首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In each of three trials, 240 crossbred barrows weaned at 17 d of age (5.1 kg BW) were assigned to one of three experimental treatments based on light and heavy weight outcome groups. Experimental treatments were 1) wean-to-finish at 0.69 m2/pig and 15 pigs/pen; 2) wean-to-finish double-stocked at 0.35 m2/pig, 30 pigs per pen for 8 wk and then randomly split into two pens (either stayed in same pen or moved to new pen) for growth to slaughter at 0.69 m2/pig; and 3) nursery facility for 8 wk at 0.35 m2/pig and 15 pigs/pen followed by move to the same grow-finish facility housing wean-to-finish and double-stocked pigs and maintaining pen integrity. Beginning at 38 kg BW, diets were supplemented with either bacitracin methylenedisalicylate at 33 mg/kg to slaughter or tylosin at 44 mg/kg to 59 kg BW and 22 mg/kg thereafter. There were no trial x treatment interactions, even though there was considerable variation in health status among trials. At the end of the 56-d nursery period, wean-to-finish pigs weighed more than nursery (28.7 vs 27.7 kg; P = 0.071) and double-stocked pigs (28.7 vs 26.9 kg; P = 0.002), due to greater ADG (wean-to-finish vs nursery; P = 0.062; wean-to-finish vs double-stocked; P = 0.002) and greater ADFI (wean-to-finish vs nursery; P = 0.024; wean-to-finish vs double-stocked, P = 0.002). There was no effect of treatments (P > 0.1) on ADG, feed conversion, carcass lean percentage, or lean gain during the growing-finishing period. There was also no effect of treatment (P > 0.1) on ADG or ADFI from weaning to slaughter. There was no difference (P > 0.1) between bacitracin methylenedisalicylate and tylosin for ADG, feed conversion, carcass lean percentage, or daily lean gain. These data suggest that housing 5-kg weaned pigs in fully slatted growing-finishing facilities from weaning to slaughter was not detrimental to overall performance. In this experiment, dietary additions of bacitracin methylenedisalicylate or tylosin from 38 kg BW to slaughter weight resulted in similar growth performance.  相似文献   

2.
Crossbred barrows (n = 144; 80 kg) from four farrowing groups were phenotypically selected into fat (FAT) and lean (LEAN) pens using ultrasound. The difference in 10th-rib fat depth between the LEAN and FAT groups was > or =0.5 cm. Within a farrowing group, pigs were assigned to pens (five pigs per pen and eight pens per phenotype) to equalize pen weight and fat depth. Pigs were fed a corn-soybean meal diet containing 19% CP, 1.0% added animal/vegetable fat, and 1.1% lysine (as-fed basis). Half the pens received 10 ppm (as-fed basis) of ractopamine (RAC) during the 28-d finishing phase. At 7-d intervals, live weight and feed disappearance were recorded to calculate ADG, ADFI, and G:F, and 10th-rib fat depth and LM area were ultrasonically measured to calculate fat-free lean and fat and muscle accretion rates. During the first 7 d on feed, LEAN pigs fed RAC gained less (P < 0.05) than FAT pigs fed RAC or LEAN and FAT pigs fed the control diet (RAC x phenotype; P = 0.02); however, RAC did not (P > 0.25) affect ADG after the second, third, and fourth weeks, or over the entire 28-d feeding period. Although wk-2 and -3 ADG were higher (P < or = 0.03) in LEAN than in FAT pigs, phenotype did not (P = 0.08) affect overall ADG. Dietary RAC decreased (P < or = 0.05) ADFI over the 28-d feeding trial, as well as in wk 2, 3, and 4, but intake was not (P > 0.20) affected by phenotype. Neither RAC nor phenotype affected (P > 0.10) G:F after 7 d on trial; however, RAC improved (P < or = 0.04) wk-3, wk-4, and overall G:F. Lean pigs were more efficient (P < or = 0.05) in wk 2 and 3 and over the duration of the trial than FAT pigs. Ultrasound LM accretion (ULA) was not (P > or = 0.10) affected by RAC; however, LEAN pigs had greater (P < or = 0.02) ULA in wk 2 and 4 than FAT pigs. Although fat depth was lower (P < 0.01) in RAC-fed pigs than pigs fed the control diet, ultrasound fat accretion rate indicated that RAC-pigs deposited less (P = 0.04) fat only during wk 4. In addition, calculated fat-free lean (using ultrasound body fat, ULA, and BW) was increased (P < 0.05) in RAC pigs after 3 and 4 wk of supplementation. In conclusion, RAC enhanced the performance of finishing swine through decreased ADFI and increased G:F, whereas carcass lean was enhanced through decreases in carcass fat and increases in carcass muscling.  相似文献   

