首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
启动子是基因表达的重要调控元件。利用PCR方法克隆了控制水稻颖壳发育的候选基因TWH1的启动子,并将启动子片段与GUS报告基因融合构建了重组表达载体。通过农杆菌介导的方法将其导入水稻愈伤组织,转基因植株经GUS染色分析显示,各个发育时期的茎秆、叶片、叶鞘、雌雄蕊和孕穗期的颖壳中都有GUS活性表达,但在根和抽穗后的颖壳中未检测到GUS活性。该结果对进一步研究TWH1基因的功能奠定了基础。  相似文献   

2.
一个水稻CCCH型锌指蛋白基因的表达模式分析   总被引:1,自引:1,他引:0  
利用RT-PCR、生物信息学及其启动区与GUS基因的融合表达分析等方法,分析了一个水稻CCCH型锌指基因OsZF77的表达模式。OsZF77开放阅读框包含843个核苷酸,编码280个氨基酸,含有2个CCCH锌指结构域。RT-PCR分析表明该基因在水稻种子的胚乳中具有较高丰度的表达而在胚中不表达。对OsZF77上游2.5kb左右的启动子区段进行分析发现含有种子特异性表达必需的序列元件RY(CATGCATG)。进一步分析了该基因启动子区段与GUS基因融合表达载体的转基因水稻植株,结果表明GUS在种子胚乳特别是靠种皮的外围胚乳中具强表达,而在胚中检测不到GUS活性。以上结果说明该基因是一个胚乳优势表达基因。  相似文献   

3.
大豆种子特异性启动子的克隆及功能分析   总被引:4,自引:0,他引:4  
【目的】从大豆中克隆得到β-伴球蛋白α亚基基因的启动子序列7αP,并对其进行功能分析。【方法】利用PCR技术从大豆基因组DNA中分离β-伴球蛋白α亚基基因启动子序列7αP,将其与GUS基因融合,构建种子特异性表达载体p7αP-GUS,通过根癌农杆菌介导法转化烟草(Nicotiana tabacum)NC89,对再生植株进行PCR、Southern blot检测和GUS组织化学分析。【结果】序列分析表明,7αP长度为1 382 bp,其中含有多种种子特异性启动子的序列元件,如RY重复序列元件、E-box、SEF1-motif、SEF4-motif(、CA)n、Dc3启动子结合因子和ACGT序列元件及一些诱导物应答元件。转基因植株的PCR和Southern blot结果显示,成功地获得了转基因阳性植株;GUS活性检测表明,仅能在种子中检测到GUS活性,而在根、茎和叶等其他组织中均未检测到GUS活性。【结论】大豆β-伴球蛋白α亚基基因上游1 382 bp片段具有种子特异性启动子功能,7αP为种子特异性启动子。  相似文献   

4.
在水稻基因组芯片分析的基础上,克隆到一个在水稻中高水平表达基因OsSG15'末端启动子区域1.6-kb的DNA片断,即Ospz1启动子,构建了由Ospz1启动子引导的GUS重组基因,并经农杆菌介导将重组基因导入到水稻中.对转基因水稻植株中GUS活性的定性测定结果表明,Ospz1启动子可驱动GUS报告基因在转基因水稻植株叶片、芽和根中高效表达,而在其它器官中不表达或表达活性极弱,表现出组织特异性.Ospz1启动子可用于农作物生物技术的遗传改良.  相似文献   

5.
【目的】从玉米幼根基因组DNA中克隆β-葡萄糖苷酶基因根部特异性启动子序列ZmGLU1P,并对其功能进行分析。【方法】利用PCR技术从玉米品种P138幼根基因组DNA中克隆玉米根部特异性启动子片段ZmGLU1P,将其与GUS基因融合,构建植物表达载体pCAMBIA121-ZmGLU1P,转化到EHA105根癌农杆菌中,通过根癌农杆菌介导法转化烟草NC89,对转化烟草植株进行PCR和Southern杂交检测。采集PCR和Southern杂交检测为阳性的转基因烟草的根、茎、叶,进行GUS活性的组织染色检测。【结果】克隆获得了ZmGLU1P片段,其长度为1 846 bp,与已报道的序列同源性达99%以上。转基因烟草植株的PCR和Southern杂交结果显示,成功地获得了转基因阳性植株;GUS活性检测表明,根中GUS活性最强,而在茎和叶等组织中GUS活性甚微,表明ZmGLU1P片段具有根部特异性启动子功能。【结论】玉米β-葡萄糖苷酶基因上游1 846 bp的片段ZmGLU1P具有根部特异性启动子功能,为根部特异性启动子。  相似文献   

6.
【目的】研究水稻HD-ZipⅠ转录因子家族的成员OsHOX6基因启动子的表达。【方法】通过构建水稻OsHOX6基因启动子与GUS基因融合表达载体,利用农杆菌(Agrobacterium)介导,以未成熟水稻胚作为试验材料,转化到水稻IR64,通过PCR检测和潮霉素抗性筛选出阳性的转基因植株,从不同组织取样品,进行X-Gluc染色并观察。【结果】转基因植株的叶、根、茎、花等器官经过X-Gluc染色后,主要在侧根、花粉以及组织损伤部分出现蓝色斑点,其它组织均未检测出蓝色斑点,观察根解剖结构,绿色斑点集中在根内皮层。【结论】 水稻OsHOX6基因启动子能够驱动GUS基因,在转基因水稻侧根和花粉上特异表达。  相似文献   

