首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 301 毫秒
1.
《山东农业科学》2019,(12):120-126
随着人类活动的影响,重金属污染逐渐成为土壤和环境研究的重点。采用遥感技术可以克服传统重金属监测过程中的缺点,做到快速、高效地反映重金属空间分布。本文以克拉玛依市某区域为研究区,利用SVC HR-768光谱仪和Landsat8影像对41块土壤样品进行地物光谱和波段反射率的获取,采用相关性分析和偏最小二乘回归的原理,建立地物光谱与Landsat8数据的土壤铅含量反演模型。结果表明,基于一阶微分变换的地物光谱能更好地反映光谱与重金属铅含量的相关性,建立的模型为最优预测模型;通过波段比值和波段差值方式建立的基于Landsat8波段反射率的反演模型精度较好,能粗略预测土壤重金属铅的含量,并且基于Landsat8影像反演的土壤铅含量空间分布符合土壤样点实测值的空间分布,为今后土壤环境监测土壤重金属含量提供数据支撑。  相似文献   

2.
基于Landsat 8 OLI辅助的亚米级遥感影像树种识别   总被引:4,自引:2,他引:2  
为研究高空间分辨率遥感影像与多光谱遥感影像协同进行面向对象树种识别的有效性,本研究以QuickBird高空间分辨率(全色0.61 m)和Landsat 8 OLI(30 m)遥感影像为基础数据,在分类的过程中采用2种分割方案(有Landsat 8 OLI遥感影像辅助的QuickBird遥感影像分割和无Landsat 8 OLI遥感影像辅助的QuickBird遥感影像分割)进行多尺度分割,对2种分割方案进行比较。基于QuickBird遥感影像和Landsat 8 OLI遥感影像提取光谱、纹理、空间3方面68种分类特征,应用最邻近分类法和支持向量机分类方法进行面向对象树种分类,采用相同的分类系统、统一的分割尺度以及同一套验证样本,利用Kappa系数、总精度、生产者精度和用户精度4个评价指标进行精度评价。结果表明:单独使用QuickBird高空间分辨率遥感影像的分割结果优于QuickBird高空间分辨率遥感影像与Landsat 8 OLI遥感影像协同分割的结果,最优分割阈值与合并阈值分别为25和90。在最优分割结果的基础上,多光谱Landsat 8 OLI遥感影像与QuickBird高空间分辨率遥感影像协同进行面向对象分类,最邻近分类法和支持向量机分类方法的分类总精度分别为85.35%(Kappa=0.701 3)和88.12%(Kappa=0.853 6);单独使用QuickBird高空间分辨率遥感影像进行面向对象分类,2种方法的分类总精度分别为79.67%(Kappa=0.693 9)和83.33%(Kappa=0.792 5)。QuickBird遥感影像在Landsat 8 OLI遥感影像辅助下,分类结果的地物边界更加清晰,总体精度及主要树种识别精度均得到了提高。研究成果应用在实地森林调查与区划时可有效缩短调査时间、减少调查成本、降低劳动强度、提高成果质量。   相似文献   

3.
以GF-1和Landsat 8遥感影像为数据源,以依安县、拜泉县为研究对象,结合研究区土壤采样的化验数据,比较2种遥感影像在反演土壤有机质含量方面的能力与差异。结果表明,2种遥感影像在可见光与近红外波段的反射率与土壤有机质含量显著相关,且在近红外波段相关性最大,利用GF-1近红外波段建立的指数模型比利用Landsat 8近红外波段建立的幂模型估测效果略好。引入蓝波段(深蓝波段)、红波段建立起来的多元回归模型比单波段模型具有更高的反演精度,尤以对Landsat 8遥感影像的改善效果更明显。与Landsat 8相比,GF-1遥感影像具有更高的空间分辨率和更短的重访周期,在土壤有机质含量的探测方面具有相近的预测能力,可以替代Landsat 8遥感影像。  相似文献   

