confirmed a detrimental effect of the use of thiopental (TG) over the total sperm motility (p < 0.05) and progressive sperm motility (p < 0.05) of the fresh and chilled epididymal sperm samples. The anaesthetic protocols including the application of propofol or ketamine–dexmedetomidine can be used to recover sperm in domestic canids without significant changes in sperm quality compared when semen is collected routinely and these techniques could be applicable to endangered wild canids.  相似文献   

16.
Effects of Equex and glycerol additions and sample dilution step on frozen–thawed epididymal cat spermatozoa were investigated. The epididymal sperm pellets were resuspended in extenders using one‐ (groups III and IV) or two‐ (groups I, II, V and VI) step dilution. For one‐step dilution, the pellets were resuspended in plain egg yolk‐Tris medium (EYT) + 5% glycerol with (IV)/without (III) 0.5% Equex and cooled (4°C, 1 h). For two‐step dilution, the pellets were resuspended in EYT (I and V) and in EYT + 3% glycerol (II and VI), cooled and further diluted with EYT + 10% glycerol with (I)/without (V) 1% Equex and with EYT + 7% glycerol with (II)/without (VI) 1% Equex. Immediately after freeze–thawing, no differences (p > 0.05) were found in the motility, viability and membrane integrity (HOST) among the groups except the lowest HOST in IV (p = 0.005 to p = 0.04). The acrosome integrity (FITC) in group I was comparable to that in group II (p > 0.05) and was higher than the rest (p < 0.001 to p = 0.02). At 2 h after thawing, the motility, viability and HOST were comparable among the groups (p > 0.05) except the lower percentages of viability in III (p = 0.008 to p = 0.3) and of HOST in IV (p = 0.005 to p = 0.2). Two‐step dilutions with Equex (I, II) were more beneficial for the FITC at 2 h than without Equex (V) (p = 0.005 and p = 0.02) and than one‐step dilutions (III, IV) (p < 0.001 to p = 0.02). In conclusion, epididymal cat sperm quality after freeze–thawing could be improved when Equex was added and two‐step dilution was performed during freezing. The extenders prepared for the first step of dilution could be with (3%) or without (0%) glycerol.  相似文献   

17.
Cryopreservation of epididymal spermatozoa is often performed after shipping the excised testis–epididymis complexes, under refrigeration, to a specialized laboratory. However, epididymal spermatozoa can be collected immediately after excision of the epididymis and sent extended and refrigerated to a laboratory for cryopreservation. In this experiment, we evaluated the effect of both methods of cold storage bovine epididymal spermatozoa as well as of two different extenders on spermatozoa characteristics after freeze–thawing. For that, spermatozoa collected from the caudae epididymis of 19 bulls were extended and cryopreserved in either AndroMed® or a Tris–egg yolk (TEY)‐based extender. Cryopreservation of sperm cells was performed immediately after castration (Group A, n = 9) or after cold storage for 24 h diluted in the two extenders and (Group B, n = 9) and also after cold storage for 24 h within the whole epididymis (Group C, n = 10). Sperm subjective progressive motility (light microscopy), plasma membrane integrity (hypoosmotic swelling test) and sperm viability (eosin–nigrosin) were evaluated. In vitro fertilization and culture (IVF) was performed to assess the blastocyst rate. No differences (p > 0.05) were observed on post‐thaw sperm parameters between samples from Group A, B and C. TEY extended samples presented a higher (p < 0.01) percentage of progressive motile and live sperm, than those extended in AndroMed®. Blastocyst rate after IVF differed only (p < 0.05) between the reference group (IVF performed with frozen semen with known in vitro fertility) and Group A extended in AndroMed®. We conclude that when cryopreservation facilities are distant from the collection site, bovine epididymal sperm can be shipped chilled overnight either within the epididymal tail or after dilution without deleterious effect on post‐thaw sperm quality. TEY extender was more suitable for cold storage and freezing bovine epididymal sperm, than the commercial extender AndroMed®.  相似文献   

