首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
基于气温预报和HS公式的参考作物腾发量预报   总被引:4,自引:0,他引:4  
为探索精确预报未来短期参考作物腾发量ET0的方法,提出基于气温预报和HargreavesSamani(HS)公式进行ET0预报.收集了南京站2001—2011年逐日气象观测数据和2011年预见期为4 d的逐日天气预报数据,采用FAO-56Penman-Monteith公式计算逐日ET0,用2001—2010年计算的ET0率定HS公式参数;用率定后的公式和2011年的天气预报气温数据进行未来4 d的ET0预报;比较2011年ET0的计算值与预报值、气温观测值与预报值以评价ET0预报精度及误差原因.结果表明:最低气温预报准确率达81.9%,最高气温预报准确率为80.1%;经过参数校正后,HS公式精度较高.ET0预报准确率为85.7%,平均绝对误差为1.01 mm/d,均方根误差为1.42 mm/d,相关系数为0.74;各项预报误差随着预见期的增大而增大.产生误差的主要原因为气温预报误差和HS公式未考虑平均风速和相对湿度的影响.总体而言,基于气温预报和HS公式的ET0预报方法精度较高,可为灌溉预报及决策提供较为准确的ET0预报数据.  相似文献   

2.
为探索精确预报未来短期ET0的方法,比较了4种基于气温预报ET0预报模型,即Hargreaves-Samani(HS)、Thornthwaite(TH)、简化的Penman-Monteith(PT)及McCloud(MC)模型。收集了西藏林芝站2001年1月1日至2013年12月31日的实测逐日气象数据和2012年6月6日至2013年12月31日逐日对未来7d的气象预报数据,在气温预报精度评价的基础上,采用4种基于温度的参考腾发量计算模型直接进行ET0预报,然后采用率定后的模型进行ET0预报,最后与实测气象数据和FAO-56PM公式计算的ET0值进行比较。结果表明,未率定的4种模型预报误差均较大,其中PT公式精度稍高。经率定后,4种公式的预报精度都有所提高,平均准确率为70%,MAE值HS模型最小,平均为0.57mm/d,其他3个模型为1.27~1.50mm/d;RMSE都在2.0mm/d左右;r值总体仍不高,TH模型平均仅有0.19,其他3种模型在0.6左右。综合来看,PT模型的预报效果稳定性优于其他3个模型。对于林芝地区附近的灌区,无论有无气象观测数据供模型率定,建议采用PT模型进行ET0预报。  相似文献   

3.
为了提出适合我国三江平原的高精度ET0预报方法,基于该区6个气象站点的天气预报数据和实测气象数据,以FAO56-Penman-Monteith(FAO56-PM)公式计算值为基准,比较Hargreaves-Samani(HS)、Thornthwaite(TH)和Blaney-Criddle(BC)3个ET0预报模型的效果,对最优模型进行敏感性分析。结果表明:3个模型1~7 d预见期平均绝对误差均值分别为0.66、0.65、0.65 mm/d,均方根误差分别为0.93、0.96、0.95 mm/d,相关系数分别为0.857、0.828、0.840。1~5 d预见期最优预报模型为HS模型,6~7 d为TH模型。总体上预报精度由高到低为HS、TH、BC模型,建议采用HS模型在三江平原开展ET0预报,HS模型预报对最高温预报的敏感性大于最低温。其预报值在夏季受温度预报误差影响最大,冬季最小,4季整体误差较小。研究可为灌溉预报提供较准确的数据基础。  相似文献   

4.
为探索精确预报未来短期参考作物腾发量(ET0)的方法,提出基于天气预报和Penman-Monteith(PM)公式进行ET0预报。收集了南京2012年5月24-2013年1月31日逐日对未来7d的气象预报数据,在气温预报的基础上,将风力等级和天气类型转换成平均风速和日照时数后,采用简化的PM公式进行逐日ET0预报,并与用实测气象数据和PM公式计算的ET0值进行比较。结果表明,预见期1~7d内,ET0预报值与计算值的变化趋势基本一致,率定期和验证期准确率分别达66.3%和94.0%,均方根误差分别为1.51mm/d和0.93mm/d,但相关系数仅为0.55和0.44。误差的原因在于风力预报和天气类型预报准确度较低。提出的方法具有一定物理基础和数据较为容易获取的优点,为较准确地预报ET0进行了有益的探索。  相似文献   

