首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Intermittent drainage of rice fields alters soil redox potential and contributes to the reduction of CH4 emission and thus may reduce net global warming potential (GWP) during rice cultivation. Incorporation of green biomass helps maintaining soil organic matter, but may increase CH4 emission. We investigated net ecosystem carbon budget (NECB) and net GWP under two water management regimes—continuous flooding and intermittent drainage—having four biomass incorporation levels (0, 3, 6 and 12 Mg ha?1). Water management and biomass incorporation level demonstrated significant (P < 0.05) interaction effect on the NECB and GWP. Intermittent drainage decreased the NECB by ca. 6–46 % than continuous flooding under same rates of cover crop biomass (CCB) incorporation. Moreover, intermittent drainage reduced seasonal CH4–C fluxes by ca. 54–58 % and net GWP by 35–58 % compared to continuous flooding. There was also no significant reduction in rice yield because of intermittent drainage under similar CCB. This implies that incorporation of 3 Mg ha?1 CCB and intermittent drainage could be a good option for reducing net GWP and higher grain yield.  相似文献   

2.
Recent water shortages in reservoirs have caused such problems as insufficient water and fallow rice fields in Southern Taiwan; therefore, comparing irrigation water requirements and crop production of paddy fields using a technique that differs from the conventional flood irrigation method is important. Field experiments for the second paddy field with four irrigation schedules and two repeated treatments were conducted at the HsuehChia Experiment Station, ChiaNan Irrigation Association, Taiwan. Experimental results demonstrate that irrigation water requirements for the comparison method, and 7-, 10- and 15-day irrigation schedules were 1248, 993, 848, and 718 mm, respectively. Compared to the conventional method of flooding fields at a 7-day interval, the 10- and 15-day irrigation schedules reduced water requirements by 14.6 and 27.3 %, respectively; however, crop yields decreased by 7 and 15 %, respectively. Based on the results, it was recommended that the ChaiNan Irrigation Association could adopt 10 days irrigation schedule and plant drought-enduring paddy to save irrigation water requirements for the water resource scarcity in southern Taiwan. The CROPWAT model was utilized to simulate the on-farm water balance with a 10-day irrigation schedule for the second paddy field. A comparison of net irrigation water requirements with the 10-day irrigation schedule from model and field experiment were 818 and 848 mm, respectively, and the error was 3.54 %.  相似文献   

3.
The 2011 flood damaged about 11 % of planting area in Cambodia, but the damaged proportion reached 30 % in Sangke district, Battambang province, located in the flood plains of Tonle Sap Lake. The aim of this study was to characterize completely damaged deepwater rice production due to the flood along the transect from the town-side shallower fields to the lake-side deeper fields. The flooding water from Tonle Sap Lake rose with 7 cm/day in September and October in the deeper fields where floating rice was grown and 8–10 cm/day in October in the shallower fields where lowland rice was grown. The maximum water was recorded on 16 October with 3.2 and 2.0 m at the deepest and shallowest edge fields. The area was characterized as flatness with only 1.2 m elevation differences in 4.3 km distance along the transect. The flooding water took 13.7 h for approaching 100 m distance. Complete recession of flood water was end of November at the shallow edge and at late December in the deep edge in 2011. The flooding duration deeper than 50 cm was 2.5 month and nearly 3 months in the middle zone and deeper floating rice area, respectively. The complete submergence started first in some fields in the middle zone on 12 September, followed by the shallower lowland rice area, and finally in the deep floating rice area by 1 October. Countermeasures to improve rice production in deepwater rice area in the floodplain of Tonle Sap Lake were proposed.  相似文献   

