首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Georges Pedro 《Geoderma》1983,31(4):289-299
In the first section, the author presents a detailed analysis of fundamental processes of pedological evolution in the light of the latest findings as to biogeochemical, mineralogical and granulometric aspects of pedogenesis on crystalline aluminosilicate rocks. This analysis is based on the nature of various geochemical weathering phenomena, on the one hand, and on problems related to the organization of plasmic elements (pédoplasmation) and their possible transfers as particles, on the other. With reference to the latter aspect, two major types of “pedogenesis” may be considered: “associative” pedogenesis in which plasma-skeleton links are kept, and “dissociative” pedogenesis in which plasma—skeleton links are disrupted and plasma is redistributed.Then, in the second section, a structuring of fundamental pedogenetic processes is proposed, based on the observation of three major phyla at the earth surface.Phylum I: Process with predominant biogeochemical evolution without plasma formation or with plasma destruction.Phylum II: Process with predominant biogeochemical evolution with plasma formation and reorganization in situ.Phylum III: Process with predominant textural evolution with plasma mobilization and redistribution.  相似文献   

2.
Land use in a 208 ha representative catchment in the Tigray Highlands, Dogu'a Tembien district in Northern Ethiopia was studied in relation to soil geography. Typical soils are Vertisols, Vertic Cambisols, Cumulic Regosols, Calcaric Regosols and Phaeozems. Patterns of land use vary greatly within the catchment and results from χ2‐tests showed strong associations (p < 0·001) between soil type and land use and crop production system. There is a strong association between cropland and colluvium high in basaltic content because the most fertile soils, such as Vertisols and Vertic Cambisols, have developed on this material. Preference is for autochthonous soils on in situ parent material, irrespective of the rock type, to be put under rangeland. Land use by smallholders in Dogu'a Tembien appears to be the result primarily of the interaction between environmental and social factors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Soil organic carbon (SOC) in eroded soil can be redistributed from upper slope positions and deposited and sequestered in depressional areas. However, the SOC lost from soil erosion is normally not considered when soil carbon budgets are derived and this could result in an overestimation of SOC loss from the agricultural areas. The impact of soil redistribution on the SOC budget of a sloping landscape in the Black soil region in Northeast China was studied using the presence of the 137Cs tracer which has been deposited since 1954 and the fly‐ash tracer, which was deposited in 1903. Five landscape positions (summit, shoulder‐, back‐, foot‐ and toe‐slope) were selected and included in this study. The depths of 137Cs and fly ash and the SOC content of the deposition layers were used to calculate the change in C content of the soil in the various landscape positions over the last century. We found that the most severe soil erosion occurred in soils in the shoulder‐slope position followed by the back‐slope and the summit positions. Soil deposition occurred in the toe‐slope position followed by the foot‐slope position. A total of 683 kg C was eroded from the summit, shoulder‐ and back‐slopes (in a 1 m wide strip) over the past 100 years and 418 kg C (about 61·2 per cent) was deposited in the low‐lying areas (foot‐ and toe‐slopes). Over half (61·5 per cent) of the deposition (257 kg SOC) occurred over the past 50 years. Most of the previously reported loss of C from the upper slope positions in the Black soils was in fact sequestered in the deposition areas in the landscape. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two–three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two–three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Са+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.  相似文献   

5.
Phaeozem Soils in some dry valleys of the Swiss Alps The term Phaeozem has been adopted as a soil unit in the legend of the FAO-Unesco Soil map of the world. This soil requires a diagnostic mollic A-horizon or a mollic epipedon, with definite properties with respect to structure, color, base saturation, organic-carbon content and thickness. Phaeozems take place in some low rainfall valleys of the Swiss Alps, between 600 m and 1700 m a.s.l. Within these limits of altitude its occurence is conform to the local climatic, geological, and geomorphological conditions. In Switzerland Phaeozem are developed in a continental like climate with warm and rather dry summers and cold winters, on mixed parent materials of glacial deposits, alluvium and colluvium. Since the ice age, the erosion on the steeps slopes in the Alpine valleys delayed the soil formation, therefore clearly developed profiles of Phaeozems are not very common.  相似文献   

