首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

2.
Optimal management of Korean pine plantations in multifunctional forestry   总被引:1,自引:0,他引:1  
Korean pine is one of the most important plantation species in northeast China.Besides timber,it produces edible nuts and plantations sequester carbon dioxide from the atmosphere.This study optimized the management of Korean pine plantations for timber production,seed production,carbon sequestration and for the joint production of multiple benefits.As the first step,models were developed for stand dynamics and seed production.These models were used in a simulation–optimization system to find optimal timing and type of thinning treatments and optimal rotation lengths.It was found that three thinnings during the rotation period were optimal.When the amount or profitability of timber production is maximized,suitable rotation lengths are 65–70 years and wood production is 5.5–6.0 m~3 ha~(-1) a~(-1).The optimal thinning regime is thinning from above.In seed production,optimal rotation lengths are over 100 years.When carbon sequestration in living biomass is maximized,stands should not be clear-cut until trees start to die due to senescence.In the joint production of multiple benefits,the optimal rotation length is 86 years if all benefits(wood,economic profits,seed,carbon sequestration) are equally important.In this management schedule,mean annual wood production is 5.5 m~2 ha~(-1) and mean annual seed yield 141 kg ha~(-1).It was concluded that it is better to produce timber and seeds in the same stands rather than assign stands to either timber production or seed production.  相似文献   

3.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

4.
In the Sustainable Forest Management, deadwood is a fundamental substrate for numerous species, and a key factor in carbon and nutrient cycles. The main aim of the paper is to estimate the amount of deadwood in two Calabrian pine forests (Monte Morello in Italy; Xanthi in Greece) characterized by different stand conditions and management practices. The second aim is to compare two different sampling methods to estimate the volume of lying deadwood: the fixed-area sampling (FAS) method and the line intersect sampling (LIS) method. The results show that the Monte Morello peri-urban forest is characterized by a high quantity of deadwood (75.1 m3 ha?1) divided in 80% of lying deadwood, 18% of standing dead trees, and 2% of stumps. The Xanthi peri-urban forest is characterized by a total amount of deadwood of 9.21 m3 ha?1 divided in 34% of lying deadwood, 18% of standing dead trees and 48% of stumps. The mean volume of lying deadwood in Monte Morello estimated using the FAS is 59.91 m3 ha?1, while using the LIS the mean volume is 64.9 m3 ha?1. In the Xanthi, the mean volume of lying deadwood is 3.11 m3 ha?1 using FAS and 5.49 m3 ha?1 using LIS.  相似文献   

5.
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

6.
Free-range pig production is typically associated with high risks of nitrogen (N) leaching due to the pigs excretory behaviour creating nitrogen ‘hotspots’ and rooting behaviour destroying the grass sward. This challenge is reinforced at high animal densities causing high nitrogen deposition. A combined production of pigs and perennial energy crops was hypothesized to benefit the environment because crops like miscanthus (Miscanthus), willow (Salix) and poplar (Populus) may persist despite pig rooting, take up nutrients and thereby minimise N-losses. Thus, the aim was to assess the risk of nitrate leaching by investigating the distribution of soil mineral N as influenced by stocking density in a system with zones of perennial energy crops and grass. For each of two seasons 36 growing pigs with an initial mean live weight of 55 kg (spring) and 48 kg (autumn), respectively, were separated into 6 paddocks of two stocking densities (117 and 367 m2 pig?1), respectively. Soil mineral N was measured in 0–25 and 25–75 cm depth at three occasions. N balances showed that N inputs exceeded N outputs by 626 and 185 kg N ha?1 for high and low stocking density. The pigs caused an uneven distribution of mineral N across the paddocks with highest contents in zones with willow & poplar. Stocking density had a significant effect on soil mineral N. Immediately after the second batch of pigs, average mineral N in the 0–75 cm soil layer was on average 227 and 83 kg N ha?1 at high and low stocking density, respectively. During winter period with no pigs, soil mineral N content in the 0–75 cm soil layer was reduced by almost 100 kg N ha?1 in paddocks with high stocking density against only 4 kg in paddocks with low stocking density. It is concluded that risk of elevated nitrate leaching compared to other cropping systems was low at the low stocking density, which therefore represents a promising pathway for a combined production of energy crops and free-range pigs.  相似文献   

