首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
施肥对夏玉米季紫色土N2O排放及反硝化作用的影响   总被引:9,自引:0,他引:9  
采用原状土柱-乙炔抑制培养法研究了施肥对紫色土玉米生长季土壤N2O排放通量和反硝化作用的影响.结果表明:玉米季施肥显著增加土壤N2O排放和反硝化损失,同时,各施肥处理间N2O排放与反硝化损失量差异显著.猪厩肥、猪厩肥配施氮磷钾肥、氮肥、氮磷钾肥和秸秆配施氮磷钾肥等处理的土壤N,O排放量分别为3.01、2.86、2.51、2.19和1.88 kg hm-2,分别占当季氮肥施用量的1.63%、1.53%、1.30%、1.09%和0.88%,反硝化损失量分别为6.74、6.11、5.23、4.69和4.12 kg hm-2,分别占当季氮肥施用量的3.97%、3.55%、2.97%、2.61%和2.23%,不施肥土壤的N2O排放量和反硝化损失量仅为0.56和0.78 kg hm-2.施肥是紫色土玉米生长前期(2周内)土壤N2O排放和反硝化速率出现高峰的主要驱动因子,土壤铵态氮和硝态氮含量是影响土壤N2O排放、土壤硝化和反硝化作用的限制因子,土壤含水量是重要影响因子,降雨是主要促发因素.土壤N2O排放量与反硝化损失量的比值介于0.45 ~0.72之间,土壤反硝化损失量极显著高于土壤N2O排放量,说明土壤反硝化作用是紫色土玉米生长季氮肥损失的重要途径.  相似文献   

2.
氧化亚氮(N2O)是重要的温室气体之一,还会破坏大气臭氧层,影响全球气候变化。农田土壤是N2O最主要的排放源,由微生物主导的硝化和反硝化作用是其最主要的排放途径,因此,土壤的硝化和反硝化作用备受关注。在综合国内外相关研究的基础上,就区分硝化和反硝化作用对N2O排放贡献的研究方法、土壤N2O产生途径及其影响因素以及施用生物炭对N2O排放的影响机理进行归纳总结。结果表明:硝化和反硝化作用对生物炭的响应不同,在N2O减排效应上也存在很大的不确定性,其内在机理尚不明确。在此基础上,提出区分硝化和反硝化作用对N2O排放贡献的最佳研究方法,并就农田土壤硝化反硝化作用的影响因素以及对生物炭的响应机制进行研究展望。  相似文献   

3.
水稻土和菜田添加碳氮后的气态产物排放动态   总被引:1,自引:0,他引:1  
【目的】动态连续监测添加碳氮底物后各气体产物—O2、 NO、 N2O、 CH4和N2的排放,对土壤碳氮转化过程和气体产生过程做更深入的理解,揭示不同土地利用方式典型红壤的温室气体产生机制。【方法】采集长江中游金井小流域不同土地利用方式稻田和菜地土壤为研究对象,利用全自动连续在线培养检测体系(Robot系统),通过两组试验分别研究土壤碳氮转化过程中各气体产物的动态变化。试验1采用菜地和稻田土壤进行好气培养,设置不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖6个处理。试验2采用稻田土壤进行淹水培养,设不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg铵态氮+1%秸秆、 缺氧条件下添加40 mg/kg铵态氮+1%的葡萄糖、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖8个处理。培养温度均为20℃,土壤水分含量为70% WFPS (土壤孔隙含水量),培养周期为15天。【结果】从菜地和稻田土壤不同碳氮添加处理气态产物及无机氮的动态变化可看出: 1)菜地土壤好气培养初期硝化作用产生了大量N2O; 受低碳和低含水量的限制,反硝化作用较弱。当提供充足碳源和厌氧条件,出现N2O和NO的大量排放。2)在好气稻田和淹水稻田培养过程中,反硝化作用是N2O产生的主要途径。3)稻田土壤中,提供充足碳源和厌氧条件,各气态产物出现的顺序依次是NO、 N2O和N2,与三种气体在反硝化链式反应过程中的生成顺序一致。淹水稻田加铵态氮和碳源处理N2为主要产物,添加硝态氮处理后,N2O成为主要气态产物。当土壤碳源充足时,反硝化过程进行彻底,反硝化产物以终产物(N2)为主。4)在稻田土壤出现厌氧或添加碳源条件下,均检测到大量CH4产生; 且在甲烷产生的同时,NO-3几乎消耗殆尽。【结论】金井小流域典型红壤菜地N2O主要来自于硝化作用,好气和淹水稻田N2O主要来源于反硝化作用; 当碳源充足和厌氧时,菜地及稻田反硝化作用增强; 反硝化产物组成、 产物累积量及出峰顺序与碳源和氧气浓度有关。  相似文献   

