首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The adsorption isotherms indicated that the adsorption of boron (B) increased with its increasing concentration in the equilibrium solution. The Langmuir adsorption isotherm was curvilinear and it was significant when the curves were resolved into two linear parts. The maximum value of adsorption maxima (b1) was observed to be 7.968 mg B kg?1 in Garhi baghi soil and the bonding energy (k) constant was maximum at 0.509 L mg?1 in Jodhpur ramana soil. The Langmuir isotherm best explains the adsorption phenomenon at low concentrations of the adsorbent, which of course was different for different soils. There was significant correlation between b1 and clay (r = 0.905**), organic matter contents (r = 0.734*), and cation exchange capacity (CEC; r = 0.995**) of soils. A linear relationship was observed in all the soils at all concentration ranges between 0 and 100 mg B L?1, indicating that boron adsorption data conform to the Freundlich equation. Soils that have a higher affinity for boron adsorption, like Garhi baghi, tended to desorb less amount of boron, that is, 43.54%, whereas Ballowal saunkhari desorbed 48.00%, Jodhpur ramana 48.42%, and Naura soil 58.88% of the adsorbed boron. Boron desorption by these soils is positively and significantly correlated with the sand content (r = 0.714**) and negatively with clay content (r = ?0.502*) and CEC (r = ?0.623**). The maximum value of 37.59 mg kg?1 for desorption maxima (Dm) was observed in Garhi baghi soil and also a constant related to B mobility (Kd) was found to be maximum in Garhi baghi (0.222 L kg?1) soil Note: *P<0.05; **P<0.01.  相似文献   

2.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

3.
Boron (B) adsorption increased with increasing concentration. Langmuir adsorption isotherm was curvilinear. The maximum value of adsorption maxima (b1) was observed Sagipora soil and maximum bonding energy (k) constant was in Anantnag soil. The Langmuir isotherm best explains the adsorption trend at low adsorbent concentrations. A significant correlation among b1, clay, and cation exchange capacity was observed. Linear affiliation was observed in all the soils at all concentration, indicating that B adsorption data conform to the Freundlich equation. Soils with greater affinity for B adsorption, like Sagipora, tended to desorb less B. Boron desorption was positively and significantly correlated with sand content and negatively with clay content and cation exchange capacity. The maximum value of 50.76 mg g?1 for desorption maxima (Dm) was observed in Sagipora soil, and mobility constant (Kd) was maximum in Khag soil (0.412 ml kg?1).  相似文献   

4.
Abstract

We investigated boron (B) adsorption characteristics for 16 acid alluvial soils as a function of equilibrium B concentration (0–80 μg/mL) and the effect of soil properties on such adsorption. The adsorption data for the soils could be described by Freundlich, Temkin, and BET isotherm equations over the entire concentration ranges studied, and by Langmuir and Eadie‐Hofstee equations only over a limited range. In general, the B adsorption capacity and the energy of retention of the soils calculated from different equations are low, the average Langmuir adsorption maxima and bonding energy constant being 21.47 μg/g and 0.113 mL/μg, respectively, making B susceptible to leaching losses. Simple and multiple regression analysis show that the adsorption capacities are significantly influenced by organic carbon (C), cation exchange capacity (CEC), and different forms of aluminium (Al) content in soils. The energy related constants are also influenced by the forms of Al in soils. Existence of significant correlations between constants obtained from different equations confirmed the adsorption characteristics of the soils.  相似文献   

5.
Abstract

The adsorption of nutrient elements is one of the most important solid‐ and liquid‐phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3, organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r2 values for the Langmuir isotherm were highly significant (r2=0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.  相似文献   

6.

Purpose

Adsorption and desorption are important processes that influence the transport, transformation, and bioavailability of atrazine in soils. Equilibrium batch experiments were carried out to investigate the adsorption–desorption characteristics of atrazine. The objectives of this study were to (1) determine and quantify the main soil parameters governing atrazine adsorption and desorption phenomena; (2) find the correlativity between the identified soil parameters; and (3) investigate the universal desorption hysteresis traits.

Materials and methods

Fifteen soils with contrasting physico-chemical characteristics were collected from 11 provinces in eastern China. The equilibrium time was 24 h both for adsorption and desorption experiments. Atrazine was detected by Waters 2695/UV HPLC.