4.
首先利用Landsat8 OLI和GF-1 WFV卫星的多光谱影像分别对新疆阿勒泰科克苏湿地的离散水体进行支持向量机模型分类和最大似然模型分类,以选出最佳的分类模型;然后对Landsat8 OLI和GF-1 WFV影像分别提取灰度共生矩阵纹理特征、Getis指数特征和Moran’I指数特征,并与其对应的多光谱影像进行组合得到包括原始多光谱影像在内的7种组合特征集,利用选出的最佳分类模型对特征集进行离散水体提取,对其精度检验结果进行对比。结果表明,对Landsat8 OLI和GF-1 WFV卫星的多光谱影像同时引入Getis指数特征和灰度共生矩阵纹理特征能够明显提高分类精度,Landsat8 OLI影像Kappa系数从0.815 7提高到0.922 3,总体精度从94.25%提高到97.50%;GF-1 WFV影像的Kappa系数从0.832 6提高到0.932 4,总体精度从94.75%提高到98.25%。综合可知,Getis指数和灰度共生矩阵同时作为新的特征波段引入到多光谱影像上,对于离散水体信息提取具有积极效果。  相似文献   

5.
首先利用Landsat8 OLI和GF-1 WFV卫星的多光谱影像分别对新疆阿勒泰科克苏湿地的离散水体进行支持向量机模型分类和最大似然模型分类,以选出最佳的分类模型;然后对Landsat8 OLI和GF-1 WFV影像分别提取灰度共生矩阵纹理特征、Getis指数特征和Moran’I指数特征,并与其对应的多光谱影像进行组合得到包括原始多光谱影像在内的7种组合特征集,利用选出的最佳分类模型对特征集进行离散水体提取,对其精度检验结果进行对比。结果表明,对Landsat8 OLI和GF-1 WFV卫星的多光谱影像同时引入Getis指数特征和灰度共生矩阵纹理特征能够明显提高分类精度,Landsat8 OLI影像Kappa系数从0.815 7提高到0.922 3,总体精度从94.25%提高到97.50%;GF-1 WFV影像的Kappa系数从0.832 6提高到0.932 4,总体精度从94.75%提高到98.25%。综合可知,Getis指数和灰度共生矩阵同时作为新的特征波段引入到多光谱影像上,对于离散水体信息提取具有积极效果。  相似文献   

6.
以2015年Landsat8多光谱遥感影像作为基本信息源,在各地物光谱特征差异分析的基础上,采用谱间关系法与阈值法,构建不同水质水体提取模型,并结合实地水质监测数据及污染源数据,对提取结果进行精度评价与分析。结果表明,基于该方法能将一般水体、富营养化水体与其他地物区别开来,可以准确有效地获取不同水质的水体信息。  相似文献   

7.
在南方水稻遥感监测中,单一传感器影像数据已不能满足监测精度的要求,需要将高空间分辨率全色影像与中高空间分辨率多光谱影像进行融合,得到新的高空间分辨率多光谱影像,有利于改善影像识别与分类精度.该文利用江苏省金湖地区HJ-1A卫星30m分辨率多波段影像与ALOS卫星2.5m分辨率全色影像进行水稻监测,采用4种融合方法(Brovey变换、IHS变换、高通滤波和小波变换)对2种影像进行融合处理.随后对各种融合影像结果进行了目视定性和融合评价指标定量说明与评价,结果表明小波变换在空间与光谱信息上具有最佳的融合效果.进一步利用小波变换的融合影像进行水稻识别与面积提取,统计表明融合影像相比HJ-1A多光谱影像,水稻面积估测精度从79.26%提高到91.65%.因此,利用多源遥感数据融合的方法对南方水稻面积进行监测,可显著提高其监测精度.  相似文献   

8.
土地利用分类中OLI影像合成最佳波段组合研究   总被引:1,自引:0,他引:1  
为了将Landsat8_OLI遥感影像应用于土地利用分类中,以新疆维吾尔自治区阿拉尔市Landsat8_OLI遥感影像为试验数据,在对试验数据进行光谱特征分析的基础上,采用最佳指数(OIF)法对Landsat8_OLI遥感影像合成最佳波段组合进行了研究。结果表明,Landsat8_OLI数据各波段中,Band5包含的地物信息最丰富;Landsat8_OLI最佳波段组合为OLI457,其结果具有较好的目视效果。  相似文献   