4.
N2O是重要的温室气体之一,由此引起的全球变暖和臭氧层破坏是当今重要的环境问题。采用遮光密闭箱和气相色谱法研究了氮肥施用对小麦地N2O释放和反硝化作用的影响。结果表明,小麦生长季节里,高氮、中氮以及不施氮处理N2O平均排放通量分别为2.71、2.42、1.97 gN.hm-.2d-1;尿素、硫酸铵、硝酸钾3种氮肥品种处理下,平均N2O排放通量分别为2.42、2.14、3.13 gN.hm-2.d-1。小麦生长季节里,高氮、中氮以及不施氮处理平均反硝化速率分别为4.91、4.50、1.67 gN.hm-.2d-1;尿素、硫酸铵、硝酸钾3种氮肥品种处理下,平均反硝化速率分别为4.50、3.68、5.29 gN.hm-.2d-1。氮肥施用明显促进了土壤-植物系统中N2O排放通量和反硝化作用,氮肥施用量水平和N2O排放通量、反硝化作用呈正相关。硝酸钾对N2O排放通量和反硝化作用贡献最大,硫酸铵最小。研究还表明,小麦地N2O释放和反硝化作用与季节有一定相关性,温度较高季节排放量及反硝化作用明显,反之则较弱。  相似文献   

5.
利用在线自动监测培养系统(Robot系统),研究不同氧分压、碳源投入以及不同氧分压和碳源投入组合下,添加硝化抑制剂双氰胺(DCD)对设施菜田土壤N_2O排放的影响。结果表明:随着土壤氧分压的升高,N_2O排放量呈指数下降(P0.001),土壤氧分压大于等于3%O_2后,N_2O排放量不足于无氧和微量氧(1%氧)处理的30%。添加碳源降低了有氧条件下土壤N_2O和N_2产生量,显著增加了微量氧下异养反硝化途径对N_2O的贡献量(P0.01)。在微量氧和3%O_2下,与未添加DCD的处理相比,无碳源添加且施用DCD后,N_2O的排放分别降低了64.4%和88.8%,同时N_2排放分别降低了23.4%和18.6%。从微量氧至3%O_2,虽然无碳源添加的处理硝化细菌反硝化作用对N_2O排放的贡献从17.2%增加至42.6%,但由于排放总量的急剧下降,硝化细菌反硝化作用对设施菜田土壤N_2O排放的贡献较小。本研究所用土壤pH较高,且添加DCD的处理培养前后硝酸盐基本平衡,异养的同步硝化-反硝化过程可能很弱。总之,设施菜田土壤N_2O排放主要发生在无氧和微量氧条件下。异养反硝化菌对土壤N_2O排放的直接贡献最大,尤其是在碳源较为充足的条件下。  相似文献   

6.
矿化作用和硝化作用是土壤氮素转化的主要途径,通过室内培养试验,对设施和露天栽培方式下有机菜地土壤氮素的矿化与硝化作用进行了比较研究。结果表明,除培养第1d外,设施有机菜地土壤氮素矿化量、矿化率在整个培养期间都显著高于露天有机菜地土壤;设施有机菜地土壤硝化量、硝化率在培养前两周内高于露天有机菜地土壤;设施有机菜地土壤矿化与硝化作用总体比露天有机菜地土壤强烈。矿化作用可能与全氮、C/N、微生物活性关系密切,而硝化作用强弱可能与微生物活性有关。无论施肥与否,设施有机菜地土壤N2O排放速率在培养期间总体高于露天有机菜地土壤,前者N2O累积排放量显著高于后者,这可能与土壤C/N有关。  相似文献   