Results and discussion

Adsorption isotherms of atrazine could be well described by the Freundlich equation (r?≥?0.994, p?<?0.01). The total organic carbon (TOC) was the first independent variable that described 53.0 % of the total variability of K f, followed by the pH (9.9 %), and the clay (4.0 %) and silt (1.2 %) contents, separately; while the primary soil properties that affect desorption parameters included the TOC, pH, free Fe2O3 (Fed) and the sand content, with the biggest contribution achieved by the TOC (ranged from 48.5–78.1 %). The results showed that when the content ratio of clay to TOC (RCO) was less than 40, the atrazine adsorption was largely influenced by the organic matrix, while when the RCO was greater than 40, they were vital affected by the clay content.

Conclusions

Adsorption–desorption isotherms of atrazine in soils were nonlinear. The content of TOC, clay, and iron oxides, as well as the pH value were the key soil parameters affecting the adsorption–desorption of atrazine in soil, among which the RCO especially exhibited relevance. Additionally, the desorption hysteresis existed for atrazine retention in all 15 tested soils, and the hysteretic effect enhanced with the increasing time for desorption. This would be ascribed to the heterogeneity physical–chemical properties of these soils.  相似文献   

7.
我国几种主要土壤胶体的NH4+吸附特征   总被引:8,自引:1,他引:8       下载免费PDF全文
谢鹏  蒋剑敏  熊毅 《土壤学报》1988,25(2):175-183
本文讨论我国几种主要土壤胶体的NH4+吸附特征。土壤胶体对NH4+的吸附符合两种表面Langmuir方程。土壤胶体对NH4+的结合能力强弱顺序是:黄棕壤>黑土、(土娄)土>红壤>砖红壤,而NH4+的解吸率大小顺序与此相反。Langmuir吸附方程参数K1与土壤胶体的粘粒矿物组成有关,并与土壤胶体对NH4+的相对偏好性(A值)呈正相关。Langmuir参数(M1+M2)与土壤胶体的CEC呈正相关,去有机质(OM.)前后△K1与△OM.呈反相关。去有机质可增加土壤胶体对NH4+的偏好性。土壤胶体的NH4+吸附和解吸特征决定于其组成和表面性质,并受有机无机复合作用的影响。永久电荷吸附位对NH4+的偏好性较强,而可变电荷吸附位则较弱。  相似文献   

8.
土壤对磷的吸附与解吸及需磷量探讨   总被引:5,自引:0,他引:5  
本文探讨了不同质地土壤对磷的吸附与解吸。根据Langmuir方程式求出不同土壤对磷的最大吸附量。影响磷吸附的土壤理化性质主要为粘粒含量、碳酸盐含量和有效磷含量。以Freundhich方程式X=acb中的c值为每克土中含P0.2μg时而计算出的X量可做为施磷量的依据。  相似文献   

9.
叶炳  王虹 《土壤学报》1984,21(1):21-28
目前应用Langmuir吸附等温式来探讨土壤对磷酸离子的吸附作用,较为广泛.自从Olsen(1957)系统地报道以来,从机理到结合生产实际的研究已有大量的报道,我国近年来也有研究.由于土壤本身组成的复杂性,多数学者用纯物质(如纯粘土或铁与铝的含水氧化物等)进行吸附等温式的机理研究,已取得了很多结果.  相似文献   

10.
宁夏灌淤土对磷吸附的初步研究   总被引:8,自引:0,他引:8  
何文寿 《土壤学报》1992,29(2):142-149
本文报道了宁夏灌淤土12个代表性土样对磷的等温吸附与解吸特性。实测吸附曲线与Preundlich、Langmuir和Temkin三种等温吸附方程都很吻合。全部供试样品的相关系数变化在0.931-0.999之间,均达极显著水平(p<0.01)。其中Langmuir等温式与本实验资料最为吻合。供试土壤对磷的最大吸附量(Xm)变化在172-460μgP/g之间,平均为347±28μgP/g。影响其大小的因子主要是物理性粘粒和CaCO3,含量,均达极显著正相关。灌淤土不同土层的吸磷量大小依次为:剖面24>23>21>22,而解吸磷能力大小依次为:剖面23>22>21>24。磷的解吸量与吸附量之间呈极显著正相关。根据本试验数据,土壤对磷的等温吸附曲线可以用来预测土壤需磷量。  相似文献   

11.
Pb adsorption for 12 soils from Tuscany was studied. The data fitted the Langmuir and the Freundlich isotherms over a large range of concentrations. Results showed that organic matter and clay content were responsible for adsorption maxima. The effect of Mn oxides, explained independently of organic matter and clay, was negligible. The adsorption maxima were generally found to be greater than CEC; the possible mechanisms are discussed.  相似文献   