6.
The purpose of this study was to identify general patterns of pedoturbation by tree uprooting in three different, forested landscapes and to quantify post‐disturbance pedogenesis. Specifically, our study illustrates how the effects of ‘tree‐throw’ on soils gradually become diminished over time by post‐uprooting pedogenesis. We studied soil development within 46 pit‐mounds in two regions of the Czech Republic, one on Haplic Cambisols and one on Entic Podzols. A third study site was in Michigan, USA, on Albic Podzols. Uprooting events were dated by using tree censuses, dendrochronology and radiometry. These dates provided information on several chronosequences of pedogenesis in the post‐uprooting pits and mounds, dating back to 1816 AD (dendrochronological dating, Haplic Cambisols), 322 AD (median of calibration age, 14C age = 1720 ± 35 BP, Entic Podzols) and 4077 BC (14C age = 5260 ± 30 BP, Albic Podzols). Post‐uprooting pedogenesis was most rapid in pits and slowest on mounds. Linear chronofunction models were the most applicable for pedogenesis, regardless of whether the soils were in pit or mound microsites. These models allowed us to estimate the time required for horizons in such disturbed sites to obtain the equivalent thicknesses of those in undisturbed sites. These ranged from 5 (O horizon in pits on the Haplic Cambisols) to > 16 000 years (E horizon on mounds on the Albic Podzols). On the Albic Podzols, development of eluvial and spodic horizon thicknesses suggested that pathways involving divergent pedogenesis may occur at these small and localized spatial scales.  相似文献   

7.
The cation exchange capacity (CEC) and specific surface properties were investigated in four particle‐size fractions < 50 μm from three loess (one Kastanozem and two Phaeozems), a holocene (Fluvisol) and a basalt soil (Nitisol) before and after destruction of organic matter. Particle‐size fractions were separated by sedimentation after chemical and physical dispersion of the soil samples. Illite, amorphous minerals, mixed layers, smectite and kaolinite were the predominant clay minerals. They were detected in all size fractions. The CEC increased with increasing organic matter contents and this effect was more pronounced in coarser fractions. The organic matter content per unit surface area was two or three times larger in coarse silt than in clay, irrespective of the soil type.  相似文献   

8.
Soils chronosequences are valuable tools for investigating rates and directions of soil and landscape evolution. Post-incisive chronosequences are the most common type of chronosequence. They are found in many landscapes, including sand dunes, glacial moraines, landslide scars, old pasture, burnt landscape patches, old mining areas, lava flows, alluvial fans, floodplains, river terraces, and marine terraces. They register pedogenic change over time-scales ranging from years to millions of years. Soil chronosequences help in testing rival theories of pedogenesis. Traditional soil formation theory sees a soil developing progressively under the influence of the environmental state factors until it is in equilibrium with prevailing environmental conditions. This developmental view of pedogenesis is supported by the classic soil chronosequence studies. A new evolutionary view of pedogenesis, which was prompted by the omnipresent inconstancy of environmental conditions and the notions of multidirectional changes and multiple steady states (as predicted by non-linear dynamics), proposes that environmental inconstancy and non-linear behaviour in soil-landscapes lead to soil evolution, rather than to soil development. Soils ‘evolve' through continual creation and destruction at all scales, and may progress, stay the same, or retrogress, depending on the environmental circumstances. Some recent soil and vegetation chronosequence investigations support an evolutionary view of pedogenesis. It is concluded that soil chronosequences are still potent instruments for pedological investigations and that they have a starring role to play in the testing of pedological theories.  相似文献   