7.
N_2O是重要的温室气体之一,其增温效应是CO_2的150~200倍。旱地土壤是N_2O主要排放源,其排放通量在介于0~1000μg m~(-2) h-1,旱地作物生长期土壤N_2O排放通量一般呈现1~3次峰值。通过对旱地N_2O排放影响因素分析,总结出:正常施肥结合秸秆还田农民传统施肥或习惯性施肥优化施肥、优化施肥+有机肥、控释肥+有机肥、控释肥,有机肥有机无机混肥缓释尿素、生物质碳、硝化抑制剂;土壤N_2O的排放量与土壤含水量、土壤温度呈正相关,微咸水再生水、清水;栽培模式对旱地N_2O排放的影响不明确,结果存在分歧;单种作物混合作物;菜地玉米地小麦大豆;农林系统撂荒地农草系统纯玉米地系统;硝化和反硝化作用、土壤中的硝化细菌、地表温度、土壤温度、酸雨、土壤PH值等其他因素也影响N_2O的排放。  相似文献   

8.
采用密闭式静态箱法研究黄土高原旱作玉米不同栽培模式下氧化亚氮(N2O)的排放通量及主要影响因素。结果表明,施氮是影响N2O排放的主要因素,高氮处理〉中氮+有机肥处理〉不施氮肥处理,且排放高峰出现在施肥后的4~10d,施氮处理N2O排放通量呈季节动态变化,共出现3次排放高峰,均出现在施氮及降雨后。等量施肥条件下,覆膜处理并没有显著影响NzO排放量,N:O排放通量与硝态氮含量呈极显著正相关(P〈0.01)。在黄土高原旱作玉米农田,土壤硝化过程是导致N2O排放的主要因素,反硝化作用对N2O排放的贡献相对较低。  相似文献   

9.
硝化反硝化细菌菌落与N_2O排放关系研究   总被引:1,自引:0,他引:1  
虽然硝化反硝化细菌菌落组成成分与从土壤中排放出来的N2O之间的关联尚不清楚,但是,硝化反硝化细菌的菌落组成、数量与N2O的排放活动已在两个常见的耕地型湿地(CW)与非耕地型湿地(UW)上做过探讨。本研究的假设有:1)不同的硝化反硝化菌落选择不同的地形;2)反硝化是产生N2O的主要步骤;3)在硝化反硝化细菌菌群组成、数量与N2O排放之间是有某种联系的。选在圣丹尼斯国家野生动物保护区(SDNWA)的3块CW与3块UW上进行比较试验。结果表明:1)硝化作用是N2O排放的根本来源;2)耕作土壤增加了硝化细菌的产量,同时消减了硝化细菌的数量;3)反硝化细菌的数量没有因为耕作活动而增加;4)在土地利用和地形为变量的前提下,硝化细菌、反硝化细菌菌落组成和数量与N2O的排放是没有关联的。  相似文献   

10.
农田土壤硝化—反硝化作用与N2O的排放   总被引:8,自引:0,他引:8  
在北京潮土上研究了冬小麦夏玉米轮作体系下土壤硝化反硝化作用以及N2O排放情况。结果表明,小麦生育期土壤温度及含水量降低,无论是反硝化损失氮量还是土壤的N2O生成排放量均不高。土壤的N2O生成排放量与反硝化氮量相当或低于反硝化氮量。玉米生育期土壤温度升高以及孔隙含水量的较大的改善,反硝化损失氮量、N2O生成排放量有明显上升。通常情况下土壤反硝损失氮量与N2O排放氮量基本处于同一水平。在玉米十叶期追肥后的较短时间内,N2O总排放量明显高于反硝化损失氮量,说明至少在这一阶段中,硝化作用在北方旱地土壤N2O的排放中发挥了主要作用。在评价北方旱地农田土壤氮素硝化反硝化损失中,硝化作用的氮素损失是不可忽视的重要方面。  相似文献   