4.
The center of Jilin Province is one of the major rice-producing areas of Northeast China; however, rice production consumes large amounts of water, which is incompatible with the increasingly limited water supply. Rice yield and water consumption are the two most important considerations in the rice production process, and they may vary under different irrigation schedules. In this study, conducted in 2011 and 2012, differences in water consumption and rice yield were observed and analyzed under four different irrigation schedules—flooding irrigation (FI), shallow-wet irrigation (SWI), intermittent irrigation (II), and controlled irrigation (CI)—in a typical rice-growing area of central Jilin. The results showed that, under the four irrigation schedules, water consumption rates were (from highest to lowest) FI (1137.9 mm), SWI (984.0 mm), II (804.3 mm), and CI (678.5 mm), and rice yield rates were (from highest to lowest) SWI (9777.5 kg/ha), FI (9006.1 kg/ha), II (8936.3 kg/ha), and CI (8843.7 kg/ha), respectively. This indicated that, in central Jilin Province, the application of an advanced irrigation schedule not only saved a large amount of water for irrigation, but also that rice yields were not greatly reduced, and even increased in SWI. Therefore, we hope that in this and other similar rice cultivation areas, a universal high-yield and water-saving irrigation schedule can effectively reduce the problem of agricultural water use.  相似文献   

5.
气温及水肥管理方式对中稻田甲烷排放的影响   总被引:2,自引:0,他引:2  
 采用计算机控制的全自动气相色谱监测系统,对中稻田4个处理进行了130个日夜的甲烷排放量的监测,各处理中以无机肥+绿肥+长期淹灌处理的甲烷排放通量最高,为464.0 mg/m2·d,最低的为无机肥+绿肥+间歇灌溉处理,只有180.5 mg/m2·d。水稻生长前半期是甲烷排放高峰期,除长期淹灌的处理外,其它处理在移栽后65 d的排放量约占总排放量的77%~93%。甲烷排放量与气温呈正相关。搁田可明显减少甲烷的排放量。  相似文献   

6.
System of rice intensification (SRI) is a water-saving agro-technique being popularized in Southern Asia including India. A particular key practice in SRI, reduced water application (no continuous flooding), needs to be more farmer-friendly for its mass adoption under traditional and non-traditional cultivation. A field experiment was conducted maintaining different water regimes throughout the crop season (vegetative as well as reproductive stages) by scheduling irrigation applications at 1, 3, or 5 days after disappearance of ponded water (DADPW), using two different plant spacings and two different varieties. With an increase in the period of water stress, tiller production was increased significantly (P ≤ 0.05) and found to be maximum under prolonged stress, i.e., 5 days after disappearance of ponded water (5 DADPW). Increased tiller production did not result in yield increments, but yield-contributing parameters (panicle weight, grain weight per panicle, filled grain percentage, and test weight) were confirmed as critical determinants of yield. Plant nutrient (NPK) uptake was reduced under stress conditions, but the translocation of phosphorus and potassium from sources to sink was increased significantly in this study. Nutrient utilization efficiency was also enhanced under mild (3 DADPW) to prolonged (5 DADPW) water stress conditions. No significant reduction in yield was recorded under mild water stress, and this resulted in increased water productivity; however, significant yield loss was observed under prolonged water stress (5 DADPW).  相似文献   

7.
为了揭示覆膜滴灌对稻田CH_4综合排放的影响,采用比较分析法分析了覆膜滴管条件下稻田甲烷的排放变化。试验采用覆膜滴灌Ⅰ、覆膜滴灌Ⅱ和漫灌3个处理,分别对当地高产主栽品种吉旱1号进行CH_4排放通量的测定。结果表明,覆膜滴灌稻田CH_4排放通量显著高于漫灌稻田;覆膜滴灌处理条件下,土壤含水率高的覆膜滴灌Ⅰ稻田CH_4排放通量高于覆膜滴灌Ⅱ,说明土壤水分是稻田CH_4排放的主要影响因素之一;3个处理下CH_4的排放趋势大体一致,排放高峰均出现在水稻分蘖的前中期和拔节孕穗期,说明覆膜滴灌未改变稻田CH_4排放的进程。  相似文献   