5.
基于气温预报和神经网络的参考作物腾发量预报   总被引:2,自引:0,他引:2  
采用反向传播人工神经网络(BP-ANN)逼近气象因子-参考作物腾发量ET0函数关系,以天气预报中的最高和最低气温为输入进行短期ET0预报。收集了南京站实测的2010年7月1日至2013年7月7日逐日气象数据和2012年7月1日至2013年6月30日逐日对未来7d的气象预报数据,以最高、最低气温及相应的日序数为3个输入因子,ET0为输出建立一个包含一个隐含层的3层BP网络,以2010年7月1日至2012年6月30日实测气象数据及通过FAO-56PM公式计算的ET0进行网络,以2012年7月1日至2013年6月30日实测气象数据及通过FAO-56PM公式计算的ET0进行网络验证。将2012年7月1日至2013年6月30日逐日对未来7d的气象预报中的最高、最低气温输入训练及验证后的网络,得到2012年7月1日至2013年6月30日逐日对未来7d的ET0预报值,并与FAO-56PM公式计算的ET0值进行比较以验证预报精度。结果表明,预见期1~7d内,预报的ET0和计算的ET0变化趋势基本一致,预报精度随着预见期的增加而降低;平均准确率(±1.5mm/d以内)达88.08%,相关系数为0.77,均方根误差为1.28mm/d,显示出了较高的预报精度。在局部时间段内出现的ET0,PM和预报ET0的较大差别的原因是该时段内的ET0更多地受到除了日最高和最低气温之外的其他因素的影响。提出的方法 ET0预报,随着气象预报准确度的提高,可实现较为精确的ET0预报。  相似文献   

6.
为了提出一套比较精确的适合江西省的水稻参考作物腾发量(ET0)预报方法,采用PM公式和26个气象站点的历史气象数据来计算ET0,以此为基准值对Hargreaves-Samani(HS)模型、Blaney-Criddle(BC)模型及McCloud(MC)模型进行率定.并利用天气预报数据,评价3种ET0预报模型在江西省各...  相似文献   

7.
基于数值天气预报后处理的参考作物蒸散量预报改进   总被引:2,自引:0,他引:2  
针对基于数值天气预报(Numerical weather prediction,NWP)对参考作物蒸散量(Reference crop evapotranspiration,ET0)进行预报通常需要数据偏差校正的问题,基于LightGBM机器学习方法和我国西北地区9个气象站点数据提出一种对第二代全球集合预报系统(Global ensemble forecast system,GEFSv2)预报气象因子进行偏差校正的方法(M3)。该方法使用太阳辐射、最高和最低气温、相对湿度和风速集合分别对每个气象因子进行重预报,再计算ET0。使用等距离累积分布函数(EDCDFm,M1)和单气象因子输入的LightGBM法(M2)对模型精度进行评估。结果表明,GEFSv2的预报因子与相应的观测气象因子之间存在不匹配问题,其不匹配程度因气象因子不同而不同,太阳辐射的匹配度较高,相对湿度的匹配度较低。M3模型有助于缓解数据不匹配问题。M1、M2和M3方法在9站点预报ET0的平均均方根误差(RMSE)分别介于0.66~0.93mm/d、0.57~0.83mm/d和0.53~0.79mm/d,平均绝对误差(MAE)分别介于0.44~0.61mm/d、0.38~0.56mm/d和0.35~0.53mm/d,决定系数(R2)分别介于0.82~0.91、0.84~0.93和0.86~0.94。3种方法均在夏季误差最大,1~16d平均RMSE分别为1.21、1.18、1.04mm/d。各预报因子中太阳辐射对ET0预报误差影响最大,其后依次是风速、最高气温、相对湿度和最低气温。在后处理过程中,NWP的最高气温预报值对其他因子预报精度的贡献最大、对相对湿度预报精度的贡献最小。建议在进行NWP偏差校正时,应考虑数据不匹配问题,通过多因子校正来弥补预报精度的不足。  相似文献   