9.
基于Landsat5 TM的麻城杜鹃花光谱分析与波段选择   总被引:1,自引:0,他引:1  
以2010年4月27日Landsat 5 TM影像数据为基础,利用影像的光谱数据对麻城市杜鹃花进行了光谱特征分析,并运用均值、标准差和相关系数等指标定量分析了TM数据各波段间的特征,用最佳指数法(OIF)对各种波段组合进行了比较,确认345波段组合最适合麻城杜鹃花分布研究。研究结果可为进一步应用TM影像进行杜鹃花资源信息提取参考。  相似文献   

10.
以福建省将乐县国有林场为研究对象,通过外业实地调查得到样地蓄积量:以Landsat 8卫星遥感图像为数据源,对遥感图像进行处理,获取多光谱影像的波段光谱值、植被指数和波段组合值,并筛选出全色波段的最优纹理生成窗口与纹理特征;通过多元回归分析方法,分别建立仅以光谱因子为自变量和结合光谱信息和纹理特征的蓄积量估测模型,并比较两者之间的精度。实验结果表明:光谱因子的多元线性回归方程的相关系数为0.853,联合光谱和纹理特征因子反演的多元回归方程的相关系数为0.926。同时利用检验数据,得出模型的预测精度:光谱因子蓄积量的估算方程精度为79.81%,联合反演蓄积量的估算方程精度为85.98%。研究表明:引入纹理特征后蓄积量的预测精度得到一定程度的提高,利用Landsat 8全色波段的纹理特征进行蓄积量估测具有良好的应用前景。  相似文献   

11.
为检测高分辨率遥感影像不同波段纹理特征对于森林蓄积量估算精度的影响,以湖北省荆门市京山县太子山林场马尾松纯林为对象,基于灰度共生矩阵的方法分别提取高分辨率遥感影像Worldview-2 红光、绿光、蓝光、近红外波段和全色波段的纹理特征,利用随机森林算法,分别建立野外样地蓄积量与纹理参数的模型。结果表明,全色波段对马尾松森林的精度最高(R2=0.86,RMSE=47.37 m3·hm-2),其次是绿色波段(R2=0.85,RMSE=50.82 m3·hm-2)和近红外波段(R2=0.85,RMSE=46.85 m3·hm-2),蓝色波段(R2=0.68,RMSE=60.72 m3·hm-2)和红色波段(R2=0.69,RMSE=56.27 m3·hm-2)的精度最低;窗口大小对模型精度影响较小,全色波段的R2取值在0.82~0.86,RMSE取值在47.66~51.99 m3·hm-2,多光谱波段的R2取值在0.88~0.89;蓝色和红色波段的非相似度(DIS)的估算模型精度相对较高,绿色波段的对比度(CON)(R2=0.87,RMSE=46.21 m3·hm-2)估算精度最高,红色波段的非相似度(R2=0.68,RMSE=58.30 m3·hm-2)估算精度较高,近红外波段的角二阶矩阵(ASM)(R2=0.68,RMSE=60.30 m3·hm-2)精度最高,全色波段的对比度、相关性、熵、变化量模型精度较高,R2为0.85。利用高分辨率遥感影像纹理特征估算森林参数时需综合考虑不同波段的纹理特征对模型的贡献。  相似文献   

12.
遥感影像融合与分类在城市边缘带扩展监测中应用研究   总被引:2,自引:0,他引:2  
探讨了TM30m分辨率波段与SPOT10m分辨率全色波段通过融合来提高城市扩展动态监测精度的方法和应用潜力。首先采用IHS变换完成TM的多光谱波段与SPOT全色波段融合,增强变化信息在光谱和几何特征上的表征,然后采用最大似然分类方法对融合图像进行分类。实验结果表明光谱与纹理特征组合在用户精度上比单纯光谱、纹理特征分类分别提高21.87%和10.22%;在生产者精度上比各自分别提高8.4%和17.88%;Kappa系数分别提高0.10和0.21。通过高几何分辨率图像与多光谱波段融合方法可以,增强变化信息,纹理特征参与变化信息提取可以提高变化类型的分类精度。  相似文献   