3.
Three experiments were conducted to determine the optimal level of dried distiller grains with solubles (DDGS) from a common ethanol manufacturing facility and to determine the potential interactions between dietary DDGS and added fat on performance and carcass characteristics of growing and finishing pigs. All experiments were conducted at the same commercial facility and used DDGS from the same ethanol manufacturing facility. In Exp. 1, a total of 1,050 pigs (average initial BW 47.6 kg), with 24 to 26 pigs per pen and 7 pens per treatment, were fed diets containing 0 or 15% DDGS and 0, 3, or 6% added choice white grease in a 2 x 3 factorial arrangement in a 28-d growth study. Overall, there were no DDGS x added fat interactions (P >/= 0.14). There was an improvement (linear, P < 0.01) in ADG and G:F as the percentage of added fat increased. There was no difference (P = 0.74) in growth performance between pigs fed 0 or 15% DDGS. In Exp. 2, a total of 1,038 pigs (average initial BW 46.3 kg), with 24 to 26 pigs per pen and 10 pens per treatment, were fed diets containing 0, 10, 20, or 30% DDGS in a 56-d growth study. Pigs fed diets containing DDGS had a tendency for decreased ADG and ADFI (both linear, P = 0.09 and 0.05, respectively), but the greatest reduction seemed to occur between pigs fed 10 and 20% DDGS. In Exp. 3, a total of 1,112 pigs (average initial BW 49.7 kg), with 25 to 28 pigs per pen and 9 pens per treatment, were used in a 78-d growth study to evaluate the effects of increasing DDGS (0, 5, 10, 15, or 20%) in the diet on pig growth performance and carcass characteristics. From d 0 to 78, ADG and ADFI decreased linearly (P 相似文献   

4.
Two experiments were conducted to determine the effect of lightweight pig removal and remixing on performance to slaughter. Experiment 1 was a growing-finishing trial utilizing a total of 900 pigs (26.2+/-0.1 kg initial weight) that were sorted and remixed at a mean replicate BW of 72 kg. Experiment 2 was a wean-to-finish trial (17 d mean wean age; 4.8 kg +/- 0.1 BW) utilizing 225 barrows with sorting and remixing occurring 3 wk after weaning. Treatments were 15 pigs/ pen from initial weight to slaughter (15S), 20 pigs/pen from initial weight to time of sort and remix and then reduced to 15 pigs/pen (20/15), and 15 pigs/pen from time of sort and remix to slaughter comprised of the five lightest pigs from each of three 20/15 pens per replicate (15M). Space allocation was 0.56 m2/pig from 26 to 70 kg and 0.74 m2/pig thereafter in Exp. 1. In Exp. 2, pen size was fixed at 2.44 x 4.27 m. In Exp. 1, there was no effect (P > 0.20) of treatment on performance prior to 70 kg. Least squares means for ADG from time of sort and remix to first pig removal from a pen for slaughter at 113 kg were 0.93, 0.87, and 0.91 kg/d for the 20/15, 15M, and 15S treatments, respectively (P < 0.05). When comparing the population represented by the 20/15 + 15M treatments vs the 15S population, there was no difference (P > 0.20) in ADG, ADFI, feed conversion, or carcass lean content. In Exp. 2, pigs in the 20/15 treatment grew slower (P < 0.05) than 15S pigs for the first 21 d (0.20 vs 0.22 kg/d, respectively) with a lower ADFI (P = 0.06) and no difference in feed conversion. When comparing the population represented by the 20/15 + 15M treatments vs the 15S population after sorting and remixing, there was no effect (P > 0.15) of experimental treatments on ADG, ADFI, feed conversion efficiency, carcass lean content, or daily lean gain. These results suggest that removal of lightweight pigs and remixing of the removed pigs into pens of similar-weight pigs is ineffective in improving the overall performance of a population of pigs during the postweaning period.  相似文献   

5.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

6.
Effects of ractopamine on genetically obese and lean pigs   总被引:2,自引:0,他引:2  
Twenty-eight genetically obese and 24 lean barrows (65.0 and 68.7 kg average BW, respectively) were allotted within genotype to a 16% CP corn-soybean meal basal diet or this basal diet + 20 ppm ractopamine (a phenethanolamine beta-adrenergic agonist) and allowed ad libitum access to feed for 48 d. Compared to lean pigs, obese pigs had lower ADG, gain to feed ratio, longissimus muscle area, predicted amount of muscle, and weights of trimmed loin and ham, ham lean, heart, spleen, kidney and gastrointestinal tract (P less than .05). Obese pigs also had shorter carcass but higher dressing percentage, backfat thickness, fat depth, fat area, untrimmed loin weight and fasting plasma urea N concentration (P less than .05). Dietary supplementation with 20 ppm ractopamine reduced daily feed intake and improved gain to feed ratio in both lean and obese pigs (P less than .05). Pigs fed ractopamine had shorter carcasses, less fat depth and fat area, smaller weights of stomach and colon plus rectum, but higher dressing percentages, longissimus muscle areas, weights of trimmed Boston butts, picnics and loins, ham lean and predicted amounts of muscle than pigs not fed ractopamine (P less than .05). Supplemental ractopamine had no effect on fasting plasma concentrations of urea N, nonesterified fatty acids, triglyceride or glucose (P greater than .05). No genotype x ractopamine interactions for the criteria described above were detected (P greater than .05). These results suggest that ractopamine will improve the efficiency of feed utilization and carcass leanness in swine with different propensities for body fat deposition.  相似文献   