7.
Forest management strongly influences the interactions between ungulates and their food resources. Different ungulate-adapted measures have been proposed in forestry to improve forage availability or to reduce browsing damage. However, the potential and feasibility of such measures are inadequately known. We studied the effects of harvest timing and slash treatment in final felling and commercial thinning on the availability of Scots pine Pinus sylvestris forage and its use by ungulates during winter in the Swedish boreal forests. Pellet group counts showed that moose (Alces alces) was the dominating species using the post-harvest stands. Under conventional slash treatment, final felling stands held on average 226 kg pine forage ha?1 after harvesting and commercial thinning stands 137 kg ha?1. Ungulate-adapted slash treatment increased the available forage biomass by 20 %, but had no significant effect on consumption of forage by ungulates. Time since harvest had the strongest effect on forage consumption; for example, under conventional slash treatment, there was a tenfold increase in consumption (3 vs. 33 kg ha?1) following final felling as exposure time increased from 2–3 to 4–5 months. Consumption was higher in thinned stands than in final felling stands for the first 3 months but not later. To increase ungulate use of the forage made available at harvest, pine-dominated stands should be harvested in the late autumn or early in the winter.  相似文献   

8.
Abstract

The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

9.
Some land-use systems in Saskatchewan, Canada include the nitrogen-fixing trees buffaloberry (Shepherdia argentea Nutt.), caragana (Caragana arborescens Lam.) and sea buckthorn (Hippophae rhamnoides L.). These species provide various ecological functions such as ameliorating soil moisture, light and temperature but little work has been done quantifying biological nitrogen fixation by these species. Greenhouse experiments were conducted to quantify N2-fixation using the 15N natural abundance and the 15N dilution methods. Buffaloberry failed to form nodules in all but one of the four replicates in the natural abundance experiment. Using the 15N dilution method, the percentage of N derived from atmosphere (%Ndfa) in the shoot of buffaloberry averaged 64 %. For caragana, the mean  %Ndfa was 59 and 65 % and seabuckthorn was 70 and 73 % measured using the natural abundance and dilution methods, respectively. Because of large variability in biomass production between plants grown in the natural abundance experiment and the dilution experiment, the amounts of N2 fixed also were very variable. Buffaloberry fixed an average of 0.89 g N m?2; the average for caragana ranged from 1.14 to 4.12 g N m?2 and seabuckthorn ranged from 0.85 to 3.77 g N m?2 in the natural abundance and dilution experiments, respectively. This corresponds to 16 kg N ha?1 year?1 for buffaloberry; an average of 15–73 kg N ha?1 year?1 in caragana and 11–67 kg N ha?1 year?1 in seabuckthorn. The substantial amounts of N2 fixed by these species indicate that they have the potential to contribute to the overall N balance in land-use systems in which they are included.  相似文献   

10.
Afforestation and ecological restoration have often been carried out with fast-growing exotic tree species because of their high apparent growth and yield. Moreover, fast-growing forest plantations have become an important component of mitigation measures to offset greenhouse gas emissions. However, information on the long-term performance of exotic and fast-growing species is often lacking especially with respect to their vulnerability to disturbance compared to native species. We compared carbon (C) storage and C accumulation rates in vegetation (above- and belowground) and soil in 21-year-old exotic slash pine (Pinus elliottii Engelm.) and native Masson pine (Pinus massoniana Lamb.) plantations, as well as their responses to a severe ice storm in 2008. Our results showed that mean C storage was 116.77 ± 7.49 t C ha?1 in slash pine plantation and 117.89 ± 8.27 t C ha?1 in Masson pine plantation. The aboveground C increased at a rate of 2.18 t C ha?1 year?1 in Masson pine and 2.23 t C ha?1 year?1 in slash pine plantation, and there was no significant difference in C storage accumulation between the two plantation types. However, we observed significant differences in ice storm damage with nearly 7.5 % of aboveground biomass loss in slash pine plantation compared with only 0.3 % loss in Masson pine plantation. Our findings indicated that the native pine species was more resistant to ice storm because of their adaptive biological traits (tree shape, crown structure, and leaf surface area). Overall, the native pine species might be a safer choice for both afforestation and ecological restoration in our study region.  相似文献   

11.
Afforestation of degraded croplands by planting N2-fixing trees in arid regions is highly recognized. However, fixation of atmospheric nitrogen gas (N2) by woody perennials is often limited on phosphorus (P) poor soils, while any factor limiting N nutrition inhibits tree growth. In a two-factorial field experiment, the effect of three P amendments was examined during 2006–2008 on N2 fixation, biomass production, and foliage feed quality of actinorhizal Elaeagnus angustifolia L. and leguminous Robinia pseudoacacia L. With the 15N natural abundance method, N2 fixation was quantified based on foliar and whole-tree sampling against three non-N2-fixing reference species: Gleditsia triacanthos L., Populus euphratica Oliv., and Ulmus pumila L. The P applications, in March 2006 and April 2007 only, included (i) high-P (90 kg P ha?1), (ii) low-P (45 kg P ha?1), and (iii) 0-P. After 3 years, the average proportion of N derived from atmosphere (Ndfa, %) increased from 78 % with 0-P to 87 % with high P when confounded over both N2-fixing species. With the used density of 5,714 trees ha?1, the total amount of N2 fixed (Ndfa, kg N ha?1) with high-P increased from 64 kg N ha?1 (year 1) to 807 kg N ha?1 (year 3) in E. angustifolia and from 9 kg N ha?1 (year 1) to 155 kg N ha?1 (year 3) in R. pseudoacacia. Total above-ground biomass increases were too variable to be significant. Leaf N content and therewith also leaf crude protein content, which is an indicator for feed quality, increased significantly (24 %) with high-P when compared to 0-P for E. angustifolia. Overall findings indicated the suitability of the two N2-fixing species for afforestating salt-affected croplands, low in soil P. With P-applications as low as 90 kg P ha?1, the production potential of E. angustifolia and R. pseudoacacia, including the supply of protein-rich feed, could be increased on salt-affected croplands.  相似文献   