11.
不同土地利用方式土壤温室气体排放对碳氮添加的响应   总被引:7,自引:0,他引:7  
王海飞  贾兴永  高兵  黄涛  苏芳  巨晓棠 《土壤学报》2013,50(6):1170-1179
揭示不同土地利用方式下土壤N2O产生机制及其CO2和CH4的排放,有助于土壤温室气体减排措施的制定。本研究以长沙金井河流域酸性红壤上菜地、稻田、茶园和林地土壤为研究对象,控制温度和土壤含水量,采用静态培养-气相色谱法,研究4种利用方式土壤N2O、CO2和CH4的排放对不同碳氮和硝化抑制剂添加的响应。结果表明,由于土壤pH较低,酸性红壤外加氮源后仅有较小的N2O排放。葡萄糖能够促进尿素添加后N2O的排放及土壤反硝化作用N2O的排放。异养硝化作用可能是酸性红壤N2O产生的主要途径。硝化抑制剂双氰胺(DCD)对酸性红壤N2O减排无明显效果。碳氮添加后土壤N2O的总排放量表现为茶园 > 菜地 > 稻田 > 林地。外源有机碳能够显著促进4种利用方式土壤CO2的排放,表现为茶园、稻田 > 菜地、林地。但除稻田土壤CH4排放增加外,菜地、茶园和林地土壤CH4排放对外源有机碳无明显响应。  相似文献   

12.
有机无机肥料配合施用对设施菜田土壤N2O排放的影响   总被引:11,自引:3,他引:8  
采用静态箱气相色谱法研究了有机无机肥料配合施用对设施菜田土壤N2O排放的影响。结果表明: 1)设施芹菜和番茄施基肥后57 d(灌溉后13 d)出现土壤N2O排放通量峰值,追肥后(施肥与灌溉同步)1 d出现土壤N2O排放通量峰值; 芹菜季和番茄季施用基肥后20 d内N2O排放量分别占当季总排放量的40%65%左右,是土壤N2O主要排放期。2)施用基肥后至定植灌水前各处理土壤N2O排放量逐渐降低,灌水后N2O排放通量迅速上升。各处理土壤N2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。3)土壤N2O排放主要发生在番茄季,番茄生育期各处理土壤N2O总排放量是芹菜生育期的3.1倍; 各处理土壤N2O排放通量与5 cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。4)设施菜田大幅减施化肥的有机无机肥配合施用模式可显著降低土壤N2O排放量和肥料损失率,芹菜季和番茄季土壤N2O排放量较习惯施肥处理分别降低66.3%和85.1%,肥料损失率分别降低45.2%和74.9%。5)等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N2O排放,芹菜季和番茄季分别降低43.4%和74.2%。  相似文献   

13.
研究表明 ,设施栽培土壤N2O释放通量比露地栽培土壤高 1.39倍 ;灌水处理N2O释放较未灌水处理高 1.17倍。随着氮肥的增加 ,N2O释放量急剧上升 ,其回归方程 y =256.96 +1.47x,r=0.9951** 。 2种肥料施入土壤的5d内 ,施有机肥 (酵素菌肥 )的土壤N2O的释放量高于施化肥的处理。通过检测硝化细菌和反硝化细菌数量的变化发现 ,施尿素处理的硝化和反硝化细菌数量比对照低 ,但是随着时间的推移 ,反硝化细菌数量又有上升的趋势 ;施用有机肥 (酵素菌肥 )处理的硝化细菌数量低于施用尿素处理 ,但反硝化细菌数量则明显高于尿素处理。  相似文献   