7.
An experiment was conducted to determine the effects of betaine, pen space, and preslaughter handling method on growth, carcass traits, and pork quality of finishing barrows. For the growth trial, a 2 x 2 factorial arrangement of treatments was used: betaine (0 or 0.250%) and(or) pen space (m2/pig; adequate, 0.035 BW0.67 kg, or inadequate, 0.025 BW0.67 kg). Each treatment was replicated five times with four barrows per replicate. At trial termination, two barrows from each pen were selected to receive either minimal or normal preslaughter handling. Reducing pen space decreased (P < 0.05) overall ADG and gain:feed and tended (P = 0.12) to decrease overall ADFI. Betaine had no affect (P > 0.10) on overall ADG, ADFI, or gain:feed. Pigs fed betaine had decreased (P < 0.10) carcass length. Other carcass and ham measurements were not affected (P > 0.10) by betaine. Pigs with inadequate pen space had increased (P < 0.10) ultimate pH, subjective color, cooking loss (fresh and frozen chop), and shear force but decreased rectal temperature, loin muscle CIE L*, biceps femoris CIE b*, and drip loss. Pigs subjected to minimal preslaughter handling had decreased (P < 0.10) rectal temperature, plasma cortisol, loin muscle CIE b*, and fresh chop total loss (drip + cooking loss). Pigs fed betaine had increased (P < 0.01) initial pH and decreased (P < 0.10) drip loss (fresh chop). Cooking loss and total loss (frozen chop) were decreased in pigs fed betaine with adequate pen space but increased in pigs fed betaine with inadequate pen space (betaine x pen space, P < 0.01). Pigs fed betaine may have improved pork quality.  相似文献   

8.
Two experiments were conducted to determine the variation in response to space allocation between barrows and gilts and to examine an alternative allocation regimen for barrows and gilts. Experimental space allocations in both experiments were achieved by varying the number of pigs per pen in a fully slatted facility. In Exp. 1, barrows were given 0.58 and 0.65 m2/pig (nine and eight pigs per pen, respectively) and gilts were given 0.65 and 0.74 m2/pig (eight and seven pigs per pen, respectively). In addition, barrows at 0.58 m2/pig were fed diets formulated for barrows or diets formulated for gilts. Barrows grew 4.8% slower (P = 0.031) and ate 3.1% less feed daily (P = 0.062) at 0.58 vs. 0.65 m2/pig from 22 to 115 kg BW, with no difference in feed conversion, daily lean gain, carcass lean percent, or variation in weight within the pen at time of first pig removal to slaughter. There was no improvement in daily gain, feed intake, feed efficiency, lean gain, or carcass lean percent when gilts were given 0.74 vs. 0.65 m2/pig from 22 to 115 kg BW. There was no difference in performance between the population that consisted of barrows and gilts at 0.65 m2/pig vs. the population of barrows at 0.58 m2/pig and gilts at 0.74 m2/pig. There was no difference in performance by barrows at 0.58 m2/pig when fed either barrow or gilt diets, except for a slight increase (P = 0.078) in within-pen weight variation when the first pig was removed for slaughter for the barrows fed gilt diets. In Exp. 2, barrows and gilts were given 0.58 m2/pig or 0.74 m2/pig (18 vs. 14 pigs per pen) from weaning (mean age 17 d) to slaughter on d 168 postweaning. There were no interactions between space allocation and gender. Daily gain and feed intake were decreased by 2.8% (P = 0.037) and 2.9% (P = 0.084), respectively, with no effect on feed conversion or standardized fat-free lean daily gain for the 0.58 vs. the 0.74 m2/pig treatment, whereas total live weight gain per pen was increased 20.8% (P < 0.001). Results of Exp. 1 suggest that space allocation can be used to achieve similar growth rates between barrows and gilts, and results of Exp. 2 suggest that the response to space allocation is similar for barrows and gilts. The difference in magnitude of response to space allocation between experiments may be due in part to when the social group was formed, with a smaller difference in performance in Exp. 2 associated with a stable social group from weaning to slaughter.  相似文献   