9.
Geoarchaeological methods were used to study chronosequences of surface soils in the steppe zone and to trace soil evolution during the Late Holocene in northwestern Crimea. It was found that the morphological and functional “maturity” of the humus horizons in steppe chernozems of the Late Holocene was reached in about 1600–1800 yrs. After this, their development decelerated irreversibly. The maximum concentration of trace elements accumulated in these horizons in the course of pedogenesis was reached in 1400 yrs. A new method of pedogenetic chronology based on the model chronofunction of the development of irreversible results of pedogenesis over time is suggested. Original pedochronological data and growth functions—the most suitable models for simulating pedogenesis over the past three thousand years—suggest that the development of morphological features of soil as an organomineral natural body follows growth patterns established for biological systems.  相似文献   

10.
《CATENA》2001,43(2):101-113
The spatial structure of soil variability at the landscape scale was examined on adjacent geomorphic surfaces dating from 80 to 200 ka in eastern North Carolina. The purpose was to determine whether there is evidence at broader scales (distances of 102–104 m) for the divergent evolution observed in the field at very detailed scales (distances of 100–102 m). The state probability function (SPF), which measures spatial dependence for categorical environmental data along a transect, was applied to soil series mapped at a 1:24,000 scale. The older Talbot Terrace and younger Pamlico Terrace surfaces showed distinctly different patterns of spatial variability. The range of spatial dependence was shorter on the older surface (about 200 vs. 300 m), and the SPF was higher at any given distance, indicating more variability. The SPF for the Pamlico surface also indicates a periodicity related to fluvial dissection of the landscape, which is not readily detectable on the Talbot transect despite its greater degree of dissection. The results confirm earlier field studies which suggest that pedogenesis is marked by divergence, whereby differences in initial conditions or local perturbations persist and increase to produce a more variable soil cover.  相似文献   

11.
Recognizing the importance of preserving biodiversity and ecosystem services, human society has established extensive protected area networks to conserve these resources in recent decades. Are protected areas working as expected? Empirical coarse-scale assessments of this question across large regions, or even globally, tend to answer “yes”, while fine-scale studies of individual protected areas often and repeatedly answer “no”. We conducted a first fine-scale analysis of Brazil’s extensive Amazonian protected area network (1.8 million km2) and have quantitatively estimated conservation effectiveness in light of changing human development pressures in the surrounding landscape. The overall network maintained intact forest cover for 98.6% of protected forest lands, largely agreeing with previous coarse-scale studies. However, detailed examination of 474 individual protected areas unveils a broad range of efficacy. Many protected areas (544,800 km2) experience default protection simply due to their remoteness. Many others (396,100 km2) have provided highly effective protection in the face of substantial human development pressure. Conversely, 12% (38) of protected areas have failed to protect the 27,300 km2 that they encompass, and another 7% (23) provide only marginal protection of 37,500 km2. Comprehensive landscape assessments of protected area networks, with frequent monitoring at scales matching the patterns of human-caused disturbances, are necessary to ensure the conservation effectiveness and long term survival of protected areas in rapidly changing landscapes. The methods presented here are globally adaptable to all forested protected areas.  相似文献   

12.
Organic manure application is a feasible approach to alleviate the deterioration of soil erosion on soil organic carbon (SOC). However, to what extent manure application can restore carbon contents in SOC fractions in the eroded Phaeozems remains unknown. A 5-year field experiment was conducted in an artificially eroded Phaeozem with up to 30 cm of topsoil being removed. Chemical fertiliser, or chemical fertiliser plus cattle manure was applied. The contents of SOC were 23.6, 21.6 and 15.1 g C kg?1 soil for non-soil removal control, 10 and 30 cm of topsoil removal, respectively. Compared with the chemical fertiliser-only treatment, the chemical fertiliser plus manure application markedly increased SOC contents by 30–45% and C sequestration rates by 7.1–9.0-fold, especially in the fraction of 53–250 μm particulate organic carbon. However, with manure applied, SOC content in the fraction of mineral associated organic carbon in the 30 cm topsoil-removed soil was 2.9 g kg?1, 14.7% less than control (3.4 g kg?1). The combination of chemical fertliser and manure application effectively restored SOC in the eroded Phaeozems mainly through increasing the size of 53–250 μm particulate organic C fraction, but did not improve the SOC stability in severely eroded Phaeozems.  相似文献   

