首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.  相似文献   

2.
Jute fabric reinforced polypropylene composites were fabricated by compression molding technique. Fiber content in the composites was optimized at 45 % by weight of fiber by evaluating the mechanical parameters such as tensile strength, tensile modulus, bending strength, bending modulus. Surface treatment of jute fabrics was carried out by mercerizing jute fabrics with aqueous solutions of NaOH (5, 10 and 20 %) at different soaking times (30, 60 and 90 mins) and temperatures (0, 30 and 70 °C). The effect of mercerization on weight and dimension of jute fabrics was studied. Mechanical properties of mercerized jute-PP composites were measured and found highest at 20 % NaOH at 0 °C for 60 min soaking time. Thermal analytical data from thermogravimetric and differential thermal analysis showed that mercerized jute-PP composite achieved higher thermal stability compared to PP, jute fabrics and control composite. Degradation characteristics of the composites were studied in soil, water and simulated weathering conditions. Water uptake of the composites was also investigated.  相似文献   

3.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

4.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

5.
The mechanical and thermal behavior of compression molded jute/polypropylene (PP) composites were studied by evaluating tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM), impact strength (IS), thermogravimetric (TG/DTG) and differential thermal analysis (DTA). A chemical modification was made to jute fabrics using N,N-Dimethylaniline (DMA) in order to improve the interfacial adhesion between the fabrics and matrix. It was found that jute fabrics on treatment with N,N-Dimethylaniline (DMA) significantly improved the mechanical properties of the composites. Thermal analytical data of PP, both treated and untreated jute fabrics as well as composites revealed that DMA treatment increased the thermal stability of the fabrics and composite. DMA treatment also reduced the hydrophilic nature of the composite. DMA treated jute composite was found less degradable than control composite under water, soil and simulated weathering conditions.  相似文献   

6.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

7.
The work focuses on the influencing effect of fiber surface treatment by BP towards mechanical properties of BSF reinforced PLA composites. BSF were treated by BP to improve the adhesion between fibres and matrix. BSF (30 wt %) reinforced PLA (70 wt %) hybrid composites were fabricated by means of twin screw extrusion followed by injection molding process. Tensile strength, flexural strength and modulus were tested by means of UTM. The morphological analysis of the untreated and treated BSF reinforced PLA composites in comparison with virgin PLA was carried out by SEM to examine the existence of interfacial adhesion between BSF and PLA. The resultant data reveals that treated BSF restricts the motion of the PLA matrix due to better wettability and bonding. Consequently, mechanical properties like tensile and flexural moduli of BSF reinforced PLA composites were enhanced in comparison to virgin PLA and untreated BSF reinforced PLA composites. The results are discussed in detail.  相似文献   

8.
The aim of this study is to develop new pattern denim fabrics and characterize the mechanical properties of these fabrics after abrasion load. Furthermore, tensile and tear strengths of these fabrics have been analysed by using the Artificial Neural Network (ANN) and statistical model. All denim fabrics were first abraded and subsequently tensile and tearing tests were applied to the abraided fabrics seperately. Actual data generated from the tests were analyzed by ANN and regression model. The regression model has shown that tensile strength properties of the abraded large structural pattern denim fabrics are generally low compared to that of the small structural pattern and traditional denim fabrics. On the other hand, when the abrasion cycles are increased tensile properties of all denim fabrics are generally decreased. Tearing strength of weft and warp in the abraded large structural pattern denim fabrics are between small structural pattern and traditional denim fabric. On the other hand, when the abrasion cycles are increased tearing strength properties in the weft and warp for all denim fabrics are generally decreased. The results from ANN and regression models were also compared with the measured values. It is concluded that almost all values from ANN are accurately predicted compared with those of the regression model. Therefore, we suggest that both methods can be used in this study as viable and reliable tools.  相似文献   

9.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

10.
Present research investigates the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite with fiber loading variation and observes the effect of chemical treatment of fiber on property enhancement of the composites. Composites were manufactured using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt%). Fiber ratio’s were varied (jute:coir=1:1, 3:1 and 1:3) for 20 % fiber loaded composites. Both jute and coir fiber was treated using 5 % and 10 % NaOH solutions. Composites were also prepared using treated fiber with jute-coir fiber ratio of 3:1. Tensile, flexural, impact and hardness tests and Fourier transform infrared spectroscopic analysis were conducted for characterization of the composites. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young’s modulus with increase in fiber loading. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness values were found to be increased with increase in fiber loading. All these properties enhanced with the enhancement of jute content except impact strength. 5 % NaOH treatment provided an improving trend of properties whereas, 10 % NaOH treatment showed the reverse one. The FTIR analysis of the composites indicated decrease of hemicelluloses and lignin content with alkali treatment.  相似文献   