9.
Two hundred sixteen crossbred barrows and gilts (84.3 kg BW) were used to test the effects of dietary energy density and lysine:energy ratio (Lys:ME) on the performance, carcass characteristics, and pork quality of finishing pigs fed 10 ppm ractopamine. Pigs were blocked by BW and gender, allotted to 36 pens (six pigs per pen), and pens were assigned randomly within blocks to dietary treatments (as-fed basis) arranged in a 2 x 3 factorial design, with two levels of energy (3.30 or 3.48 Mcal/kg) and three Lys:ME (1.7, 2.4, or 3.1 g lysine/Mcal) levels. Pigs were fed experimental diets for 28 d, and weights and feed disappearance were recorded weekly to calculate ADG, ADFI, and G:F. Upon completion of the feeding trial, pigs were slaughtered and carcass data were collected before fabrication. During carcass fabrication, hams were analyzed for lean composition using a ham electrical conductivity (TOBEC) unit, and loins were collected, vacuum-packaged, and boxed for pork quality data collection. Energy density had no (P > 0.22) effect on ADG or ADFI across the entire 28-d feeding trial; however, pigs fed 3.48 Mcal of ME were more (P < 0.02) efficient than pigs fed 3.30 Mcal of ME. In addition, ADG and G:F increased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. Carcasses of pigs fed 3.48 Mcal of ME were fatter at the last lumbar vertebrae (P < 0.08) and 10th rib (P < 0.04), resulting in a lower (P < 0.03) predicted fat-free lean yield (FFLY). Conversely, 10th-rib fat thickness decreased linearly (P = 0.02), and LM depth (P < 0.01) and area (P < 0.01) increased linearly, with increasing Lys:ME. Moreover, FFLY (P < 0.01) and actual ham lean yield (P < 0.01) increased as Lys:ME increased in the diet. Dietary energy density had no (P > 0.19) effect on pork quality, and Lys:ME did not (P > 0.20) affect muscle pH, drip loss, color, and firmness scores. Marbling scores, as well as LM lipid content, decreased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. There was a linear (P < 0.01) increase in shear force of cooked LM chops as Lys:ME increased in the finishing diet. Results indicate that 3.30 Mcal of ME/kg (as-fed basis) is sufficient for optimal performance and carcass leanness in pigs fed ractopamine. The Lys:ME for optimal performance and carcass composition seems higher than that currently used in the swine industry; however, feeding very high Lys:ME (> 3.0 g/Mcal, as-fed basis) to ractopamine-fed pigs may result in decreased marbling and cooked pork tenderness.  相似文献   

10.
An 8-wk study of the effects of CLA, rendered animal fats, and ractopamine, and their interactive effects on growth, fatty acid composition, and carcass quality of genetically lean pigs was conducted. Gilts (n = 228; initial BW of 59.1 kg) were assigned to a 2 x 2 x 3 factorial arrangement consisting of CLA, ractopamine, and fat treatments. The CLA treatment consisted of 1% CLA oil (CLA-60) or 1% soybean oil. Ractopamine levels were either 0 or 10 ppm. Fat treatments consisted of 0% added fat, 5% choice white grease (CWG), or 5% beef tallow (BT). The CLA and fat treatments were initiated at 59.1 kg of BW, 4 wk before the ractopamine treatments. The ractopamine treatments were imposed when the gilts reached a BW of 85.7 kg and lasted for the duration of the final 4 wk until carcass data were collected. Lipids from the belly, outer and inner layers of backfat, and LM were extracted and analyzed for fatty acid composition from 6 pigs per treatment at wk 4 and 8. Feeding CLA increased (P < 0.02) G:F during the final 4 wk. Pigs fed added fat as either CWG or BT exhibited decreased (P < 0.05) ADFI and increased (P < 0.01) G:F. Adding ractopamine to the diet increased (P < 0.01) ADG, G:F, and final BW. The predicted carcass lean percentage was increased (P < 0.05) in pigs fed CLA or ractopamine. Feeding either 5% fat or ractopamine increased (P < 0.05) carcass weight. Adding fat to the diets increased (P < 0.05) the 10th rib backfat depth but did not affect predicted percent lean. Bellies of gilts fed CLA were subjectively and objectively firmer (P < 0.01). Dietary CLA increased (P < 0.01) the concentration of saturated fatty acids and decreased (P < 0.01) the concentration of unsaturated fatty acids of the belly fat, both layers of backfat, and LM. Ractopamine decreased (P < 0.01) the i.m. fat content of the LM but had relatively little effect on the fatty acid profiles of the tissues compared with CLA. These results indicate that CLA, added fat, and ractopamine work mainly in an additive fashion to enhance pig growth and carcass quality. Furthermore, these results indicate that CLA results in more saturated fat throughout the carcass.  相似文献   