13.
《CATENA》2005,62(1):57-76
This paper describes the results of detailed surveys for the landscape systems (landforms, vegetation, topsoils and snow cover duration) of a nivation hollow in northern Japan and discusses their evolution in the Holocene epoch. The nivation hollow studied consists of three concentric zones whose landscapes and historical development are different. The outermost zone where snow disappears early is covered with dwarfed trees, Sasa kurilensis (subalpine bamboo) thicket and snowbed grasses. Fossil solifluction lobes and drainage channels are common. In this zone, slope stabilization and vegetation establishment (penetration and settlement of vegetation on slopes) followed by pedogenesis occurred after 12,350 cal BP. In the middle zone, slopes are mostly covered with snowbed plants, and turf-banked terraces and minor slumps are observed. This zone experienced slope stabilization and vegetation establishment followed by pedogenesis after 4870 cal BP. The innermost zone overlaps with the snow-induced bare ground in the centre of the nivation hollow basin. Active geomorphic processes operate here and traces of surficial wash and rills are abundant. Humic soils are not present in this zone. These differences in landscape development of the nivation hollow may reflect the temporal changes in the timings of snow disappearance associated with the Holocene climatic variabilities.  相似文献   

14.
Short-term tracer experiments (36Cl) were conducted with the differentially salt susceptible soybean cultivars “Lee” (moderately tolerant) and “Jackson” (sensitive) to elucidate the pattern of Cl? uptake and translocation in relation to the physiology of salt tolerance. Rates of Cl? uptake by excised roots of “Jackson” were much greater in the lower (0.1–0.5 mM NaCl) and particularly in the higher concentration range than by the more tolerant cultivar. The transfer rate to the shoot was significantly higher in “Jackson” than in “Lee” and increased with time of treatment. The cultivar “Lee” translocated a relatively high amount of Cl? during the onset of salt treatment, but in contrast to “Jackson” was then able to slow down Cl? translocation into the shoot to a degree about proportional to the increment of dry matter. In experiments on secondary translocation both cultivars extruded substantial amounts of 36Cl? to the nutrient solution during the period in inactive solution with constant salinity following labeling. Possibly, some Cl? that had moved into the leaves during labeling was retranslocated and extruded via the roots. The absolute efflux rate was presumably greater for “Jackson” than for “Lee” although it appeared not efficient enough to compensate for the high rate of influx into the root. After 5–6 days of secondary translocation a lesser amount of Cl? was shifted from the root to the shoot in “Lee” as compared with “Jackson”. Chloride accumulation in the upper root and lower stem, similar to that reported for Na+ in several Na+ excluding species, was not observed. From the results it may be concluded that the cultivar “Jackson” cannot sufficiently control the uptake of Cl? and its translocation, particularly into the mature leaves; this contributes causally to the development of severe injury under continuous salt stress.  相似文献   

15.
Soybean plants, varieties “Lee”, “Jackson” and “Bragg” were grown in solution culture at various salinity levels. A NaCl concentration of 10 mM was already inhibitory to growth of “Jackson”; growth of “Lee”, however, was only reduced at a salt concentration of 50 mM or higher. The moderately salt tolerant variety “Lee” efficiently excluded Cl? from the leaves up to about 50 mM NaCl in the medium, but showed high Cl? contents in the root; exclusion of Na+ from the leaves was also apparent in this variety. On the other hand, the salt sensitive variety “Jackson” did not have the capacity for exclusion of Cl? and Na+. The physiological behaviour of the variety “Bragg” resembled that of “Jackson”. It is suggested that the exclusion of Cl? and Na+ from the leaves in the soybean variety “Lee” is regulated by the root.  相似文献   

