首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Identification and aroma impact of norisoprenoids in orange juice   总被引:1,自引:0,他引:1  
Four norisoprenoids, alpha-ionone, beta-ionone, beta-cyclocitral, and beta-damascenone, along with their putative carotenoid precursors, were identified in Valencia orange juice using time-intensity GC-O, GC-MS, and photodiode array HPLC. alpha-Ionone and beta-cyclocitral are reported in orange juice for the first time. GC-O aroma peaks were categorized into seven groups with similar sensory qualities: citrus/minty, metallic/mushroom/geranium, roasted/cooked/meaty/spice, fatty/soapy/green, sulfury/solventy/medicine, floral, and sweet fruity. The four norisoprenoids contributed approximately 8% of the total aroma intensity and 78% of the total floral aroma category. The putative carotenoid norisoprenoid precursors, alpha- and beta-carotene, alpha- and beta-cryptoxanthin, and neoxanthin, were identified in the same orange juice using photodiode array HPLC retention times and spectral characteristics.  相似文献   

2.
Cashew apple nectar is a secondary product from the production of cashew nuts and possesses an exotic tropical aroma. Aroma volatiles in pasteurized and reconstituted (from concentrate) Brazilian cashew apple nectars were determined using GC-MS and split, time-intensity GC-olfactometry (GC-O)/GC-FID. Methional, (Z)-1,5-octadien-3-one, (Z)-2-nonenal, (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal, beta-damascenone, and delta-decalactone were identified for the first time in cashew apple products. These compounds plus butyric acid, ethyl 3-methylbutyrate, 2-methylbutyric acid, acetic acid, benzaldehyde, homofuraneol, (E)-2-nonenal, gamma-dodecalactone, and an unknown were the most intense aroma volatiles. Thirty-six aroma volatiles were detected in the reconstituted sample and 41 in the pasteurized sample. Thirty-four aroma active components were common to both samples. Ethyl 3-methylbutyrate and 2-methylbutyric acid were character impact compounds of cashew apple (warm, fruity, tropical, sweaty). Using GC-pFPD, 2-methyl-3-furanthiol and bis(2-methyl-3-furyl) disulfide were identified for the first time in cashew apple. Both were aroma active (meaty).  相似文献   

3.
The purpose of this study was to understand why some canned orange juices are not perceived as orange juice. Sensory flavor profile data indicated that the primary odor (orthonasal) attributes were tropical fruit/grapefruit, cooked/caramel, musty, and medicine. By comparison fresh-squeezed juice lacked these odor attributes. GC-O analysis found 43 odor-active components in canned juices. Eight of these aroma volatiles were sulfur based. Four of the 12 most intense aroma peaks were sulfur compounds that included methanethiol, 1-p-menth-1-ene-8-thiol, 2-methyl-3-furanthiol, and dimethyl trisulfide. The other most intense odorants included 7-methyl-3-methylene-1,6-octadiene (myrcene), octanal, 2-methoxyphenol (guaiacol), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (homofuraneol), (E)-non-2-enal, (E,E)-deca-2,4-dienal, 4-hydroxy-3-methoxybenzaldehyde (vanillin), and alpha-sinensal. Odorants probably responsible for the undesirable sensory attributes included grapefruit (1-p-menth-1-ene-8-thiol), cooked [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), and 3-(methylthio)propanal (methional)], musty [7-methyl-3-methylene-1,6-octadiene and (E)-non-2-enal], and medicine (2-methoxyphenol). The canned juices also lacked several aldehydes and esters normally found in fresh orange juice.  相似文献   

4.
Forty-five volatile constituents of juices from grapefruit and grapefruit hybrids were quantified by headspace gas chromatography. The three types of grapefruit juice analyzed include pasteurized juice not from concentrate, reconstituted single strength juice from concentrate, and fresh, unpasteurized juice. Principal component and discriminant analyses were carried out using 48 grapefruit juice samples, and the samples were classified into the three types of juice based on degree of processing. Discriminant analysis was superior to principal component analysis for this purpose. Juices from two recently developed grapefruit hybrids were classified similarly to unpasteurized grapefruit juices from commercial cultivars.  相似文献   