11.
Three experiments were conducted to investigate the effects of beta-glucan supplementation on pig performance and immune function. In Exp. 1, 100 weaned pigs (8.65 +/- 0.42 kg of BW and 28 +/- 2 d of age) were used in a 35-d experiment to determine the effects of graded levels of beta-glucan. Pigs were randomly allotted to 1 of 5 treatments containing beta-glucan supplemented at 0, 25, 50, 100, or 200 ppm. Each treatment was replicated using 5 pens containing 4 pigs per pen. The ADG of pigs between d 14 to 28 and d 0 to 28 responded to dietary beta-glucan in a quadratic fashion (P < 0.05), whereas beta-glucan had no effect on ADFI and G:F in any period. In Exp. 2, 80 crossbred pigs (8.23 +/- 0.56 kg of BW and 28 +/- 2 d of age) were used in a 35-d experiment. Pigs were allotted to 1 of 2 dietary treatments (0 or 50 ppm of beta-glucan in the diet) using 10 pens with 4 pigs per pen. Pigs treated with beta-glucan had greater ADG in the 14- to 28-d (P = 0.05) and 0-to 28-d (P = 0.035) periods. The ADFI of pigs receiving beta-glucan was increased (P < 0.05) in the periods from 0 to 14, 0 to 28, and 28 to 35 d. The lymphocyte proliferation index in response to phytohemagglutinin (P = 0.051) and concanavalin A (P = 0.052) tended to decrease on d 14 in pigs supplemented with beta-glucan compared with pigs without supplementation. In Exp. 3, 24 barrows (8.89 +/- 0.20 kg of BW and 28 d of age) were used to investigate the immunological and somatotropic responses of pigs challenged with lipopolysaccharide (LPS). Experimental treatments were arranged in a 2 x 2 factorial, with the main effects of LPS challenge (saline vs. LPS) and dietary addition of beta-glucan (0 vs. 50 ppm). Pigs were raised individually in metabolic cages. Pigs were fed 0 or 50 ppm of beta-glucan for 28 d and then challenged with LPS (25 microg/kg of BW) or saline. After LPS injection, blood was obtained at 0, 1.5, 3, 4.5, 6, and 7.5 h to determine cytokine production and the somatotropic response. Dietary beta-glucan increased plasma interleukin-6 at 1.5, 3, and 4.5 h and tumor necrosis factor-alpha at 3 and 4.5 h and increased plasma interleukin-10 from 3 to 7.5 h after LPS challenge. The beta-glucan treatments had no effect on growth hormone. In conclusion, beta-glucan can selectively influence performance and partially offer benefits on somatotropic axis and immune function in weaned piglets challenged with LPS.  相似文献   

12.
Two experiments evaluated effects of added pantothenic acid on performance of growing-finishing pigs. In Exp. 1, 156 pigs (PIC, initial BW = 25.7 kg) were used in a 3 x 2 x 2 factorial to evaluate the effects of added pantothenic acid (PA; 0, 22.5, or 45 ppm), ractopamine.HCl (RAC; 0 or 10 mg/kg), and sex on growth performance and carcass traits. Pigs were fed increasing PA from 25.7 to 123.6 kg (d 0 to 98) and RAC for the last 28 d before slaughter. Increasing the amount of added PA had no effect (P > 0.40) on ADG, ADFI, or G:F from d 0 to 70. A PA x sex interaction (P < 0.03) was observed for ADG and G:F from d 71 to 98. Increasing the amount of added PA increased ADG and G:F in gilts, but not in barrows. Increasing the amount of added PA had no effect (P > 0.38) on carcass traits. Added RAC increased (P < 0.01) ADG and G:F for d 71 to 98 and d 0 to 98 and increased (P < 0.01) LM area and percentage lean. In Exp. 2, 1,080 pigs (PIC, initial BW = 40.4 kg, final BW = 123.6 kg) were used to determine the effects of increasing PA on growth performance and carcass characteristics of growing-finishing pigs reared in a commercial finishing facility. Pigs were fed 0, 22.5, 45.0, or 90 mg/kg of added PA. Increasing the amount of added PA had no effect (P > 0.45) on ADG, ADFI, or G:F, and no differences were observed (P > 0.07) for carcass traits. In summary, adding dietary PA to diets during the growing-finishing phase did not provide any advantages in growth performance or carcass composition of growing-finishing pigs. Furthermore, it appears that the pantothenic acid in corn and soybean meal may be sufficient to meet the requirements of 25- to 120-kg pigs.  相似文献   