16.
Standard white oat genotypes were subjected to different methods and aluminum (Al) levels under hydroponic conditions to verify the relationship between plantlet characteristics and their Al tolerance using multivariate analyses. A completely randomized design with three replications was used, adopting three evaluation protocols: “complete nutrient solution” with 0, 8, 16, and 32 mg L?1 of Al supplied as aluminum sulfate [Al2(SO4)3·18H2O]; “complete nutrient solution” with 0, 8, 16 and 32 mg L?1 of Al supplied as aluminum chloride (Al2Cl3?6H2O); and the “minimum nutrient solution” with 0, 1, 3, and 5 mg L?1 of Al supplied as Al2Cl3?6H2O. The performance of white oat plantlet genotypes subjected to excess Al in hydroponic conditions is greatly associated with root length, where the nutrient solution composition and the Al sources interfere in these associations. The study based on the joint analysis of characteristics at plantlet level does not allow an efficient discrimination of Al-tolerant and Al-sensitive white oat genotypes.  相似文献   

17.
The interactions of zinc (Zn) and cadmium (Cd) in uptake and translocation are common but not consistent. We hypothesized that Cd2+ and Zn2+ activity in the apoplasmic solution bathing root-cells could affect Zn accumulation in plants dependent on the wheat genotype. This hypothesis was tested using seedlings of two bread wheat genotypes (Triticum aestivum L. cvs. Rushan and Cross) and one durum wheat genotype (Triticum durum L. cv. Arya) with different Zn efficiencies grown in chelate-buffered nutrient solutions with three Zn2+ (10?11.11, 10?9.11, and 10?8.81?µM) and two Cd2+ (10?11.21 and 10?10.2?µM) activity levels. Increasing Zn2+ activity in the nutrient solution significantly increased Zn concentration in root and shoots of all three wheat genotypes, although the magnitude of this increase was dependent on the genotype. Cadmium decreased Zn concentration in roots of “Cross” while it had no significant effect on root Zn concentration in “Rushan.” At Zn2+?=?10?11.11?µM, Cd decreased shoot Zn concentration in “Arya” whereas it increased shoot Zn concentration at Zn2+?=?10?8.81?µM. Cadmium increased shoot Zn concentration of “Rushan” and “Cross” at Zn2+?=?10?8.81?µM but it had no significant effect on shoot Zn concentration of these genotypes at Zn2+?=?10?11.11?µM. The zinc-inefficient genotype “Arya” accumulated significantly more Cd in its root in comparison with “Cross” and “Rushan.” Cadmium concentration in roots of “Arya” was decreased significantly with increasing Zn activity. The effect of Zn on accumulation of Cd in roots of “Cross” and “Rushan” was dependent on the dose provided, and therefore, both synergistic (at Zn2+?=?10?9.11?µM) and antagonistic (at Zn2+?=?10?8.81?µM) interactive effects were found in these genotypes. Zinc supply increased the Zn concentration of xylem sap in “Cross” and “Rushan” whereas Zn content in xylem sap of “Arya” was decreased at Zn2+?=?10?9.11?µM and thereafter increased at Zn2+?=?10?8.81?µM. Cadmium treatment reduced Zn concentration in xylem sap of “Arya,” while it tended to increase Zn content in xylem sap of “Cross.” At Zn-deficient conditions, greater retention of Zn in root cell walls of Zn-inefficient “Arya” resulted in lower root-to-shoot transport of Zn in this genotype. Results revealed that the effect of Cd on the root-to-shoot translocation of Zn via the xylem is dependent on wheat genotype and Zn activity in the nutrient solution.  相似文献   