8.
基于天气预报的参照作物腾发量中短期预报模型研究   总被引:2,自引:0,他引:2  
以新乡市1970—2011年逐日实测气象资料代入FAO 56 Penman-Monteith(PM)方法算得的ET0作为基准值,对HG、P-T、M-K、M-C模型进行参数修正,将新乡市2012—2014年冬小麦生育期间预见期为1、3、5、7、10d的天气预报数据代入修正后的模型进行ET01~10 d的中短期预报,并以2012—2014年冬小麦生育期间逐日实测气象资料由PM公式算得的ET0为基准值,对天气预报的精度及ET0的预报精度进行评价。结果表明:经过参数修正后HG、P-T、M-K、M-C模型的精度均有提高;最高气温、最低气温、风速、日照时数的预报精度均随预见期的增加呈逐渐下降趋势,最低气温预报的精度稍高于最高气温;不同预见期的ET0预报模型中,P-T模型预报的ET0平均准确率在众模型中较高(95.06%),其次为HG-M模型(94.66%)、PMT1模型(94.34%)、M-K模型(93.89%),且P-T、HGM两种模型计算程序较简单,因此优选P-T、HG-M模型进行ET0的中短期预报。  相似文献   

9.
为提出高精度适合广东青年运河灌区参考作物腾发量(ET0)预报方法,制定精准的灌溉预报,降低农业用水量,本研究以灌区内的湛江站为研究对象,收集了该站点2003-01-01-2017-05-31逐日气象观测数据和2016-01-01-2017-05-31日的预见期为7 d的逐日公共天气预报数据,采用FAO-56 Penman-Monteith计算值作为基准,比较Hargreaves-Samani(HS)法、简化Penman-Monteith(PT)、逐日均值修正法的预报效果.结果表明:以上3种方法1~7 d预见期平均绝对误差平均值分别为0.908 3,0.903 1,0.947 9 mm/d,平均绝对误差分别为1.099 1,1.099 9,1.192 4 mm/d,相关系数分别为0.649 5,0.649 8,0.615 9,PT法的平均绝对误差以及相关系数均最好.就每个预见期而言,1~5 d预见期的最优预报方法均为PT法,6~7 d为HS法.因此,建议采用PT法进行青年运河灌区的ET0预报.  相似文献   

10.
基于Web的江苏省逐日参考作物腾发量预报系统   总被引:1,自引:0,他引:1  
为促进短期参考作物腾发量(ET0)预报在实时灌溉决策的应用,开发了一个基于Web的江苏省逐日ET0预报系统。系统采用服务器脚本语言PHP和快速的关系数据库管理系统My SQL来简单和有效地获取国家气象台发布的天气预报数据,然后导入系统数据库并通过率定的Hargreaves-Samani公式来预报未来15 d江苏省23个气象站点的参考作物腾发量ET0值。用户可直接登录网址免费查询江苏省各个气象站点未来15 d的ET0预报值。系统采用B/S网络结构,使用率定的HS公式来计算预报ET0值,具有页面简洁、预报精确度高的特点。ET0预报可用于各种作物需水量预报,为灌溉决策提供科学依据。  相似文献   

11.
运用茆智提出的ET0预测方法,并结合其他学者对方法的改进,利用日常的天气预报信息,分别对豫北地区的冬小麦和夏玉米生育期内的ET0进行了预测。结果表明,在冬小麦生育期的ET0预测值,返青前绝对误差不超过0.8mm/d,返青以后93%的预测结果相对误差小于20%,53%的预测结果小于10%;在夏玉米生育时期内的预测值,95...  相似文献   