13.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

14.
One hundred ninety-six crossbred barrows of high lean gain potential (21.2 kg BW) were used in an experiment to determine the effect of dietary feather meal (FM) on barrow performance, specifically, the effects of the ingredient on ADG and carcass leanness. Additionally, 28 gilts (26.8 kg BW) were used to compare gender differences on the corn-soybean meal control diets. Treatments were control barrows and control gilts fed corn-soybean meal diets, and barrows fed according to a 2 x 3 factorial arrangement of FM levels (10 or 20%, as-fed basis) and starting weights on the diets (36, 60, or 86 kg BW). All barrow diets were formulated to contain the same apparent digestible lysine and ME. Control barrows ate more feed (2.61 vs. 2.39 kg/d; as-fed), grew faster (0.911 vs. 0.827 kg/d), had greater backfat depth at slaughter (15.6 vs. 11.6 mm), and had lower carcass lean content (P < 0.001), with no difference in daily lean gain (P = 0.848) compared with gilts. There was a linear (P = 0.010) decrease in ADG for barrows fed increasing amounts of FM from 36 kg BW to slaughter, with no effect of FM additions on ADG when initiated at 60 or 86 kg BW. There was a quadratic reduction (P = 0.008) in ADFI and estimated digestible lysine intake with increasing FM for the 36 to 60 kg BW period for barrows fed FM starting at 36 kg BW. There was a linear (P = 0.006) decrease in ADFI for the 60 to 86 kg BW period with increasing FM for barrows started on FM at 60 kg BW. There was no effect of experimental diets or starting weight on barrow 10th-rib backfat depth at slaughter. These results suggest that diets containing 10 and 20% FM were effective in decreasing overall ADG and ADFI by barrows when feeding of FM was initiated at 36 kg BW; however, backfat at slaughter was still greater than for control gilts.  相似文献   

15.
The objective of this experiment was to determine if increased space and exercise for finisher pigs (0.90 vs 9.45 m2/pig) affects performance, meat quality, or muscle fiber characteristics. Newsham barrows (n = 32, 4 pens/treatment) were placed in one of two space allocations: control space allowance (CONT) or in a long pen with increased space allowance (10x). Pigs were weighed every 28 d and feed intake/pen was calculated. Pigs were filmed for behavioral analysis on d 70 and 100 using video recorders to determine walking distances over a 24-h period. After a 5-h transport and 2-h rest period, pigs (approximately 115 kg) were slaughtered on the same day at a commercial facility. Muscle samples were obtained from the longissimus lumborum (LL) and semimembranosus (SM) muscles within 1 h postmortem for muscle fiber typing. Backfat thickness and pH decline were measured on the left side of each carcass. After 24-h chilling, a boneless loin was collected from each pig and stored at 2 degrees C until analyzed. On d 14 postmortem, loins were cut at the 10th rib for color evaluations, and chops were cut for Warner-Bratzler shear (WBS) force and sensory analysis. Histochemical staining methods were used for the detection of type I, IIA, and IIB/X muscle fiber types. There were no significant differences (P > 0.10) in live weight, ADG, ADFI, or G:F ratio of the two experimental groups evaluated. Pigs finished in 10x pens walked a greater (P < 0.01) distance over a 24-h period than pigs finished in the CONT pens. Pigs finished in the lOx pens were fatter (P < 0.05) at the last lumbar vertebra than pigs finished in the CONT pens, but no significant differences were found in loineye area, loin color, marbling scores, WBS, sensory panel scores, retail display measures, or muscle fiber type percentages. Expanded space allowance to increase exercise resulted in no improvements in pig performance, pork loin measures, or muscle characteristics.  相似文献   