13.
卷云广泛存在于大气中,严重阻碍光学遥感对地观测过程,降低了数据的精度与可用性.针对此问题,以卷云检测波段为参考,联合散射与统计规律,提出了一种卷云自动校正方法.方法首先利用散射规律推导出卷云检测波段与待校正波段间的定量关系;进一步地,以卷云检测波段为校正参考基准,联合线性波段统计规律,实现各待校正波段卷云强度的估计与去除.选择多光谱Landsat-8 OLI(Operational land imager)为试验数据对方法有效性和场景适应性进行测试,并进一步拓展至高光谱AVIRIS(Airborne visible infrared imaging spectrometer)和高分五号AHSI(Advanced hyperspectral imager)影像数据.结果表明提出方法可有效去除不同波段的卷云干扰,适用于各类地表覆被类型影像,准确复原降质地表信息,在目视与定量评测方面均有较好表现,可满足定量遥感等应用要求.  相似文献   

14.
针对区域尺度森林地上生物量的分布情况,以大兴安岭生态观测站为例,提出了一种融合光学影像纹理和机载LiDAR点云特征的森林地上生物量遥感估测方法。该方法首先提取Landsat 8 OLI不同波段在不同运算窗口下的纹理特征;然后对机载LiDAR点云进行滤波提取地面点,并利用地面点对点云数据进行高度归一化处理,提取点云特征因子;最后结合提取的遥感特征因子,利用支持向量回归的方法对研究区森林地上生物量进行估测,并对结果进行精度验证。结果表明:不同波段和窗口尺寸的建模精度差异较大,蓝光波段在7×7运算窗口下模型精度最高(R~2=0.73,R_(MSE)=22.32 t/hm~2);点云高度分位数变量的建模精度呈正态分布,变量H_(50)的建模精度最高(R~2=0.75,R_(MSE)=19.24 t/hm~2);与单一的遥感特征变量相比,融合光学影像纹理和机载LiDAR点云特征的模型精度有了一定提高,且针叶林和混交林的估测R_(MSE)分别为19.63和20.40 t/hm~2。因此,该方法可以为区域性的森林地上生物量估测提供有效参考。  相似文献   

15.
植被覆盖度作为反映湿地植物生长状况的重要生态学参数,在评估和检测湿地生态环境方面起着关键的作用.以华北内陆典型的淡水湿地——北京市野鸭湖湿地自然保护区为研究对象,中等分辨率的Landsat TM影像为数据源,基于线性光谱混合模型(LSMM)对研究区的植被覆盖度进行了估算.针对湿地植被类型丰富、土地利用类型多样化的特点,利用归一化植被指数(NDVI)在反映植物生长状况、覆盖程度以及区分地表覆盖类型方面的优势,通过对原始Landsat TM影像增加NDVI数据维对影像进行维度扩展,克服了传统研究中通常从Landsat TM影像上提取3-4种端元的局限,经最小噪声分离变换(MNF变换)、纯像元指数(PPI)计算以及人机交互端元选取等一系列运算,构建以陆生植物、水生植物、高反射率地物、低反射率地物、裸露土壤为组分的五端元模型来反映研究区的地物组成;同时,以原始Landsat TM影像为基础,构建植物、高反射率地物、低反射率地物、裸露土壤为组分的四端元模型.针对两种端元模型,采用全约束下的LSMM算法进行混合像元分解以获取研究区的植被覆盖度,其次辅以研究区的纯水体信息对其进行优化.精度检验采用相同时期的高分辨率WorldView-2多光谱影像来进行.研究表明:虽然四端元模型与五端元模型对植被覆盖度的估算结果在空间上具有基本一致的分布趋势,但是前者的估算结果在数值上要普遍低于后者,在研究区的水体及其附近,四端元模型难以体现水生植物的植被覆盖信息;另外,五端元模型的估算结果与检验数据的相关系数R达到0.9023,均方根误差(RMSE)为0.0939,明显优于四端元模型的R=0.8671和RMSE=0.1711.这反映了通过对影像进行维度扩展的方法来改进端元提取的数量是可行的,而由此构建的五端元模型可以更充分的反映研究区地物之间的光谱差异,从而获得更好的估算精度.  相似文献   