14.
土壤反硝化作用是土壤N2O产生的重要过程,亚硝酸盐还原酶(NIR)催化的亚硝态氮(NO-2)还原为一氧化氮(NO)是反硝化作用的关键环节,研究长期施肥对反硝化微生物的影响及其与N2O排放的关系对于全面理解土壤反硝化过程具有重要意义。基于28年的旱作雨养长期施肥试验,通过常规监测、定量PCR和高通量测序等探讨了长期不同施肥(不施肥CK、偏施肥的单施氮肥N和氮钾配施NK、以及氮磷钾平衡施肥NPK)下土N2O排放和nirS反硝化细菌群落特征及两者之间的关系。结果表明:长期化肥施用(N,NK和NPK)均显著提高了N2O累积排放量,其中平衡施肥(NPK)最高。长期化肥施用对nirS基因丰度和nirS型反硝化细菌的α-多样性无显著影响,但长期平衡施用化肥提高了uncultured_bacterium_2303和Rhodanobacter_sp._D206a的相对丰度,降低了unclassified_k_norank_d_Bacteria和unclassified_p_Proteobacteria的相对丰度,从而改变了nirS型反硝化细菌的群落结构组成。雨养旱作条件下,土壤有机碳(SOC)、全氮(TN)、有效磷(AP)和pH等土壤性质是土nirS型反硝化细菌群落结构组成变化的主要影响因素。土nirS型反硝化细菌群落结构组成对土壤N2O排放具有显著影响,而nirS基因丰度和nirS型反硝化细菌多样性并没有显著影响。  相似文献   

15.
农田土壤N_2O排放研究进展   总被引:18,自引:1,他引:18  
黄树辉  吕军 《土壤通报》2004,35(4):516-522
农田土壤的N2O排放主要是在微生物的作用下通过硝化和反硝化作用产生的。土壤中多变的理化性质影响各种微生物的生长,因而硝化和反硝化过程中产生N2O的途径也不同,尤其以硝化过程的研究进展最快。影响N2O的生成和排放有:土壤含水量、温度、O2以及土壤结构和质地等物理因素,pH和氮肥等其它因素。本文详细地阐述旱地和水田土壤中这些影响因子与N2O的作用机理的差异,及农田土壤中的N2O排放估计的方法。区分硝化和反硝化作用中生成N2O的贡献可用15N标记法和不同浓度的乙炔抑制法。  相似文献   

16.
N2O是一种重要的温室气体,菜地高水高肥导致其排放量大。该研究通过解析滴灌条件下不同肥料处理对白菜地N2O排放的影响,以阐明滴灌下不同肥料处理的N2O来源,为菜地土壤N2O减排提供理论依据。设置无机复合肥(NPK)、有机肥(M)、无机水溶肥(WS)和无肥(NF)4种常见肥料处理,采用滴灌方式灌溉,收集菜地土壤排放的N2O,并利用稳定同位素技术分析N2O的同位素特征值,通过15N在N2O分子中的位置偏好值、N2O和H2O之间的净同位素效应值搭建双同位素图谱,分析N2O产生途径及其贡献。结果表明:对于NPK、M、WS和NF处理,N2O排放通量分别为1 074、146.5、116.2和112.9 μg/(m2·h);NPK、M、WS处理的氮肥利用效率分别为45.1%、22.0%、45.2%;NPK、M、WS和NF处理下N2O主排期的硝化作用贡献分别约为38%、46%、54%和49%,N2O主排期的N2O还原程度分别约为14%、71%、46%和70%。可见,无机水溶肥处理显示了最高的氮素利用效率和较低的N2O排放量,且其与无机复合肥处理的N2O还原程度都相对较低不利于反硝化过程中的N2O减排;有机肥处理则有最高的N2O还原程度,是减少反硝化作用N2O产生的主要途径。综合考虑,该研究推荐菜地施肥时采用有机肥作为底肥,管理过程中配合水肥一体化技术,达到促进N2O还原以减少N2O排放和提高肥料氮素利用效率的效果。  相似文献   