16.
A growth performance and carcass evaluation study was conducted to determine the maximal inclusion rate of corn distillers dried grain with solubles (DDGS) in grower-finisher pig diets when formulated on a total AA basis. A total of 240 (28.4 +/- 0.8 kg of BW) crossbred pigs [(Yorkshire x Landrace) x Duroc] were allotted randomly within sex and weight outcome groups to 1 of 24 pens. Pens were assigned randomly within the initial BW groups to 1 of 4 dietary treatment sequences in a 5-phase grower-finisher feeding program in a 4 x 3 factorial arrangement of treatments. The inclusion level of DDGS (0, 10, 20, or 30%) in the diet and the initial BW class [low (23.2 kg), medium (28.1 kg), or high (33.8 kg)] served as the main factors for the grower-finisher performance study. All diets were formulated to contain similar concentrations of total Lys, ME, calcium, and phosphorus within each phase. Pigs were slaughtered and carcass data were collected when the average BW of pigs in a pen reached 114 +/- 2.25 kg. Dietary treatment and initial weight groups did not interact for any response variables, and only the main effects of dietary treatment are presented. Pigs fed the 20 or 30% DDGS diets had reduced ADG (P < 0.05) compared with that of the 0 or 10% DDGS groups, but ADFI was unaffected by dietary treatment. Gain:feed decreased when pigs were fed 30% DDGS (P < 0.05) compared with the 0, 10, and 20% DDGS dietary inclusion levels. Loin depth was lower in pigs fed the 30% DDGS diets (P < 0.05), but backfat depth and percentage of carcass lean did not differ among treatments. Iodine number of carcass fat increased linearly (P < 0.01) with increasing dietary DDGS concentration, and belly firmness adjusted for belly thickness was reduced (P < 0.05) for pigs fed the 30% DDGS diets compared with pigs fed the 0 or 20% DDGS diets. Color measurements, ultimate pH, and visual evaluations (color, firmness, and marbling scores) of the LM did not differ among treatments. Cooking loss, 24-h drip loss, and total moisture loss were not affected by DDGS in the diets. However, differences were detected between 0 and 20% DDGS treatments for 11-d purge loss (P < 0.05). Dietary treatment did not affect Warner-Bratzler shear force of cooked loin chops. Results from this study indicate that when diets for grower-finisher pigs are formulated on a total AA basis, less than 20% DDGS should be included in the diet for optimal performance and carcass composition. Feeding DDGS in swine finishing diets did not have any detrimental effects on pork muscle quality.  相似文献   

17.
Crossbred pigs (n = 1,400) were used to evaluate the effect of group size (25 vs 50 vs 100 pigs/pen) in a wean-to-finish production system on growth performance and carcass measures. Pigs were weaned at 17 d (range = 15 to 19) of age with a mean initial BW of 5.9 +/- 0.02 kg and taken to a final mean pen weight of 116 +/- 0.9 kg. A 10-phase dietary regimen was used, and pigs had free access to feed and water. Feeder-trough space (4.3 cm/pig) and floor-area allowance (0.68 m2/pig) were the same for all group sizes. Compared to groups of 25, pigs in groups of 50 and 100 animals were lighter (P < 0.001) at the end of wk 8 after weaning and had lower (3%, P < 0.01) ADG and gain:feed (G/F) but similar (P > 0.05) ADFI during the first 8 wk of the study. At the end of the study, pig weight and the coefficient of variation in pig weight within a pen were similar (P > 0.05) across group sizes. During the period from 8 wk after weaning to the end of the study, pigs in groups of 100 compared to 50 animals had greater (3%, P < 0.01) ADG, and pigs in groups of 25 were intermediate for ADG. Average daily feed intake during this period was similar (P > 0.05) for all group sizes; however, G/F was greater (3%, P < 0.01) for groups of 100 compared to 25 or 50 animals. For the overall study period, ADG, ADFI, and G/F from weaning to slaughter weight were similar across group sizes (P > 0.05; 655, 648, and 658 g; 1,759, 1,755, and 1,759 g; and 0.37, 0.37, and 0.37; for ADG, ADFI, and G/F, respectively, for groups of 25, 50, and 100 pigs, respectively). Mortality was similar (P > 0.05) across group sizes; however, morbidity (pigs removed due to poor health or injury) was higher in groups of 25 pigs compared to the other two group sizes (7.0, 3.5, and 3.9% for groups of 25, 50, and 100, respectively; P < 0.05). Group-size treatment did not affect (P > 0.05) carcass dressing percentage, backfat thickness, or loin-eye depth. In summary, growth performance from weaning to market weight was not affected by group size.  相似文献   

18.
A total of 144 barrows and gilts (initial BW = 44 kg) were used in an 82-d experiment to evaluate the effects of dietary fat source and duration of feeding fat on growth performance, carcass characteristics, and carcass fat quality. Dietary treatments were a corn-soybean meal control diet with no added fat and a 2 × 4 factorial arrangement of treatments with 5% choice white grease (CWG) or soybean oil (SBO) fed from d 0 to 26, 54, 68, or 82. At the conclusion of the study (d 82), pigs were slaughtered, carcass characteristics were measured, and backfat and jowl fat samples were collected. Fatty acid analysis was performed, and iodine value (IV) was calculated for all backfat and jowl fat samples. Pigs fed SBO tended to have increased (P = 0.07) ADG compared with pigs fed CWG. For pigs fed SBO, increasing feeding duration increased (quadratic, P < 0.01) ADG and G:F. For pigs fed CWG, increasing feeding duration improved (quadratic, P < 0.01) G:F. For pigs fed SBO or CWG, increasing feeding duration increased carcass yield (quadratic, P < 0.04) and HCW (quadratic, P < 0.02). Dietary fat source and feeding duration did not affect backfat depth, loin depth, or lean percentage. As expected, barrows had greater ADG and ADFI (P < 0.01) and poorer G:F (P = 0.03) than gilts. Barrows also had greater last-rib (P = 0.04) and 10th-rib backfat (P < 0.01) and reduced loin depth and lean percentage (P < 0.01) compared with gilts. Increasing feeding duration of CWG or SBO increased (P < 0.10) C18:2n-6, PUFA, PUFA:SFA ratio, and IV in jowl fat and backfat. Pigs fed SBO had greater (P < 0.01) C18:2n-6, PUFA, PUFA:SFA ratio, and IV but decreased (P < 0.01) C18:1 cis-9, C16:0, SFA, and MUFA concentrations compared with pigs fed CWG in jowl fat and backfat. Barrows had decreased (P = 0.03) IV in jowl fat and backfat compared with gilts. In summary, adding SBO or CWG increased the amount of unsaturated fat deposited. Increasing feeding duration of dietary fat increases the amount of unsaturated fatty acids, which leads to softer carcass fat.  相似文献   