8.
Rice–wheat (RW) production system, which covers over 13.5 million ha in the Indo-Gangetic Plains of south Asia, is vital for food and nutritional security and livelihood of millions of poor people in this part of the region. Availability of irrigation water under projected climate change scenarios is a great concern, and demonstration of the impact of different irrigation regimes on rice, wheat, and system yields is essential to adopt suitable water saving technologies to minimize risk. This study tested the ability of the agricultural production systems simulator (APSIM) model to simulate the effects of different irrigation regimes on yield, irrigation water requirement, and irrigation water productivity (WPi) of rice, wheat, and RW system in upper-gangetic plains of India. The long-term simulated rice yield showed a steadily declining trend at an average rate of 120 kg ha?1 yr?1 (R 2 = 0.94, p < 0.05), while long-term simulated wheat yields showed a lower declining trend at an average rate of 48 kg ha?1 yr?1 (R 2 = 0.48, p < 0.05). The highest WPi of 8.31 kg ha?1 mm?1 was observed under RW system with the rice irrigation (IR) regime of 8 days alternate wetting and drying (AWD) and five irrigations for wheat with a yield penalty of 25.5 %. The next highest WPi was observed in the treatment with a 5-day AWD regime in rice and five irrigations for wheat, with a yield penalty of 20.1 %. Thus, we can suggest that a 5-day AWD irrigation regime for rice combined with five irrigations during wheat could be the best option under water limiting situations.  相似文献   

9.
In the Hetao Irrigation Districts of the Ningxia autonomous region, Upper Yellow River Basin, the continuous deep flooding irrigation method is used for the rice paddies. The field irrigation water use during the rice-growing season is two to three times higher than in other regions of North China where water-saving practices have been introduced. This paper, based on the data measured in experimental rice fields and sub-branch canal systems, presents main results concerning crop evapotranspiration, percolation and irrigation requirements for deep and shallow water irrigation. Causes for water waste relate to both the lack of regulation in supply and distribution canals and to the poor management of paddy fields. The potential for water saving is discussed using water balance data. Improved irrigation techniques and water management strategies, including the shallow water irrigation method, are suggested considering the expected impacts and benefits. Replacing the current continuous deep flooding with the shallow-ponded water irrigation method may reduce the growing season irrigation water use from 1,405 to 820 mm in average, with a likely increase in yields of 450 kg/ha. Water productivity would then increase from 0.49 to 1.03 kg/m3. Adopting improved canal management and modernization of regulation and control structures may lead to decreasing the gross irrigation demand from the present 3,100 mm to about 1,280 mm, which would highly benefit the environmental conditions in the area.  相似文献   

10.
System of Rice Intensification (SRI) often achieved higher yield than conventional practice. We identified the high-yielding farmers from the yield records of 1909 paddy fields belonging to an organic farmers’ association. Farmers whose yields were from 8.4 to 10.4 t ha?1 were interviewed and their fields surveyed. Their yields had increased by an estimated average of 40% following the adoption of SRI practices. They applied 2–12 t ha?1 of compost. Compared to the conventional practice, they shortened seedling age at transplanting from 27.4 to 17.6 days and reduced the number of seedlings per hill from 4–6 to 2–3, while hill spacing remained unchanged. Instead of intermittent irrigation which is recommended in standard SRI, they kept shallow flooding of 1–2 cm. Although they applied a lot of compost, no correlation was found between the amount of compost application and the yields. Instead, high-yielding farmers returned rice straw into waterlogged paddy after harvest, which presumably is an ideal condition for biological nitrogen fixation. This may occur around rice straw during decomposition under waterlogged condition and might supplement the negative nitrogen balance, thereby enabling the high yield as compared with conventional practices where the fresh rice straw is removed and/or burned.  相似文献   