5.
6.
Freshly squeezed orange juice aroma is due to a complex mixture of volatile compounds as it lacks a specific character impact compound. Fresh hand-extracted juice is unstable, and thermal processing is required to reduce enzyme and microbial activity. Heating protocols range from the lightly heated not from concentrate, NFC, to the twice heated, reconstituted from concentrate, RFC, juices. Thermal processing profoundly effects aroma composition. Aroma volatiles are further altered by subsequent time-temperature storage conditions. Heating reduces levels of reactive aroma impact compounds such as neral and geranial, and creates off-flavors or their precursors from Maillard, Strecker, and acid catalyzed hydration reactions. Off-flavors such as 4-vinylguaiacol, p-cymene, and carvone are the products of chemical reactions. Other off-flavors such as butane-2,3-dione, guaiacol, and 2,6-dichlorophenol are indicators of microbial contaminations. Since most orange juice consumed worldwide is processed, the goal of this review is to summarize the widely scattered reports on orange juice aroma differences in the three major juice products and subsequent aroma changes due to packaging, storage, and microbial contamination with special emphasis on results from GC-O studies.  相似文献   

7.
The aroma-active compounds of cv. Turkish Kozan orange wine were analyzed by sensory and instrumental analyses. Liquid-liquid extraction with dichloromethane was used for extraction of volatile components. According to sensory analysis, the aromatic extract obtained by liquid-liquid extraction was representative of orange wine odor. A total of 63 compounds were identified and quantified in orange wine. The results of the gas chromatography-olfactometry analysis showed that 35 odorous compounds were detected by the panelists. Of these, 28 aroma-active compounds were identified. Alcohols followed by terpenes and esters were the most abundant aroma-active compounds of the orange wine. Among these compounds, ethyl butanoate (fruity sweet), 3-methyl-1-pentanol (roasty), linalool (floral citrusy), gamma-butyrolactone (cheesy burnt sugar), 3-(methylthio)-propanol (boiled potato, rubber), geraniol (floral citrusy), and 2-phenylethanol (floral rose) were the most important contributors to the aroma of the orange wine because they were perceived by all eight panelists.  相似文献   

8.
Model orange juice solutions containing 0.024 mM thiamin hydrochloride were stored for up to 8 weeks at 35 degrees C in amber glass containers. Volatiles were evaluated, primarily, using gas chromatography (GC) with olfactometry but also with flame ionization detector, pulsed-flame photometer detector (PFPD) (sulfur specific), and MS detection. Both 2-methyl-3-furanthiol (MFT) and its dimer, bis(2-methyl-3-furyl) disulfide (MFT-MFT) were identified thus confirming that thiamin could serve as the precursor to these potent off-flavors in thermally degraded citrus juices. Thirteen aroma active components were observed. MFT and MFT-MFT were observed after only a few days storage, and produced 33% of the total aroma activity after 7 d storage. Both compounds were observed olfactometrically earlier than they could be detected using PFPD. Other aroma-active compounds included 4,5-dimethylthiazole (skunky, earthy), 3-thiophenethiol (meaty, cooked), 2-methyl-4,5-dihydro-3(2H)-thiophenone (sour-fruity, musty, green), 2-acethylthiophene (burnt), 2-formyl-5-methylthiophene (meaty), and 2-methyl-3-(methyldithio) furan (meaty).  相似文献   

9.
Twenty-five odor-active compounds were quantified in the fresh, hand-squeezed juice of White Marsh seedless grapefruits using stable isotope dilution assays. By calculation of the odor activity values of the odorants (ratio of their concentrations in the juice to their odor thresholds in water) it was shown that the fruity esters ethyl 2-methylpropanoate, ethyl butanoate, and (S)-ethyl 2-methylbutanoate, and the fruity, sweet winelactone, as well as the grassy smelling (Z)-hex-3-enal, and trans-4,5-epoxy-(E)-dec-2-enal with metallic odor, were among the most potent odorants of the fresh grapefruit juice. The typical sulfurous, grapefruit-like odor quality was mainly due to the catty, blackcurrant-like 4-mercapto-4-methylpentan-2-one and the grapefruit-like smelling 1-p-menthene-8-thiol. These findings were confirmed by reconstitution experiments to simulate the aroma of the fresh grapefruit juice.  相似文献   