12.
The sorption and ion-exchange behavior of Co(II) and Zn in the soil-equilibrium solution system was studied for different types and varieties of native soils and their clay fractions before and after mild oxidation with H2O2 to remove the organic carbon. The parameters of the ion-exchange adsorption and the selectivity coefficients of the (Co(II), Zn)/Ca ion exchange were determined using different models for describing the relationship between the dissolved and sorbed forms of the metals. These were the empirical Langmuir and Freundlich adsorption isotherms and the model of the ion-exchange adsorption based on the acting mass law. It was found that the soil organic matter played an important role in the selectivity of the ion-exchange adsorption of Co(II) and Zn by the soils and their clay fractions. This was confirmed by an abrupt decrease (to almost 1) of the selectivity coefficients of the Co2+/Ca2+ and Zn2+/Ca2+ exchange after the treatment of the clay fraction with hydrogen peroxide.  相似文献   

13.
采用连续液流法研究了黄土性土壤吸附,解吸磷酸根的动力学性质。结果表明:(1)供试土壤对磷酸根的吸附,解吸扫速率可分为快,中,慢三种反应类型;(2)描述吸附,解吸反应的最优模型均为Elovich方程,最差模型分别为一级反应方程及双常数方程,拟合差的模型对反应速率变化“敏感”,可用于反应类型划分和机理研究;(3)粘粒含量及代换量对吸附速率有著影响,游离铁对吸附速率,CaCO3对较低温度下的吸附及较高温  相似文献   

14.
除草剂咪草烟在土壤上吸附-脱附过程及作用机理   总被引:2,自引:0,他引:2  
本文研究了咪唑啉酮类除草剂咪草烟在不同土壤固-液相间的分配及与土壤组分作用的定量相关性。结论指出:咪草烟在土壤固-液相的分配主要受土壤粘粒,有机质及土壤pH的影响。它们在土壤上的吸附-脱除均可用Freundlich方程描述;通过运用红外及X-衍射技术,从分子水平研究了咪草烟与蒙脱石的作用机理,发现咪草烟与蒙脱的作用不仅发生在表面,而且咪草烟还能进入蒙脱石内层与其层间阳离子形成配合物。  相似文献   

15.
The adsorption of copper by four alkaline soils of northwest India was investigated using 0.05m CaCI2 as supporting electrolyte. The adsorption data conformed to the competitive Langmuir adsorption equation although there was possibliity of copper hydroxide or carbonate precipitation at higher concentrations of added copper. The adsorption capacities of soils were related to CEC, clay content and CaCO3 equivalent of soil. The free energy changes for adsorption and for interaction were negative and positive respectively.  相似文献   

16.
The adsorption-desorption equilibrium of atrazine (2-chloro, 4-ethylamino, 6-isopropyl amino-1, 3, 5 triazine) was studied by the batch equilibration method at 27 ± 1 °C on four soils of Hyderabad. Adsorption isotherms conformed to the Freundlich equation (A = KC1/n ). K increased in the same order as the organic C content of the soils. Desorption studies were conducted by repeated replacement of 5 mL of the supernatant equilibrium solutions after adsorption, with 0.01 M CaCl2. Desorption isotherms showed considerable hysteresis which was more prominent when the desorption was carried out with higher adsorbed concentration of atrazine. Desorption from the lowest level of adsorbed atrazine (3 to 5 μg g?1 soil) was close to the adsorption isotherm. The cumulative desorption after four desorption steps covering five days was significantly different at the 1% level, for different initial adsorbed concentrations of atrazine. Desorption was significantly higher at the lowest adsorbed level of atrazine. The soils differed significantly at 6% level for desorption and the amount desorbed decreased in the inverse order of organic C. Desorption isotherms also conformed to Freundlich equation but K andn values were both higher than that for adsorption and increased with increase in initially adsorbed concentration of atrazine. Desorption thus confirmed the irreversible nature of the adsorption of atrazine on these soils. The quantitative factors and reasons for desorption are discussed.  相似文献   