7.
【目的】从"索邦"百合(Lilium orential"Sorbonne")中克隆查尔酮合成酶基因启动子相似序列PCHS2,并对其进行表达模式分析。【方法】从"索邦"百合中PCR扩增PCHS2启动子序列,与GUS报告基因融合,构建植物表达载体,通过农杆菌介导法转化模式植物拟南芥(Arabidopsis thaliana var.Columbia)和矮牵牛(Petuniahybrida "Dreams Midnight"),抗性筛选和PCR检测鉴定转基因植株,GUS组织化学检测分析启动子在转基因植株中的表达模式。【结果】转基因拟南芥和矮牵牛的抗性筛选和PCR检测结果显示,成功地获得了转基因阳性植株。GUS活性分析表明,在PCHS2的驱动下,仅能在花药和雌蕊中检测到GUS活性,茎、叶和其他花组织中都没有发现GUS活性的表达。【结论】PCHS2启动子具有花药专一性。  相似文献   

8.
为将高效特异的启动子用于转基因水稻研究,利用PCR技术从水稻‘中花11’基因组DNA中克隆了rbcS启动子,序列分析表明,扩增片段(2 746 bp)与已报道的该基因序列相应区域的同源性达99.2%。将rbcS启动子与GUS报告基因融合构建了由rbcS启动子引导GUS基因的植物表达载体,经农杆菌介导法导入到水稻中。对转基因水稻植株中GU S活性的定性与定量测定结果表明,rbcS启动子可驱动GUS报告基因在转基因水稻植株叶片中的特异性表达,其表达水平高于C aMV 35S组成型启动子,而在转基因水稻植株根和种子等器官中不表达或表达活性极弱,表现出明显的组织特异性。  相似文献   

9.
【目的】建立转基因水稻中GUS蛋白质的免疫学检测方法,并了解花椰菜花叶病毒(CaMV)35S启动子驱动的GUS蛋白质在转基因水稻中的表达特征。【方法】以细菌基因组DNA为模板,PCR扩增GUS基因后克隆到表达载体pET30a中,测序验证的重组子转入大肠杆菌表达菌BL21中,IPTG诱导获得重组表达的GUS蛋白质,用HIS-tag beads纯化后作为免疫原免疫小鼠制备GUS蛋白质特异的抗体,通过免疫印迹分析筛选高特异性的单克隆抗体,用Broadford法对重组的GUS蛋白质进行定量,对不同浓度的GUS蛋白质进行免疫印迹分析,绘制检测GUS蛋白质的标准曲线,通过与标准曲线的比较对水稻叶片中GUS蛋白质进行定量分析。提取不同时期、不同部位的水稻总蛋白质,包括苗期的地上部、地下部,分蘖期的茎、茎节、叶鞘、叶枕、叶片上部、叶片中部和叶片下部,孕穗期的茎、穗轴、叶鞘、叶枕、叶片、幼穗(长度分别为1、2、10和20 cm),开花期的茎、穗轴、叶鞘、叶片、穗子,成熟期的茎、叶片、授粉后不同时期的种子(分别为授粉后10、20、30和40 d)、乳熟期的胚、胚乳和颖壳、成熟种子的全种子、胚、胚乳和颖壳以及不同时期的叶片和根部材料等。SDS-PAGE分离后用抗体检测其GUS蛋白质的丰度。【结果】筛选获得了高特异性的抗GUS单克隆抗体(编号为#27),用该抗体检测转基因水稻中及重组的GUS蛋白质均呈现特异条带,没有可见的背景信号,用本研究建立的免疫印迹方法对重组GUS蛋白质的检测下限约为4 ng,可检出转基因水稻单粒大米2.5%样品中(约0.6 mg)的GUS蛋白质。在不同时期的转基因水稻叶片中GUS蛋白质的表达丰度基本稳定,而在水稻根部的GUS丰度随生长急剧减少,5叶期根中的表达量不到3叶期的三分之一,到6叶期检测不到GUS蛋白质。在水稻苗期叶片中,GUS蛋白质约占鲜重的0.02‰。另外,除分蘖期以后的根部之外,GUS蛋白质几乎在所有的水稻组织部位中呈组成型表达,只是不同组织中的表达量略有差异,如在孕穗期和开花期的茎及颖壳中的表达量较低。【结论】建立了具有应用价值的对转基因水稻中GUS蛋白质丰度检测的免疫印记方法。该方法特异性高、样品用量少、不依赖于GUS蛋白质的酶活性、测定结果易于在不同实验室间比较。证明了35S启动子驱动的GUS蛋白质在转基因水稻中基本呈组成型表达。  相似文献   