12.
基于公共天气预报的参考作物腾发量预报   总被引:1,自引:0,他引:1  
针对Penman Monteith公式的应用局限性,以公共天气预报可测因子及历史气象数据计算ET0为基准,对广州站2017-01-01-2019-03-31预报气象信息风力状况进行量化后,以2017,2018年气象预报信息为输入因子、ET0为输出因子,分别建立基于回归型支持向量机(SVR)预报模型与BP神经网络预报模型,选择性能较优预报模型对2019年ET0进行预报,并与计算值进行对比分析.结果表明:回归型支持向量机参考作物腾发量预报模型测试集确定性系数为0.896、均方误差为0.206,BP神经网络参考作物腾发量预报模型测试集确定性系数为0.851、均方误差为0.305,SVR参考作物腾发量预报模型均方误差及决定系数要明显优于BP神经网络;基于SVR模型的预报值与PM公式计算值相关系数为0.761,没有明显差异,表现出显著的相关性以及整体吻合度,可为灌溉预报及决策提供较为准确的ET0预报数据.  相似文献   

13.
滇东北作物耗水特性及影响因素   总被引:1,自引:0,他引:1  
基于滇东北地区3个气象站点(会泽站、昭通站、沾益站)1955-2013年逐日气象资料,采用FAO-56 Penman-Monteith公式,计算并分析滇东北地区水稻、春玉米和冬小麦全生育期需水量及其变化趋势,同时采用偏相关分析和逐步回归分析探讨各气象因子对主要粮食作物需水量影响的程度.结果表明:昭通站主要粮食作物需水量随时间呈不同程度减少,每10 a水稻需水量减少10.07 mm,春玉米减少1.44 mm,冬小麦减少1.06 mm.而其他站点呈增加趋势,水稻需水量每10 a分别增加8.85,4.48 mm,春玉米分别增加8.38,4.57 mm,冬小麦分别增加7.39,3.10 mm.3个站点同一种作物各生育阶段需水量规律基本一致,水稻各生育期需水量从大到小依次为:分蘖,拔节,抽穗,乳熟,黄熟,返青;玉米的依次为:拔节,灌浆,苗期,孕穗,成熟;小麦的的依次为:乳熟,开花,成熟,苗期.日照和平均风速是影响水稻和玉米需水量最主要的气象因子,且呈显著正相关关系,就各站点而言,影响冬小麦需水量的气象因子存在差异,其中会泽站和沾益站同日照时数和平均气温呈显著正相关,而昭通站与平均湿度呈显著负相关,同日照时数呈显著正相关关系.  相似文献   

14.
风沙区参考作物需水量的计算   总被引:4,自引:0,他引:4  
根据国内外相关的研究成果 ,分析选择并确定了适宜于风沙区参考作物需水量 (ET0 )的计算模式。利用典型风沙区的气象资料 ,对多年逐旬参考作物需水量及 2 0 0 1年春小麦与春玉米生育时段内逐日参考作物需水量进行了分析计算。结果表明 ,FAO最新修正的 Penman-Moteith公式可较好地用于风沙区参考作物需水量的估算 ,一般 ET0 值在年内与年际间变化较大 ,最高值发生在 6月上旬左右 ,多年平均为 5 .82 mm/ d,最低值发生在 1月上旬 ,多年平均 0 .43 mm/ d左右 ,年内各日 ET0 值受气象因素的影响变幅很大 ,因此 ,精确灌溉应设法提高短期天气预报和灌溉预报的精度  相似文献   

15.
为研究关中冬小麦植株蒸腾和土壤蒸发规律,利用2 a冬小麦小区控水试验实测数据,率定和验证了双作物系数SIMDual_Kc模型在关中地区的适用性.用大型称重式蒸渗仪的实测蒸散量值(或水量平衡法计算值)与模型模拟值进行对比.结果表明:SIMDualKc模型可较准确地模拟关中不同水分条件下冬小麦蒸散量,且模拟精度较高.模型估算的平均绝对误差为0.643 3 mm/d.模型估算的冬小麦初期、中期和后期的基础作物系数分别为0.35,1.30,0.20.另外,模型还可以较准确地估算不同水分供应条件下的土壤水分胁迫系数、土壤蒸发量和植株蒸散量.冬小麦整个生育期,土壤蒸发主要发生在作物生育前期,中期较低,后期略微增大;植株蒸腾主要发生在作物快速生长期和生长中期,整个生育期中呈先增大后减小的趋势.  相似文献   