12.
Carbon stock estimation was conducted in tree species of Sem Mukhem sacred forest in district Tehri of Garhwal Himalaya, Uttarakhand, India. This forest is dedicated to Nagraj Devta and is dominated by tree species, including Quercus floribunda, Quercus semecarpifolia and Rhododendron arboreum. The highest values of below ground biomass density, total biomass density and total carbon density were (34.81±1.68) Mg·ha?1, (168.26±9.04) Mg·ha?1 and (84.13±4.18) Mg·ha?1 for Pinus wallichiana. Overall values of total biomass density and total carbon density calculated were 1549.704 Mg·ha?1 and 774.77 Mg·ha?1 respectively. Total value of growing stock volume density for all species was 732.56 m3·ha?1 and ranged from (144.97±11.98) m3·ha?1 for Pinus wallichiana to (7.78±1.78) m3·ha?1 for Benthamidia capitata.  相似文献   

13.
The growth patterns of annually resolved tree rings are good indicators of local environmental changes, making dendrochronology a valuable tool in air pollution research. In the present study, tree-ring analysis was used to assess the effects of 16 years (1991–2007) of chronic nitrogen (N) deposition, and 10 years (1991–2001) of reduced nitrogen input, on the radial growth of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) growing in the experimental area of Lake Gårdsjön, southwest Sweden. In addition to the ambient input of c. 15 kg N ha?1 year?1, dissolved NH4NO3 was experimentally added to a 0.52-ha watershed at a rate of c. 40 kg ha?1 year?1. Atmospheric N depositions were reduced by means of a below-canopy plastic roof, which covered a 0.63-ha catchment adjacent to the fertilized site. The paired design of the experiment allowed tree growth in the N-treated sites to be compared with the growth at a reference plot receiving ambient N deposition. Nitrogen fertilization had a negative impact on pine growth, while no changes were observed in spruce. Similarly, the reduction in N and other acidifying compounds resulted in a tendency towards improved radial growth of pine, but it did not significantly affect the spruce growth. These results suggest that spruce is less susceptible to changes in the acidification and N status of the forest ecosystem than pine, at least in the Gårdsjön area.  相似文献   

14.
A 5-year field trial was conducted on a laterite soil to evaluate the effects of organic and inorganic fertigations in arecanut sole and arecanut–cocoa land use systems at Vittal, India. Arecanut registered similar yield levels in sole and arecanut–cocoa cropping situations (3,022–3,117 kg ha?1). Fertigation of 75 % NPK, vermicompost extract (VCE) 20 % N and VCE (10 and 20 % N)+25 % NPK registered the same yield levels (3,029–3,375 kg ha?1). Dry bean yield of cocoa was at par with fertigation of 75 % NPK and 20 % N VCE + 25 % NPK (291–335 kg ha?1). Fertigation @ 75 % NPK increased the yield of cocoa by 52 % over VCE alone. The productivity per unit area (kg ha?1) was significant and higher by 12 % in arecanut–cocoa system (3,450) than arecanut sole (3,090). Productivity was similar to fertigation of 75 % NPK, 20 % N VCE and VCE (10 or 20 % N) + 25 % NPK (3,316–3,665 kg ha?1). Leaf nutrient status of arecanut and cocoa indicated lower levels of N and K and above normal levels of Ca, Mg and micronutrients. The results indicate that drip fertigation increases the productivity, but precision application of N and K is required for sustaining the yields.  相似文献   