11.
This work aims to predict the mechanical properties of woven jute/banana hybrid composite. Woven fabrics are arranged in three layers of different sequence. Resin used in this work is Epoxy LY556 with hardener HY951. Composite specimen are prepared by hand-layup techniques. The effect of layering sequence on the mechanical properties namely tensile, flexural and impact was analysed. It is found that the tensile and flexural strength of hybrid composite (Banana/Jute/Banana) is higher than that of individual composites. Similarly, the impact strength of Jute/Banana/Jute hybrid composite is better than other types of composite. It is found that the moisture absorption of woven banana fiber composite is lesser than the hybrid composite. Fractography study of the fractured specimen is carried out using scanning electron microscope to analyse the fracture behaviour of the hybrid composite.  相似文献   

12.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

13.
Mechanical properties of chopped carbon fiber (CF) reinforced PC/ABS composites were investigated. Tensile strength and elastic modulus of the composites were enhanced with increasing CF contents. On the contrary, impact strength of the composite was decreased with increasing CF fraction. Film insert molding was introduced in order to improve impact strength. Film insert molded composite specimens have higher impact strength than conventional injection molded composite specimens because inserted film acted as a cushion to absorb the impact energy. Large warpage which was observed after molding and known as a disadvantage of the film insert molded part can be prevented by controlling the amount of filled CFs. Therefore, fiber reinforcement and film insert molding can be applied simultaneously to reduce warpage of the film insert molded part and enhance impact strength of the CF reinforced composite.  相似文献   

14.
Green composites from Pattawia pineapple leaf fiber (PALF) and poly(lactic acid) (PLA) were prepared. The mechanical method was chosen to extract PALF from fresh leaves due to this method gave high yield of fiber, short extraction time, and environmental friendly. Tensile and thermal properties, together with morphology of the fibers were disclosed. The fibers were conducted into a specified length of 1–3 mm and blended with PLA, using a twin screw extruder, with the PALF content of 10–50 wt%. Tensile testing, morphology investigation and thermogravimetric analysis were applied. Preliminary results showed that tensile modulus of the composites depended on PALF content. The tensile modulus and elongation at break of the composite containing 40 % PALF was about 48 %, and 111 % increase, respectively, compared with that of PLA. With addition of maleic anhydride coupling agent, such the composite showed the tensile modulus of 5.1 GPa, which was 34 % higher than that of the non-coupling agent composite, and about 104 % higher than that of PLA. Although the elongation at break of the composite containing 40 % PALF was found to dramatically increase by 111 %, the introduction of maleic anhydride in such the composite caused only 57 % increase in the elongation at break compared with that of PLA. Finally, a pilot product of square boxes was produced successfully from the proposed composite, by conventional injection molding process.  相似文献   

15.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

16.
Optimized palm press fiber composites of poly(?-caprolactone)/poly(lactic acid) were produced and their mechanical and thermal properties were studied. The composites were melt blended using twin screw extruder and test specimens were produced by injection molding. The composites mechanical and thermal performances were tested using standard methods. The incorporation of dicumyl peroxide as compatibilizer significantly increased the tensile strength, flexural modulus and impact strength of the composites as compared to the uncompatibilized composites. Crystallization temperature of the composites initially increased after which it dropped as fiber load increased. The composites melting point and percentage crystallinity slightly decreased as fiber load increased.  相似文献   

17.
3D woven composites provide efficient delamination suppression, enhanced damage tolerance, superior impact, ballistic and blast performance characteristics over 2D fabric laminates. At the same time, this type of composites, having practically straight in-plane fibers, show significantly better in-plane stiffness and strength properties than respective properties of conventional composites. But, how the in-plane elastic and strength characteristics of this type of fabrics compare with respective in-plane properties of equivalent 2D woven fabrics. This paper presents a comprehensive experimental study of the comparison of in-plane tensile, bending, crimp interchange properties of UD, 2D, 3D orthogonal, 3D angle-interlock and 3D warp interlock multi-layer structures woven from E-glass tow. The results depict that the 3D woven fabrics have considerably superior mechanical properties with much lesser crimp compared to 2D fabrics.  相似文献   

18.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

19.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

20.
The aim of this paper is to study the effect of fibre content on mechanical and morphological properties and thermal stability of roselle fibres (RFs) reinforced polyurethane (TPU) composites. The RF/TPU composites were prepared at difference fibre contents; 10, 20, 30, 40 and 50 wt% by melt mixed mixer and hot press at 170 °C. Mechanical (tensile, flexural and impact strength) and Thermogravimetric analysis (TGA) properties of RF/TPU composites were measured according to ASTM standard. Obtained results indicated that effect of fibre contents display improved tensile and flexural and impact strength properties. RF/TPU composites show the best mechanical and thermal properties at 40 wt% roselle fibre content. Scanning electron microscopy (SEM) micrograph of fractured tensile sample of the roselle composite revealed good fibre/matrix bonding. TGA showed that RF/TPU with difference fibre contents had improved thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号