18.
The proclamation of the “Soil of the Year” was made for the first time in Germany in 2005 on occasion of the World Soil Day. Chernozems were selected for this purpose. In this paper an overview of these groups of soils is given. Chernozems are concentrated in the drought region of Central Germany. A standard profile from the core area of Chernozems developed from loess is presented with comprehensive laboratory analysis. Chernozems developed primarily upon carbonatic loess substrates under summer‐dry climatic conditions in an open park‐like landscape with isolated forest stands. The development of Chernozems began as early as the late glacial period, and they were fully developed by the Atlantikum age. The far‐reaching, uniformly thick humus horizons indicate substrate differences in the loess cover, which are partly the result of bioturbation. Within Germany, Chernozems and Chernozem‐like soils make up approx. 3% of the surface area and 5% (approx. 11,000 km2) of the arable land. The results of the Static Fertilization Experiment in Bad Lauchstädt, founded in 1902, clarify the high value of Chernozem for biomass production and the environment. Each loss due to erosion or decrease in surface area reduces the fulfillment of soil ecological functions of the soils and is comparable to a loss of animal and plant species. Therefore, soil scientists and the results of soil research must be more comprehensively implemented for soil preservation, protection, and politics. For acceptance of these goals among the general public and the political‐decision makers, the campaign “Soil of the Year” should give some thought‐provoking impulses.  相似文献   

19.
The excretion of phytosiderophores by barley (Hordeum vulgare L.) has recently been documented and a major difference in the Fe‐stress response of gramineous species and dicotyledonous species proposed. However, currently used methods of quantifying and measuring phytosiderophore are tedious or require specialized equipment and a cultivar easily accessible to U.S. scientists is needed. The objectives of this study were (a) to determine if “Steptoe”; and “Europa”; (used as a control cultivar) barleys would release Fe3+ solubilizing compounds in response to Fe‐deficiency stress and (b) to develop a technique to determine the efficiency of solubilization of Fe(OH)3 by the released chelating substances. Two cultivars of barley were place under Fe‐stressed (‐Fe) and nonstressed (+Fe) conditions in modified Hoagland solutions (14 L). The solutions were periodically monitored for H+ and reductant release from the roots and plants were rated daily for chlorosis development. Periodic (6 or 7 harvests) evaluation of the release of Fe3+ solubilizing substances was performed as herein described. Neither H+ nor reductant extrusion occurred with either cultivar during Fe stress. However, Fe3+ solubilizing substances were released by both cultivars at relatively high levels under Fe‐stress conditions compared to the nonstressed plants. A convenient technique was developed to measure the release of Fe solubilizing substances released by barley roots.  相似文献   

20.
Optimal management practices for nitrogen (N) fertilization is well defined for corn (Zea mays) cultivated during summer (“summer” corn), but not for corn cultivated during the fall (“fall” corn) in the tropics. Two experiments were carried out to evaluate N rates (50, 100, 200, and 300 kg N ha?1), N application timing (pre-planting – PP, V2–V3, and V5–V6) and N split application, once (at PP, V3, and V6), two (at V3+ V6) and three times (at PP+ V3+ V6) in corn cultivated during summer (2014/2015) and fall (2015/2016). Data on corn grain yield (CGY), weight of 1000-grains, leaf N content and values of soil-plant analyses development (SPAD) were collected and analyzed using univariate, multivariate (principal component analysis, PCA) and regression analysis. Results showed that corn growth was affected by N rates and splitting. Corn cultivated during summer presented higher CGY and weight-1000 g than corn cultivated during the fall. The highest yields were obtained with higher N rates on “summer” corn (125 kg N ha?1) than “fall” corn (50 kg N ha?1). Split N-application at vegetative growth stages, V3+ V6, or PP+ V2+ V6, provided higher yields for “summer” corn, while only PP application was a reliable period of N fertilization for “fall” corn. The finding is that corn cultivated during the fall presented a lower response to N and no obvious advantages to split N fertilization when compared to corn cultivated during summer. These optimal management practices for N fertilization in corn production in the tropics depend on soil water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号