10.
植物钙依赖型蛋白激酶(CDPK)调控钙信号途径下游组分,与植物的生长发育及各种逆境生理过程密切相关。通过对本课题组克隆的水稻OsCPK9基因的cDNA序列与NCBI中的水稻基因组数据库进行比对、定位,结合生物信息学的方法,预测到基因上游的一段启动子序列。进而利用PCR的方法从水稻‘日本晴’(Oryza sativa L. cv. Nipponbare)基因组DNA中克隆到了水稻OsCPK9基因5’端上游约2 kb的DNA序列,命名为POsCPK9。PLANTCARE在线分析表明,POsCPK9序列除包含植物启动子所必备的基本元件如TATA box 和CAAT box外,还含有多个与逆境和信号物质相关的顺式表达元件。将克隆到的POsCPK9取代pBI121中的CaMV 35S 启动子,构建成POsCPK9与GUS的融合表达载体POsCPK9 GUS;通过农杆菌介导的方法在烟草的根、茎、叶中进行瞬时表达。结果显示,该启动子驱动的GUS基因在烟草的根、茎、叶中都有不同程度的表达。说明OsCPK9基因上游2 kb具有启动子活性。  相似文献   

11.
水稻基因启动子OsBTF3p的克隆和启动活性分析   总被引:3,自引:1,他引:2  
 【目的】分子克隆水稻基因OsBTF3启动子片段,明确其对靶基因表达的启动作用,为抗病转基因水稻研究提供理论依据和启动子元件材料。【方法】对OsBTF3编码区上游1387 bp的启动子(OsBTF3p)序列进行了克隆和序列分析,构建了OsBTF3p∷GUS融合基因植物表达载体pCAM-OsBTF3p,利用农杆菌介导的水稻遗传转化,获得了39株OsBTF3p∷GUS转基因植株,对OsBTF3p进行了启动活性、组织特异性及病原菌诱导性分析。【结果】分子克隆了OsBTF3p片段,其序列与GenBank中的已知序列一致。在转基因水稻愈伤组织中能够检测到GUS活性,表明该启动子具有启动活性。在转基因水稻叶片维管束组织和根部组织能检测到GUS活性。水稻白叶枯病菌(Xoo)侵染后OsBTF3p驱动的GUS活性明显地上调表达。【结论】OsBTF3p具有驱动GUS基因表达的启动活性、组织表达特异性和病原菌诱导性。  相似文献   

12.
一个逆境诱导表达的水稻锌指蛋白基因的分离和鉴定   总被引:5,自引:0,他引:5  
为鉴定逆境应答相关转录因子,以1个水稻EST为基础,通过RT-PCR分离到了1个编码锌指蛋白的转录因子新基因的全长cDNA,命名为OsZF19。该基因编码171个氨基酸,包含zf-AN1和zf-A20两个锌指结构域,预测的该基因启动子区含有逆境应答顺式元件。Northern杂交分析表明,OsZF19的确受到高盐和植物激素ABA胁迫的诱导,而在干旱胁迫早期显著地诱导表达,胁迫后期OsZF19的表达量轻微下降。试验结果表明,OsZF19可能在水稻对干旱和高盐逆境的应答反应中发挥作用。  相似文献   

13.
一个水稻谷胱甘肽-S-转移酶启动子的特性分析   总被引:1,自引:0,他引:1  
从水稻基因组文库中筛选得到1个水稻谷胱甘肽-S-转移酶基因,命名为OsGSTL1。为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5′-端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达。研究表明:在洋葱表皮细胞中,160 bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2 155 bp的上游序列的PGL2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达。但包含1 224 bp的上游序列的PGL1.2::GUS却表现为组成型表达的特性。由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于GST起始位点5′-端上游-2 155 bp~-1 224 bp范围内。  相似文献   

14.
通过对报告基因GUS产物的分析进行了拟南芥2-甲基-6-叶绿基-1,4-苯醌甲基转移酶(MPBQMT)启动子在转基因烟草中的表达特性的初步研究。构建含该启动子和GUS报告基因的植物表达载体,通过农杆菌介导转化烟草,对转基因烟草进行GUS组织化学染色和GUS荧光定量分析该启动子表达特性。GUS在转基因烟草的根和种子中基本不表达,茎上有一定表达,叶上表达量最高,约是茎的4.7~10.9倍。结果表明MPBQMT基因启动子主要在烟草绿色组织中特异性高表达。  相似文献   

15.
韩秋敏 《安徽农业科学》2007,35(4):1011-1011,1013
将已知的拟南芥细胞分裂素受体Cre1a序列的保守区输入Blast软件,得到5个与拟南芥Cre1基因具有同源性的基因,即OsCRL1a、OsCRL1b、OsCRL2、OsCRL3和OsCRL4.前面4个基因与拟南芥具有相似的结构,所以它们可能与拟南芥Cre1基因具有相似的功能;而OsCRL4 基因与拟南芥Cre1基因相比,只有一个关键的结构域相同.RT-PCR和GUS染色结果表明,OsCRL4的表达具有特异性,主要在侧根基部、根茎结合部表达,在茎、叶中不表达;该基因在水稻内起到类似细胞分裂素受体的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号