15.
Coarse woody debris (CWD) is involved in important forest ecosystem functions and processes, e.g., habitat provision, water retention, and organic matter decomposition. However, a quantitative, CWD-produced soil organic carbon (SOC) imprint has not yet been detected, possibly due to lack of free adsorption sites on soil minerals. To circumvent this potential constraint, we selected plots with and without CWD in a beech (Fagus sylvatica L.) primeval forest in the West Carpathian volcanic range (Slovakia). Local andic soil contains abundant allophane and amorphous Fe-compounds as important SOC binding agents. The C concentration in the fine earth of sampled soils was determined by the dry combustion method. We established that organic carbon concentration decreased with depth from 0.20 kg kg?1 (0.0–0.3 m) to 0.11 kg kg?1 (0.3–0.5 m) in soil with CWD and from 0.13 kg kg?1 (0.0–0.3 m) to 0.07 kg kg?1 (0.3–0.5 m) in soil without CWD. The respective average differences in soil organic carbon concentration (0.07 kg kg?1) and stock (15.84 kg m?2) between the two series of plots within the upper 0.3 m were significant according to the t test (P < 0.05 or P < 0.01, respectively). Also, corresponding differences within the 0.3–0.5 m layer (0.04 kg kg?1 and 5.51 kg m?2) were significant (P < 0.05, P < 0.001). Our results represent the first indication that CWD-produced SOC imprint may reach deeper than just a few centimeters in soils featuring high adsorption capacity, such as Andosols.  相似文献   

16.
Faidherbia (Faidherbia albida) is being promoted widely in interventions for combating desertification, re-greening of the Sahel, carbon offset and various agroforestry projects. However, there is a dearth of information on its growth and canopy development. There are also no guidelines for optimum stocking densities for practitioners to follow. Therefore, the objective of this work was to evaluate scaling relationships between its growth in height, stem diameter and crown size and based on these relationships define stocking densities. In order to achieve this we: (1) modelled its growth in relation to plant density; (2) identified appropriate models for scaling stem height and diameter with crown size; (3) using information from step 2, we derived stocking densities under different scenarios. Crown diameter (CD) was found to scale with stem diameter (D) isometrically, while stem height scaled with CD allometrically. The scenarios derived using the CD–D scaling indicated that densities >50 plants ha?1 are untenable when DBH exceeds 40 cm. High initial densities (>625 plants ha?1) appear to lead to rapid self-thinning. Starting with low initial densities (<100 plants ha?1) was also expected to result in sub-optimal use of site resources and delayed net ecosystem production. As a compromise, we recommend establishment of stands at initial densities of about 625 trees ha?1 (or 4 m × 4 m spacing) and progressive thinning as stem diameter increases. The focus of this analysis has been on monoculture plantations of Faidherbia and the spacing may not be directly applicable where crops are integrated with trees. Therefore, we propose a follow-up study including modelling tree behaviour in mixed stands in order to refine recommendations.  相似文献   

17.
Intensification of coffee (Coffea arabica) production is associated with increases in inorganic fertilizer application and decreases in species diversity. Both the use of organic fertilizers and the incorporation of trees on farms can, in theory, reduce nutrient loss in comparison with intensified practices. To test this, we measured nutrient concentrations in leachate at 15 and 100 cm depths on working farms. We examined (1) organically managed coffee agroforests (38 kg N ha?1 year?1; n = 4), (2) conventionally managed coffee agroforests (96 kg N ha?1 year?1; n = 4), and (3) one conventionally managed monoculture coffee farm in Costa Rica (300 kg N ha?1 year?1). Concentrations of nitrate (NO3 ?-N) and phosphate (PO4 3?-P) were higher in the monoculture compared to agroforests at both depths. Nitrate concentrations were higher in conventional than organic agroforests at 15 cm only. Soil solutions collected under nitrogen (N)-fixing Erythrina poeppigiana had elevated NO3 ?-N concentrations at 15 cm compared to Musa acuminata (banana) or Coffea. Total soil N and carbon (C) were also higher under Erythrina. This research shows that both fertilizer type and species affect concentrations of N and P in leachate in coffee agroecosystems.  相似文献   

18.
The structure of forest stands changes through developmental phases. This study is carried out in the unmanaged, oriental beech (Fagus orientalis Lipsky) stands in the north of Iran. The aim of this research was to quantify structural characteristics of stands in the stem exclusion phase using common structural indices, which include mingling, tree–tree distance, stem diameter, and tree height differentiation. According to our measurements from three stands, naturally regenerated stands tend to be mixed in species composition have slightly heterogeneous diameter distributions and uniform tree height. The average distance between trees was 3.3 m. Stocking volume of the stands had an average of 540 m3 ha?1 and 412 stem ha?1. Dead wood volume was 24 m3 ha?1, and as a standing volume, the most frequent species in dead wood pool was oriental beech (F. orientalis) (48 %). The common form of dead trees was snag (41 %). The mean value of mingling and tree-to-tree interval indices revealed that beech was mixed intensively with hornbeam and appears to be a more successful competitor for space and light compared with hornbeam; moreover, we found relatively high evidence of inter-species competition in this phase. A better understanding of stand characteristics in the stem exclusion phase as a critical part of the natural dynamics of forest ecosystems could facilitate predictions about the future changes within the stand.  相似文献   

19.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

20.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号