10.
Carrots (Daucus carota L.) of cv. Bolero and cv. Carlo were processed into shreds and stored for up to 4 months at -24 degrees C (frozen storage), or the roots were stored for up to 4 months at 1 degrees C (refrigerated storage) followed by processing into shreds. Volatiles from the carrot shreds were collected by dynamic headspace technique and analyzed by GC-FID, GC-MS, GC-MS/MS, and GC-O to determine the volatile composition and aroma active components of carrots stored under different temperature conditions. A total of 52 compounds were quantified, of which mono- and sesquiterpenes accounted for approximately 99% of the total volatile mass. Major volatile compounds were (-)-alpha-pinene, beta-myrcene, (-)-limonene, (+)-limonene, (+)-sabinene, gamma-terpinene, p-cymene, terpinolene, beta-caryophyllene, alpha-humulene, and (E)- and (Z)-gamma-bisabolene. A considerable increase in the concentration of mono- and sesquiterpenes was observed during refrigerated storage, whereas the concentration of terpenoids was around the same level during frozen storage. GC-O revealed that the major volatiles together with (+)-alpha-pinene, (-)-beta-pinene, (+)-beta-pinene, 6-methyl-5-hepten-2-one, (-)-beta-bisabolene, beta-ionone, and myristicin had an odor sensation, which included notes of "carrot top", "terpene-like", "green", "earthy", "fruity", "citrus-like", "spicy", "woody", and "sweet".  相似文献   

11.
12.
Aroma-active compounds from a beeflike process flavor, produced by extrusion of enzyme-hydrolyzed vegetable protein (E-HVP), were analyzed using aroma extract dilution analysis. The number of aroma-active compounds and the aroma intensity were increased by the addition of aroma precursors prior to extrusion. The most intense compound was 2-methyl-3-furanthiol having a cooked rice/vitamin-like/meaty aroma note. Several sulfur-containing furans, such as 2-methyl-3-(methylthio)furan, 2-methyl-3-(methyldithio)furan, and bis(2-methylfuryl)disulfide, were detected with high flavor dilution (FD) factors. Some pyrazines, such as 2-ethyl-3,5-dimethylpyrazine, 2,6-diethylpyrazine, and 3,5-diethyl-2-methylpyrazine, also had high FD factors. It is hypothesized that sulfur-containing amino acids and thiamin were important precursors in aroma formation in process flavor from E-HVP.  相似文献   

13.
Three cultivars of snake fruits, Pondoh Hitam, Pondoh Super, and Gading, were freshly extracted using liquid-liquid extraction. The aroma compounds of the three samples were analyzed by GC-MS and GC-olfactometry using the nasal impact frequency (NIF) method. A total of 24 odor-active compounds were associated with the aroma of snake fruit. Methyl 3-methylpentanoate was regarded as the character impact odorant of typical snake fruit aroma. 2-Methylbutanoic acid, 3-methylpentanoic acid, and an unknown odorant with very high intensity were found to be responsible for the snake fruit's sweaty odor. Other odorants including methyl 3-methyl-2-butenoate (overripe fruity, ethereal), methyl 3-methyl-2-pentenoate (ethereal, strong green, woody), and 2,5-dimethyl-4-hydroxy-3[2]-furanone (caramel, sweet, cotton candy-like) contribute to the overall aroma of snake fruit. Methyl dihydrojasmonate and isoeugenol, which also have odor impact, were identified for the first time as snake fruit volatiles. The main differences between the aroma of Pondoh and Gading cultivars could be attributed to the olfactory attributes (metallic, chemical, rubbery, strong green, and woody), which were perceived by most of the panelists in the Pondoh samples but were not detected in the Gading samples. This work is a prerequisite for effective selection of salak genotypes with optimal aroma profiles for high consumer acceptance.  相似文献   

14.
Gas chromatography-mass spectrometry (GC-MS) and multidimensional gas chromatography olfactometry (GC/GC-O) were utilized to study the aroma profile and the aroma active components of commercial kiwi essence and the initial fresh fruit puree. Totals of 29 and 33 components were identified and quantified in the essence and the puree, respectively. Ten components were quantified for the first time as constituents of the kiwi fruit including 3-penten-2-ol, 3-hydroxy-2-butanone, 3-methyl-2-butenal, 2-hexanol, nonanal, 3-methyl-1-butanol, 2-methyl-1-butanol, 3-methyl-2-butanone, 3-methyl 3-buten-2-one, and octane. Analysis of these samples by multidimensional gas chromatography-olfactometry (GC-O) allowed for the identification of >80% of the aroma active components present at level traces in this fruit. A total of 35 components appear to contribute to the aroma of kiwi fresh puree and its aqueous essence. Components described for the first time as constituents of the aroma profile in this fruit were 2-ethylfuran, 3-methyl-1-butanol, 2-cyclohexen-1-one, (E,E)-2,6-nonadienal, diethyl succinate, and hexyl hexanoate.  相似文献   