18.
The Cantabrian brown bear (Ursus arctos) constitutes an endangered subpopulation of the European brown bear in the north of Spain. We have carried out a post‐mortem recovery of epididymal spermatozoa from a Cantabrian brown bear (7 years old, 170 kg; 30 min post‐mortem), cryopreserving those recovered from the cauda epididymis (929 × 106 spermatozoa, 54% motile, 82% cytoplasmic droplets). For freezing, three extenders based on Test‐Tris‐Fructose + 4% glycerol were used: (1) 325 mOsm/kg and 10% egg yolk; (2) 430 mOsm/kg and 15% egg yolk; (3) 300 mOsm/kg, Equex‐EDTA and 20% egg yolk. After thawing, we obtained higher motility for extender 3 (31%), but extender 2 yielded the highest viability (66.9%) and mitochondrial activity (67.1%). Caffeine stimulation showed that extender two rendered the highest recovery values of post‐thawing motility with respect to the fresh sample. In conclusion, epididymal spermatozoa of brown bear can be frozen applying an extender with osmolality similar to epididymal environment.  相似文献   

19.
Artificial breeding of mithun poses several challenges including lack of standard protocol for cryopreservation of spermatozoa. This is further complicated by harmful effects of hen's egg yolk (EY) as additive in extender. Purified low‐density lipoproteins (LDL) extracted from EY have been shown as beneficial over EY extender for long‐term semen storage in several species. This investigation explored use of LDL versus EY on semen quality and oxidative stress following freezing–thawing of spermatozoa. A total of 25 of 50 ejaculates based on biophysical parameters were selected for the experiment. After diluting with the Tris‐citrate‐glycerol (TCG) extender, each sample was split into three equal aliquots: Group I, control, EY; Group II and Group III contained 8% and 10% purified LDL, respectively. Frozen–thawed samples were evaluated for motility parameters (progressive, and in the bovine cervical mucus penetration test [BCMPT]), viability, sperm and nuclear abnormality, acrosome integrity, and enzymatic (leakage of intracellular contents) and biochemical (oxidative stress) profiles and in vitro fertility (IVF) assay. Study revealed a significant (< .05) improvement in viability, sperm and nuclear abnormality, acrosome integrity, motility (progressive and in cervical mucus), cholesterol content, and reduction in the leakage of intracellular enzymes in Group II. Moreover, intactness of acrosome and biochemical membranes was protected significantly (p < .05) in addition to significant (p < .05) improvement in binding per cent and binding index in IVF assay in extender containing 8% LDL. These results demonstrate that although cryopreservation of mithun's spermatozoa in EY was comparable with other species, addition of 8% LDL holds a clear advantage over EY or 10% LDL.  相似文献   

20.
The purpose of the present study was to investigate the effects of a chemically defined soybean lecithin‐based semen extender as a substitute for egg yolk‐based extenders in ram semen cryopreservation. In this study, 28 ejaculates were collected from four Zandi rams in the breeding season and then pooled together. The pooled semen was divided into six equal aliquots and diluted with six different extenders: (i) Tris‐based extender (TE) containing 0.5% (w/v) soybean lecithin (SL0.5), (ii) TE containing 1% (w/v) soybean lecithin (SL1), (iii) TE containing 1.5% (w/v) soybean lecithin (SL1.5), (iv) TE containing 2% (w/v) soybean lecithin (SL2), (v) TE containing 2.5% (w/v) soybean lecithin (SL2.5) and (vi) TE containing 20% (v/v) egg yolk (EYT). After thawing, sperm motility and motion parameters, plasma membrane and acrosome integrity, apoptosis status and mitochondrial activity were evaluated. The results shown that total and progressive motility (54.43 ± 1.33% and 25.43 ± 0.96%, respectively) were significantly higher in SL1.5 when compared to other semen extenders. Sperm motion parameters (VAP, VSL, VCL, ALH and STR) were significantly higher in SL1.5 compared to other extender, with the exception of SL1 extender. Plasma membrane integrity (48.86 ± 1.38%) was significantly higher in SL1.5 when compared to other semen extenders. Also, percentage of spermatozoa with intact acrosome in SL1.5 (85.35 ± 2.19%) extender was significantly higher than that in SL0.5, SL2.5 and EYT extenders. The results showed that the proportion of live post‐thawed sperm was significantly increased in SL1.5 extender compared to SL0.5, SL2 and EYT extenders. In addition, SL1, SL1.5 and SL2.5 extenders resulted in significantly lower percentage of early‐apoptotic sperm than that in EYT extender. There were no significant differences in different semen extenders for percentage of post‐thawed necrotic and late‐apoptotic spermatozoa. Also, the results indicated that there are slight differences for percentage of live spermatozoa with active mitochondria between extenders. In conclusion, SL1.5 extender was better than other extenders in most in vitro evaluated sperm parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号