11.
To study the radiation utilization efficiency, latent heat flux, and simulate growth of rice during post-flood period in eastern coast of India, on-farm trial was conducted with three water regimes in main plots (W 1 = continuous flooding of 5 cm, W 2 = irrigation after 2 days of water disappearance, and W 3 = irrigation after 5 days of water disappearance) and five nitrogen levels in subplots (N 1 = 0 kg N ha?1, N 2 = 60 kg N ha?1, N 3 = 90 kg N ha?1, N 4 = 120 kg N ha?1, and N 5 = 150 kg N ha?1) on a rice cultivar, ‘Lalat’. Average maximum radiation utilization efficiency (RUE) in terms of above ground dry biomass of 2.09 (±0.05), 2.10 (±0.02), and 1.9 (±0.08) g MJ?1 were computed under W 1, W 2, and W 3, respectively. Nitrogen increased the RUE significantly, mean RUE values were computed as 1.60 (±0.07), 1.78 (±0.02), 2.060 (±0.08), 2.30 (±0.07), and 2.34 (±0.08) g MJ?1 when the crop was grown with 0, 60, 90, 120, and 150 kg ha?1 nitrogen, respectively. Midday average latent heat flux (on clear days) varied from 7.4 to 14.9 and 8 to 13.6 MJ m?2 day?1 under W 2 and W 3 treatments, respectively, at different growth stages of the crop in different seasons. The DSSAT 4.5 model was used to simulate phenology, growth, and yield which predicted fairly well under higher dose of nitrogen (90 kg and above), but the model performance was found to be poor under low-nitrogen dose.  相似文献   

12.
Application of sand can ameliorate rice paddy fields converted from saline–sodic land. However, the requirement of huge amount of sand has been limiting its practical application. In this study, flushing during saline sodic-sensitive stages of rice plant growth was incorporated into the ameliorating system to reduce the sand usage. A split-plot design was adopted with sand application (SA) with two levels as main plots and flushing during the sensitive stages (FL) with two levels as subplots in a hard saline–sodic soil, Northeast China. Four treatments included CK (no-sand, no-flush flooding), NF (non-sand, flush flooding), SN (sand, no-flush flooding), and SF (sand, flush flooding). The results showed that both SA and FL significantly affected all the investigated yield parameters. The combined effect of SA and FL on the grain yield was additive in the first year in respect of the effect on panicle density and seed weight per panicle; while it showed synergistic effect on the seed weight per panicle and grain yield in the second year. The rice yield in different treatments was in the order of SF > SN > NF > CK in both years, with the highest yield (4.37 t ha?1) obtained by SF treatment in the second year. Our results demonstrate that half the traditional amount of sand in combination with water-flushing during the saline–sodic-sensitive growth stages of rice is sufficiently effective in ameliorating saline–sodic soil and thereby enhancing rice grain yield in saline–sodic paddy fields.  相似文献   

13.
The cultivation of rice (Oriza sativa L.) under Mediterranean conditions regularly requires the use of treated wastewater due to shortage of freshwater. As a consequence, the intensification of rice production to supply the uprising demand of grain could break the stability between agriculture and environment. In this work, we studied the occurrence and distribution of pyrethroids in surface water and groundwater collected during two periods (flooding and dry soil conditions) in paddy fields located in the Spanish Mediterranean coast. Pyrethroids were detected at concentrations ranging from 14 to 1450 ng L?1 in surface water and from 6 to 833 ng L?1 in groundwater. The results obtained were evaluated statistically using principal component analysis, and differences between both sampling campaigns were found, with lower concentrations of the target compounds during the flooding sampling event. Moreover, a geographic information system program was used to represent a model distribution of the obtained results, showing wastewater treatment plants as the main sources of contamination and the decrease of pyrethroids during flooding condition when water flows over the paddy fields. The impact of these compounds on water quality was discussed.  相似文献   