19.
A total of 196 barrows (88 kg) were used in a 2 x 2 factorial arrangement of treatments and housed in a facility (seven pigs per pen) where temperatures cycled between 27 and 35 degrees C. Treatments consisted of (as-fed basis) two CP levels (13.6 or 11.3%) and two levels of added fat (1 or 8%). Diets were formulated to the same true digestible lysine:ME ratio (1.68 g of lysine/Mcal of ME). Diets were fed and growth variables were measured until pigs reached 114 kg of BW. Ham and LM (loin) 24-h pH (PH24), and light reflectance (CIE L*, and a*, and b*, and hue angle) were taken after slaughter. Additionally, loins were removed and measured for i.m. fat, moisture, glycolytic potential, and subjected to a 7-d retail display evaluation that measured pH, light reflectance, and subjective color and odor score. The remaining boneless lumbar loin segment was vacuum-sealed for 14 d and subsequently measured for pH, light reflectance, and color. Pigs fed the high-CP, low-fat diet had a lower ADG than all other treatments (P = 0.06). High-fat feeding resulted in improved ADG (CP x Fat; P = 0.06) and G:F (Fat effect; P < 0.01). Higher fat and lower protein levels both increased final BF (P = 0.07). Pigs fed the low-CP diets had lower ham PH24 (P < 0.01). Loin PH24 was higher with high fat feeding (P = 0.10). Additionally, pigs fed high fat diets had lower L* values on the ham face and cut loin 24 h after slaughter (Fat effect; P 相似文献   

20.
Barrows and gilts (n = 100 per gender) were used to determine the effects of an increasing, decreasing, or constant ractopamine (RAC) dietary concentration on growth performance and carcass characteristics. Pigs, within a gender, were assigned randomly to pens (five pigs per pen and 10 pens per treatment). Pens were assigned randomly to one of four dietary treatments at a starting weight of 71.2 kg, to target an average ending weight of 109 kg. The four dietary treatments (as-fed basis) were 1) control = 0 ppm RAC, wk 0 to 6; 2) RAC step-up = 5.0 ppm, wk 1 to 2; 10.0 ppm, wk 3 to 4; and 20.0 ppm, wk 5 to 6; 3) RAC step-down = 20.0 ppm, wk 1 to 2; 10.0 ppm, wk 3 to 4; and 5.0 ppm, wk 5 to 6; and 4) RAC constant = 11.7 ppm, wk 0 to 6. Feed allocation was recorded daily, and pigs were weighed and feed was weighed back every 2 wk. Jugular blood samples were obtained from two randomly selected pigs per pen on d -3, 7, 21, 35, and 41 for determination of plasma urea nitrogen (PUN) concentrations. Two pigs were selected randomly per pen and sent to a commercial slaughter facility at the end of the 6-wk experimental period. Carcass data were evaluated on an equal time basis and on an equal weight basis by using hot carcass weight (HCW) as a covariate. Overall, ADG and G:F were improved (P < 0.05) for pigs fed RAC compared with control, with no differences among RAC feeding programs. In wk 3 and 4, improvements (P < 0.05) in ADG and G:F were realized with the implementation of a RAC step-up program compared with control pigs. The concentrations of PUN were decreased (P < 0.05) at d 7 and 21 with RAC feeding, and a RAC step-up program maintained the decrease (P < 0.05) in PUN through d 35 and 41. A RAC step-up and constant program increased (P < 0.05) HCW and percent yield. Loin muscle area and percentage of fat-free lean increased (P < 0.05) and backfat thickness decreased (P < 0.05) in pigs fed RAC. If pigs were considered to be on feed for an equal time period, advantages (P < 0.05) were observed for weight of boneless trimmed ham, shoulder and loin for the step-up and constant RAC treatments compared with the controls. Feeding a RAC step-up or constant feeding program resulted in favorable responses in growth performance and yielded more lean pork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号