17.
The adsorption of the toxin from Bacillus thuringiensis (Bt‐toxin), which is synthesized in genetically modified maize, on sterilized Na‐montmorillonite and on H2O2‐treated and untreated clay fractions of three soils from different sites were studied. All adsorption isotherms can be described by a linear isotherm. Although all clay fractions from the different soils show nearly the same mineralogical composition, we found different affinities ranging from k = 47.7 to k = 366.7 of the adsorbates for the Bt‐toxin. The H2O2‐treated clay fractions show no correlation between the adsorption affinity and the amount of soil organic matter. On the other hand, there is a correlation between the content of organic carbon and the adsorption affinity of the untreated clay fractions. This can be explained by the fact that due to the coatings of soil organic matter on aggregates, the Bt‐toxin polymers are not able to adsorb within the clay aggregates.  相似文献   

18.
Equilibrium adsorption of isoproturon on soil and pure clays   总被引:1,自引:0,他引:1  
The adsorption of isoproturon on soil and pure clay minerals has been investigated as a means of understanding its mobility in soils. Measured adsorption coefficients are correlated with soil and clay mineral properties. Soil organic matter controlled the adsorption of isoproturon at organic carbon contents exceeding 27 g kg?1, whereas at less than this threshold, clay mineral surfaces appeared to control adsorption. The effect of varying temperature suggests that adsorption of isoproturon is a physical process. From the comparison of the fits of linear, Freundlich, and Langmuir adsorption isotherms to the data, the adsorption is best described as a partition process.  相似文献   

19.
Adsorption isotherm is essential for predicting its mechanisms, which are important for potassium (K) fertilizer application and to recommendation appropriate rates for acidic soils. Thus, the objective of this study was to evaluate K adsorption characteristic of the selected soils by comparing different adsorption models with soil properties of the soil in different districts (Sodo Zurie, Damot Gale, Damot Sore and Boloso Sore) in the Wolaita Zone of Southern Ethiopia. Four adsorption isotherms are: Langmuir, Freundlich, Temkin, and Van Huay were used to describe adsorption processes. Composite surface (0-20 cm) depth soil samples from four districts sites were collected. The results revealed that the K adsorption data coincide with both models with (r2 = 0.99). However, Freundlich model was better in describing K adsorption than the other model. The adsorption maxima(ad(max), distribution coefficient, buffer capacity (BC), and adsorption capacity(a(capacity) values of soils ranged from -333 to334.5,0.54 to78.7,159.9 to 389.3, and 327 to 417mg Kkg-1 respectively, these results showed that Sodo Zurie, Bolos Sore and Demote Sore were effective model parameters. Van Huay a(capacity) 417mg Kkg-1 while the bonding energy constant Langmuir is -0.075mg Kkg-1 in Bolos Sore soil compared to other soils, which were found to be more valuable in discriminating between high K adsorption soils. Correlation between some soil properties with ad(max) were positively a highly correlated with clay, pH, organic carbon (OC) and exchangeable potassium with r2 = 0.92**, 0.93**, 0.95** and 0.96 ** respectively, but negatively correlated with bonding energy with r2= -0.79, -0.80,-0.77 and -0.72 respectively, while calcium carbonate (CaCO3) was very highly correlated with ad(max) r2= 0.99***). The Freundlich constant, Temkin BC, and Van Hauy a(capacity) were correlated with CaCO3 content soils with r2=0.12,-0.01,and 0.12,respectively, while slope (1/n) was significantly negatively correlated with soil cation exchange capacity (CEC), CaCO3, clay contents and exchangeable K and Mg2+ with r2= 0.04, -0.67, -0.78, -0.69, and –0.69, respectively. These findings reveal the extent of K depletion in the soils of Wolaita providing a baseline for K rates required for crop production and validation of all models through real-time experiments in the field; this is recommended before the models are used on a large scale basis.  相似文献   

20.
Adsorption and desorption of arsenic (As) in the soil are dominant parameters that affect the mobility and bioavailability of arsenic. Batch arsenate adsorption and desorption experiments were conducted using soils collected from three Louisiana, USA, aquaculture ponds representing different crayfish farming and rice cultural practices. Arsenate adsorption behavior in the soils was investigated using Freundlich and Langmuir sorption equations. Results demonstrated that the Langmuir isotherm model was the best fit based on statistical correlation with soil properties governing adsorption, for the entire range of arsenate concentrations for all soils. Adsorption of As(V) was governed by soil physicochemical properties especially Fe and Al oxides, clay and organic matter. Desorption of As(V) was initially fast, but with increasing incubation times desorption occurred progressively slower. Chemical fractionation of arsenic in the soils showed that the most mobile fraction represented 4.74–5.18% of the total arsenic. A part of this mobile fraction could potentially be taken up by rice and enter the food chain, but would require additional research to quantify.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号