14.
Rice is prone to arsenic accumulation compared to other cereals as typically grown up under waterlogged situation favoring arsenic mobility. Arsenic in rice depends on arsenic availability to plants from irrigation water, even differs among cultivars and their plant parts. Present study was concentrated on arsenic accumulation in various plant parts of five common rice cultivars grown using irrigation water from different water sources in various fields in arsenic-endemic region. Additionally, dose response experiment under laboratory net house was conducted on the same cultivars excluding open environmental factors. The common cultivars were categorized according to high to low arsenic accumulator in rice grain, straw and root parts. The cultivar Shatabdi has shown highest arsenic accumulation in rice grain compared to other rice cultivars in fields and when grown at various soil arsenic doses. In field samples, a highest grain arsenic concentration ranged between 0.69 ± 0.04 and 0.78 ± 0.12 mg kg?1 for Shatabdi, whereas lowest grain arsenic concentration ranged between 0.37 ± 0.07 and 0.41 ± 0.07 mg kg?1 for the cultivars GB3 and Lalat. Speciation study detected more inorganic arsenic than organoarsenicals with a trend of arsenite > arsenate > DMA > MMA, which would be problem for consumers. The concluding remark is the characterization of common rice cultivars according to arsenic concentration to highlight an important remediation strand by changing to low arsenic cultivar.  相似文献   

15.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

16.
以南方红壤区双季稻-紫云英为研究对象,利用静态箱-气相色谱法分别分析包括绿肥和稻草等秸秆还田条件下不同水分管理对稻田CH4和N2O排放、水稻产量以及综合温室效应(GWP)的影响。试验设持续淹水(F)、中期烤田(F-D-F)和间歇灌溉(F-D-F-M)处理。结果表明,秸秆还田条件下双季稻田周年CH4排放量介于208.3kg/hm2(F-D-F-M处理)和678.2kg/hm2(F处理)之间,其中,晚稻生长季占周年CH4排放量的60.6%~71.7%。F处理周年CH4排放量显著高于F-D-F和F-D-F-M处理(P0.05)。秸秆还田条件下双季稻田周年N2O排放量为4.75~8.19kg/hm2。与F处理相比,F-D-F-M处理周年N2O排放通量显著增加(60.9%);而F和F-D-F处理之间没有显著差异。早稻和晚稻各处理产量分别为7.76~8.02t/hm2和7.22~8.69t/hm2。秸秆还田条件下,双季稻单位面积GWP和单位产量GWP分别为7648.8~18471.8kg/hm2和0.48~1.12 kg/kg,其中F-D-F和F-D-F-M处理分别显著低于F处理(P0.05)。因此,在秸秆还田条件下采用中期烤田和间歇灌溉替代持续淹水,可以同步实现双季稻高产和减轻农业生产对气候的潜在影响。  相似文献   

17.
《Plant Production Science》2013,16(3):246-251
Abstract

The “aerobic rice” system is the cultivation of high yielding rice cultivars under non-flooded conditions in non-puddled (aerobic) soil with supplemental irrigation. The major constraint in wide adoption of aerobic rice technology is soil sickness caused by continuous monocropping due to still unknown factors. The possible role of flooding and nitrogen application in alleviating the soil sickness caused by continuous monocropping of aerobic rice was examined by pot experiments. Plants were grown aerobically or anaerobically on the soil collected from a field grown with aerobic rice for 12 consecutive seasons. The results showed that flooding alleviated soil sickness, but not as much as soil oven-heating treatment (120ºC for 12 hr). Application of ammonium sulfate improved plant growth up to the level of oven-heating treatment, while ammonium sulfate application and flooding exceeded the soil oven-heating treatment significantly. The synergy of flooding with ammonium sulfate application was greater than that with urea. These results suggest that soil sickness caused by continuous aerobic monocropping can be alleviated by flooding and ammonium sulfate application.  相似文献   