16.
基于数据融合算法的灌区蒸散发空间降尺度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Landsat和MODIS数据,通过增强自适应融合算法(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)对蒸散发进行空间降尺度,构建田块尺度蒸散发数据集;利用2015年田间水量平衡方法计算的蒸散发数据对融合结果进行评价。在融合蒸散发基础上,结合解放闸灌域2000—2015年间种植结构信息,提取不同作物各自生育期和非生育期内年际蒸散发量,并分析了大型灌区节水改造以来,作物蒸散发占比的年际变化。研究结果表明:融合蒸散发与水量平衡蒸散发变化过程较吻合,小麦耗水峰值出现在6月中下旬—7月初,玉米和向日葵峰值出现在7月份。在相关性分析中,玉米、小麦和向日葵的决定系数R2分别达到了0.85、0.79和0.82;生育期内玉米(5—10月份)、小麦(4—7月份)和向日葵(6—10月份)的均方根误差均不高于0.70 mm/d;平均绝对误差均不高于0.75 mm/d;相对误差均不高于16%。在农田蒸散发总量验证中,融合蒸散发与水量平衡蒸散发相关性较好,两者决定系数达到了0.64。基于ESTARFM融合算法生成的高分辨率蒸散发(ET)结果可靠,具有较好的融合精度。融合结果与Landsat蒸散发的空间分布和差异性一致,7月23日、8月24日和9月1日相关系数分别达到0.85、0.81和0.77;差值均值分别为0.24 mm、0.19 mm和0.22 mm;标准偏差分别为0.81 mm、0.72 mm和0.61 mm。ESTARFM融合算法在农田蒸散发空间降尺度得到较好的应用,可有效区分不同作物蒸散发之间的差异。不同作物在生育期和非生育期内耗水量差别较大;生育期内套种(4—10月份)耗水量最大,达到637 mm,玉米(5—10月份)和向日葵(6—10月份)次之,分别为598 mm和502 mm,小麦(4—7月份)最低为412 mm;非生育期内,小麦(8—10月份)耗水量最大,年均达到214 mm,玉米(4月份)和向日葵(4—5月份)分别为42 mm和128 mm。不同作物多年平均耗水量(4—10月份)差异较小,其年际耗水总量主要随作物种植面积的变化而变化。  相似文献   

17.
【目的】为更好地开展区域性作物生长季气候干旱预测,指导春玉米高效节水补灌生产。【方法】采用皮尔逊相关系数方法选取了与干旱指数最相关的因子,利用阜新市阜蒙县1965—2019年逐日气象数据,探索建立了粒子群算法优化的小波神经网络模型(PSO-WNN),将春玉米不同生育阶段的水分亏缺指数结果进行对比验证模型精度,并利用模型模拟预测未来5 a干旱发生情况。【结果】通过模型验证,春玉米5个生育阶段(播种—出苗阶段、出苗—拔节阶段、拔节—抽雄阶段、抽雄—乳熟阶段、乳熟—成熟阶段)的均方根误差(RMSE)分别为0.0419、0.0174、0.0481、0.0297、0.0421,决定系数R2分别为0.8402、0.9853、0.8990、0.9575、0.9177,且预测结果与实际干旱等级相符。【结论】文中构建的模型适用于阜新地区春玉米干旱预测,未来5 a该地区春玉米在播种—出苗阶段可能无旱或轻旱,出苗-拔节阶段可能发生中旱甚至特旱,生育后期干旱程度逐渐减弱,拔节—抽雄和抽雄—乳熟两个阶段出现轻旱概率较高,乳熟—成熟阶段出现干旱的概率较低,程度较小,表明未来几年该地区春玉米生产应该更多关注出苗—拔节阶段的旱情。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号