15.
The influence of isolation method on the determination of important aroma compounds in black currant juice was investigated by surface of nasal impact frequency (SNIF) gas chromatography-olfactometry (GC-O). The applied methods were solvent extraction, static headspace, and purge and trap using 15 and 60 min of purge time. By the four methods, a total of 59 odors were observed, and, of these, 44 corresponded to compounds that could be identified. For the headspace methods increasing purge volumes resulted in recoveries of additional, less volatile compounds. The main compound groups recovered by the headspace methods were esters and terpenes, whereas compounds recovered by solvent extraction were not as dominated by fruity odors. For most compounds there was agreement between the size of the SNIF value obtained by GC-O and the amount of the measurable compound found by gas chromatography-mass spectrometry.  相似文献   

16.
Two kinds of pan-fired green teas (Japanese Kamairi-cha and Chinese Longing tea) were compared with the common Japanese green tea (Sen-cha). Application of the aroma extract dilution analysis (AEDA) using the volatile fraction of the Sen-cha, Kamairi-cha and Longing tea infusions revealed 32, 51, and 52 odor-active peaks with flavor dilution factors between 16 and 1024, respectively. (Z)-1,5-Octadien-3-one (metallic, geranium-like), 4-mercapto-4-methyl-2-pentanone (meaty, black currant-like), methional (potato-like), (E,Z)-2,6-nonadienal (cucumber-like), and 3-methylnonane-2,4-dione (green, fruity, hay-like) showed high flavor dilution factors in all varieties. In addition, 2-acetyl-1-pyrroline (popcorn-like), 2-ethyl-3,5-dimethylpyrazine (nutty), 2,3-diethyl-5-methylpyrazine (nutty), and 2-acetyl-2-thiazoline (popcorn-like) belonged to the most potent odorants only in the pan-fired green teas. Among these odorants, 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline were identified for the first time among the tea volatiles.  相似文献   

17.
18.
Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) were used to determine the aromatic composition and aroma active components of commercial banana essence and fresh banana fruit paste. Totals of 43 and 26 compounds were quantified in commercial banana essence and fresh banana fruit paste, respectively. Five new components in commercial banana essence were identified as methyl butyrate, 2,3-butanediol diacetate, 2-hydroxy-3-methylethylbutyrate, 1-methylbutyl isobutyrate, and ethyl 3-hydroxyhexanoate. A total of 42 components appear to contribute to the aromatic profile in banana. Isoamyl acetate, 2-pentanol acetate, 2-methyl-1-propanol, 3-methyl-1-butanol, 3-methylbutanal, acetal, isobutyl acetate, hexanal, ethyl butyrate, 2-heptanol, and butyl butyrate had high concentrations and were most detected by GC-O panelists in the commercial banana essence. Volatile components found only in fresh banana fruit paste that were detected by aroma panelists include E-2-hexenal, limonene, and eugenol.  相似文献   

19.
Cloudy apple juice has been found to develop off-flavors during storage in daylight. The development of off-flavors and volatile compounds was monitored in reconstituted juice prepared from 'Golden Delicious' and 'Fuji' apple concentrates stored in glass bottles under fluorescent light (3000 lx, 8 degrees C). A strong metallic off-flavor was formed by photooxidation. A major contributor to the off-flavor was identified as 1-octen-3-one by gas chromatography-olfactometry. In addition, six volatile compounds, pentanal, 2-methyl-1-penten-3-one, hexanal, (E)-2-heptenal, 6-methyl-5-hepten-2-one, and (E)-2-octenal, increased significantly after light exposure and could contribute to the off-flavor. Except for pentanal and hexanal, these volatiles were found only after light exposure. Higher levels of volatiles were observed in juice from 'Golden Delicious' apples than in juice from 'Fuji' apples, and this difference was consistent with higher levels of suspended solids. When the suspended solids were removed by centrifugation, the development of volatiles on exposure to light was reduced significantly.  相似文献   

20.
The representativeness of the odor of mussel extract was assessed after each step of the distillation-extraction-concentration process. Results showed that the whole process was convenient for cooked mussels, but the extract was representative only when it was reincorporated into a suitable matrix such as water. Sensory and gas chromatography-olfactometry (GC-O) analyses were then performed on representative extracts of wild and bouchot mussels. Most of the sensory attributes were related to odors detected during olfactometry. Methional and (Z)-4-heptenal were two of the most potent odorants of mussels and, thus, were identified as the major contributors to the characteristic boiled potato-like odor of cooked mussels distinguished during sensory analysis. The sulfury note, highlighted for wild mussels during sensory analysis, could be linked to dimethyl disulfide, which was significantly more perceived in wild mussels by GC-O. Dimethyl disulfide could then be considered to be a characteristic compound of wild mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号