18.
Rice (Oryza sativa L.) is the most important staple food crop in the southern region of Asia, and Indian subcontinent being one of the major producers. Production of conventional transplanted rice requires a large amount of irrigation water, labor, and energy. The scarcity of irrigation water has encouraged farmers to adopt an alternative rice production system, i.e. the direct-seeded rice (DSR), which is proposed to be farmers’ friendly with a potential to save water. Our study reports the performance of DSR with respect to yield and water expense efficiency based on different irrigation regimes and dates of sowing. A field experiment was conducted in the semi-arid region of northern India during the rainy season of 2011 with two treatment combinations (dates of sowing: 15th May and 5th June and three irrigation regimes: irrigation scheduled at irrigation water-to-cumulative potential evapotranspiration; IW/CPE ratio of 1.0, 1.5 and 2.0) in a completely randomized design. We found statistically higher water expense efficiency of DSR sown on 5th June as compared to DSR sown on 15th May without any significant differences in growth and yield. A significant yield difference between DSR grown with irrigation regimes of IW/CPE 1.0 and 1.5 and DSR grown with irrigation regimes of IW/CPE ratio 2.0 were observed. The DSR grown with irrigation regimes of IW/CPE ratio of 1.5 resulted in significantly higher water expense efficiency than the one with IW/CPE ratio of 2.0. Obtaining a higher yield of DSR under scarce irrigation water might be a trade-off between optimum water use and maximum yield avoiding excess ground water exploitation in sub-tropical semi-arid regions of India. Our study suggests that sowing time and irrigation regimes are two important aspects of “rice production” to attain “win–win” solution. Thus, strategic and judicial use of irrigation water with management of sowing time could potentially escalate the rice production in water scarce regions of India.  相似文献   

19.
To optimize the use of limited water resources, surface irrigation systems in parts of China have introduced a new water saving irrigation method for rice termed alternate wetting and drying (AWD). The basic feature of this method is to irrigate so that the soil alternates between periods of standing water and damp or dry soil conditions from 30 days after crop establishment up to harvesting. However, many Chinese rice farmers still practice the continuous irrigation method with late- season drying of the soil.A comparative assessment of these two methods of on-farm water management for rice was conducted at two sites within the Zhanghe Irrigation System (ZIS) in Hubei province of China for the 1999 and 2000 rice crops. The objective was to evaluate the impact of AWD on crop management practices and the profitability of rice production. In conjunction with irrigation district officials, two sites within ZIS were selected for study, one where AWD was supposed to be widely practiced (Tuanlin, TL) and one where it had not been introduced (Lengshui, LS). It was found that farmers at both sites do not practice a pure form of either AWD or continuous flooding. However, farmers in TL did tend to let the soil dry more frequently than their counterparts in LS.Because most farmers practice neither pure AWD nor pure continuous flooding, an AWD score was developed that measures the frequency with which farmers allow their soil to dry. This AWD score was not significantly correlated with yield after controlling for site and year effects and input use. AWD scores were also not correlated with input use. We conclude that AWD saves water at the farm level without adversely affecting yields or farm profitability.  相似文献   

20.
This study was carried out to identify the vulnerability of rice production to salinity intrusion arising from climate change in Giao Thuy, a coastal district of Nam Dinh Province, located in Red River Delta in Vietnam. From the analysis of historical climate data at Nam Dinh city, both mean maximum and minimum temperatures increased by about 0.3 and 0.1 °C per decade, respectively, during the period of 1961–2010. Salt concentration of the river water was higher at the irrigation gate closer to river mouth (Con Nhat) than at the upstream gate (Ha Mieu), which generally increased from 2003 to 2012, with the average maximum concentration up to 2.13 % at Con Nhat gate in 2010. The salt water concentration in the riverside field outside the dyke reached 3.6 %, while among the fields within dyke the salinity was only 0.7 % at maximum in January 2013, and the values were higher in paddy fields close to the dyke than far from the dyke. Average yield among the selected 27 fields from 2011 summer to 2013 spring rice was higher in spring rice (748 g m?2) but lower in summer rice (417 g m?2) mainly due to unfavorable weather such as cold spell at flowering and flood at harvesting time. Rice yield was lowest in general in the most downstream commune Giao Thien, and was significantly lower in field located close to the dyke than those far from the dyke. This spatial variability of rice yield may not be directly attributable to salinity, but to the other factors such as shift of irrigation intake gate to further upstream and/or different management such as less input of N fertilizer and use of traditional local variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号