16.
《农业科学学报》2019,18(6):1230-1245
Leaf chlorophyll content(LCC) is an important physiological indicator of the actual health status of individual plants. An accurate estimation of LCC can therefore provide valuable information for precision field management. Red-edge information from hyperspectral data has been widely used to estimate crop LCC. However, after the advent of red-edge bands in satellite imagery, no systematic evaluation of the performance of satellite data has been conducted. Toward this end, we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye, Sentinel-2 and EnMAP) and their new red-edge bands by using partial least squares regression(PLSR) and a vegetation-indexbased approach. These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution. The results showed: 1) This study confirmed that RapidEye, Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval. For the PLSR approach, Sentinel-2 data provided more accurate estimates of LCC(R2=0.755, 0.844, 0.805 for 2002, 2010, and 2002+2010) than do RapidEye data(R2=0.689, 0.710, 0.707 for 2002, 2010, and 2002+2010) and EnMAP data(R2=0.735, 0.867, 0.771 for 2002, 2010, and 2002+2010). For index-based approaches, the MERIS terrestrial chlorophyll index, which is a vegetation index with two red-edge bands, was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628), and the indices(NDRE1, SRRE1 and CIRE1) with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420); 2) According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval, the short-wavelength red-edge bands(from 699 to 734 nm) provided more accurate predictions when using the PLSR approach, whereas the long-wavelength red-edge bands(740 to 783 nm) gave more accurate predictions when using the vegetation indice(VI) approach. In addition, the prediction accuracy of RapidEye, Sentinel-2 and EnMAP data was improved gradually because of more number of red-edge bands and higher spectral resolution; VI regression models that contain a single or multiple red-edge bands provided more accurate predictions of LCC than those without red-edge bands, but for normalized difference vegetation index(NDVI)-, simple ratio(SR)-and chlorophyll index(CI)-like index, two red-edge bands index didn't significantly improve the predictive accuracy of LCC than those indices with a single red-edge band. Although satellite data with higher spectral resolution and a greater number of red-edge bands marginally improve the accuracy of estimates of crop LCC, the level of this improvement remains insufficient because of higher spectral resolution, which results in a worse signal-to-noise ratio. The results of this study are helpful to accurately monitor LCC of winter wheat in large-area and provide some valuable advice for design of red-edge spectral bands of satellite sensor in future.  相似文献   

17.
Increased availability of hyperspectral imagery necessitates the evaluation of its potential for precision agriculture applications. This study examined airborne hyperspectral imagery for mapping cotton (Gossypium hirsutum L.) yield variability as compared with yield monitor data. Hyperspectral images were acquired using an airborne imaging system from two cotton fields during the 2001 growing season, and yield data were collected from the fields using a cotton yield monitor. The raw hyperspectral images contained 128 bands between 457 and 922 nm. The raw images were geometrically corrected, georeferenced and resampled to 1 m resolution, and then converted to reflectance. Aggregation functions were then applied to each of the 128 bands to reduce the cell resolution to 4 m (close to the cotton picker's cutting width) and 8 m. The yield data were also aggregated to the two grids. Correlation analysis showed that cotton yield was significantly related to the image data for all the bands except for a few bands in the transitional range from the red to the near-infrared region. Stepwise regression performed on the yield and hyperspectral data identified significant bands and band combinations for estimating yield variability for the two fields. Narrow band normalized difference vegetation indices derived from the significant bands provided better yield estimation than most of the individual bands. The stepwise regression models based on the significant narrow bands explained 61% and 69% of the variability in yield for the two fields, respectively. To demonstrate if narrow bands may be better for yield estimation than broad bands, the hyperspectral bands were aggregated into Landsat-7 ETM+ sensor's bandwidths. The stepwise regression models based on the four broad bands explained only 42% and 58% of the yield variability for the two fields, respectively. These results indicate that hyperspectral imagery may be a useful data source for mapping crop yield variability.  相似文献   

18.
潮沟作为潮滩的主要地貌类型之一,以长江口九段沙为研究对象,利用2015年2月15日获取的Landsat 8分辨率为15 m的全色波段遥感数据为数据源,选取了3条发育不同的潮沟。首先利用顶帽变换来消除直接利用最大类间方差法对图像亮度背景不均匀不能准确分割的问题,然后通过最大类间方差法找到一个最佳的阈值使潮沟和背景之间方差最大,得到二值化图像;接着通过形态膨胀对断裂的潮沟进行连接,并用形态去除方法剔除非目标;最后对潮沟进行骨架化提取和去除短枝处理,得到完整的潮沟信息骨架图。采用视觉分析和定量分析对提取的潮沟信息进行精度评价。结果表明,最大类间方差法和数学形态学的结合对潮沟信息提取有较好的效果,平均准确度达到93.0%,遗漏误差和冗余误差分别为7.0%和0.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号