17.
有机肥与无机肥配施对菜地土壤N2O排放及其来源的影响   总被引:1,自引:1,他引:0  
该研究采用同位素自然丰度法,通过室内培养试验研究北京地区菜地有机肥和无机肥配施对土壤释放N2O及同位素位嗜值SP(site preference)的影响,以期获得不同肥料及其配比下土壤N2O的来源及变化规律。结果表明:施用无机肥释放的N2O显著高于有机肥,其累积排放量是有机肥的6.63倍,且无机肥施用比例越高,排放量越大;各肥料组合在施用后7天内均以反硝化作用生成N2O为主,贡献最高达到78.89%,SP为6.97‰,之后硝化作用逐渐增强并成为主要途径,最高占比达76.48%,SP为25.24‰;培养期内施用无机肥可以促进反硝化作用,平均占比52.98%,SP为15.52‰,而有机肥会使硝化作用增强,平均占比71.35%,SP为23.55‰。因此,在北京潮褐土地区菜地土壤施用有机肥对N2O有良好的减排效果,可为蔬菜生产中肥料的合理应用提供科学依据。  相似文献   

18.
菜地土壤CO2与N2O排放特征及其规律   总被引:2,自引:0,他引:2  
为了解不同集约化类型菜地土壤CO2和N2O排放特征及影响因子,选取京郊20年露地老菜地(OV20)、3年菜地种植历史的露地新菜地(OV3)、3年大棚菜地(GV3),以及相邻的当地典型粮田玉米地(Maize)4个类型地块,研究了春黄瓜生育期间土壤CO2和N2O排放特征及影响因子。结果表明:1)春黄瓜生育期间的土壤CO2排放通量主要受土壤5 cm处温度(指数关系)和土壤水分(对数关系或二次抛物线关系)影响;期间玉米地土壤CO2平均排放通量为(346.8±56.5)mg.m-2.h-1,20年露地菜地、3年露地菜地有机肥处理、3年露地菜地配施处理、3年大棚菜地的土壤CO2平均排放通量分别是玉米地的1.38、1.21、1.39和1.56倍。2)土壤N2O排放通量与施肥活动密切相关,排放高峰都出现在氮肥施用后,并受土壤温度和水分的影响。基肥后土壤温度低(15~20℃),排放峰出现在第5 d,排放峰持续时间(长达20 d)与施肥量相关;追肥后土壤温度高(>20℃),排放高峰发生早(追肥后第3 d),但因追肥用量低,因此持续时间短(仅一周)。3)黄瓜生长期内玉米地N2O累积排放量为N(1.95±0.10)kg.hm-2,20年老菜地、3年大棚菜地和3年新菜地N2O累积排放量分别是同期大田玉米地的1.67、1.95和1.99倍。4)本实验中春黄瓜生长季菜地土壤化肥氮N2O排放系数在1.86%~4.71%之间,显著高于IPCC旱地排放缺省值1%。其中,新菜地排放系数高于老菜地,设施菜地排放系数高于露地菜地;但有机肥氮的N2O排放系数则远远低于化肥氮的排放系数,仅为0.11%。  相似文献   

19.
秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响   总被引:23,自引:3,他引:23  
运用乙炔抑制技术研究了不同施氮水平下秸秆还田对灌溉玉米田土壤反硝化反应和氧化亚氮(N2O)排放的影响。结果表明,土壤反硝化速率及N2O的排放受氮肥施用、秸秆处理方式及其交互作用的显著影响。与秸秆燃烧相比,不施氮或低施氮水平时,秸秆还田可刺激培养初期反硝化反应速率及N2O排放,增加培养期间N2O平均排放通量;高施氮水平时,秸秆还田可降低反硝化反应速率及反硝化过程中的N2O排放。秸秆还田可降低反硝化中N2O/N2的比例。  相似文献   

20.
土壤N2O和NO产生机制研究进展   总被引:12,自引:0,他引:12  
蔡延江  丁维新  项剑 《土壤》2012,44(5):712-718
N2O和NO是大气中两种重要的活性氮气体,强烈影响着全球变化和生态环境。土壤是N2O和NO的重要排放源,生物和非生物途径均可产生N2O和NO。本文详细论述了自养硝化、异养硝化、生物反硝化、化学反硝化、硝化细菌反硝化和硝态氮异化还原成铵作用产生N2O和(或)NO的机制,并对研究中存在的一些问题进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号