首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作物需水信息的快速获取和实时传输是实现智能诊断和精量灌溉的前提。为此,设计了一种实时采集影响作物需水多环境参数的多通道数据采集系统。该系统以超低功耗单片机MSP430F149为核心处理模块、西门子MC39i为无线传输模块,以计算作物需水量的彭曼—蒙特斯公式中的主要气象要素(温度、湿度、日照时数、风速、辐射)和土壤湿度作为采集对象,根据各传感器输出信号设计了数据采集通道数量及类型。设计选用了系统的实时时钟电路、数据存储模块、LCD液晶显示以及控制键盘等电路,开发了系统各模块的控制软件,实现了通道选择、数据采集、数据处理、液晶显示及无线数据传输等功能。经电位器模拟输出电压测试,系统能实现数据采集和实时显示的功能,可以应用于灌溉决策系统中作物需水信息的实时监测。  相似文献   

2.
为了实现草莓温室大棚内环境参数的远程智能监控,研究开发了一套基于Zigbee无线采集系统和组态软件的智能监控系统。系统以三维力控组态软件为上位机控制软件,通过Zigbee无线采集网关和Zigbee无线传感节点采集大棚内的环境参数,通过Modbus通讯协议实现上位机与基于Zigbee的数据采集发射模块之间的通讯,在上位机软件中实时显示温室的环境因子,并可以通过西门子200PLC对过程执行机构如风机、湿帘等进行实时控制,调节大棚内的环境参数。实验表明,该系统性价比高,鲁棒性好,提高了草莓大棚环境参数采集的稳定性和准确性,上位机组态界面形象直观,操作性好,改善了草莓生长环境。  相似文献   

3.
基于Zigbee技术,提出并实现了以Jennic公司生产的Zigbee无线微型控制器JN5121-M02模块为核心的无线农田采集控制系统的设计方案,给出了系统硬件和软件的实现方案.该系统可完成对农田内测量区域的各个环境参数的采集,并可对灌溉阀门等设备进行控制,具有重要的应用价值.  相似文献   

4.
基于移动端的温室环境监控系统设计   总被引:3,自引:0,他引:3  
针对温室中的光照强度、土壤湿度、空气温湿度等环境参数的监控问题,设计了一种基于移动终端和WiFi无线通信的温室大棚在线环境监控系统。系统采用单片机和传感器完成光照强度等数据的采集,然后通过无线WiFi模块将温室现场的环境参数传输给移动客户端,并在手机APP监控界面上显示实时数据。试验表明:该系统具有操作界面简洁、扩展性强等特点,可以对温室环境参数进行有效的监控。  相似文献   

5.
针对温室管理智能化的需要,提出了一种基于无线数据传输的温室环境参数监控系统。该系统以MSP430F169作为微控制器,通过数字温湿度传感器DHT11、土壤温湿度传感器SHT10P、光强数字转换芯片TSL2561和CO2气体传感器MG811检测温室环境中的空气温湿度、土壤温湿度、光照强度及CO2含量,以n RF24L01+作为射频无线通信模块实现下位机和上位机之间的数据通信,以TC35i作为GSM无线通信模块实现上位机和监控终端之间的数据通信。用户可以通过上位机或监控终端对温室环境参数进行检测和控制,使温室内环境参数控制在所希望的水平上,实现温室环境参数的智能化控制。  相似文献   

6.
针对现有昆虫飞行信息采集系统布线困难和数据传输不稳定等不足,设计一种基于Arduino控制板的智能昆虫飞行信息采集系统。系统以Arduino控制板为控制核心,结合信号采集处理模块、无线串口数据收发模块APC220、温湿度模块组成整套系统。实现对昆虫飞行速度、飞行距离等数据信息的采集,并实时保存数据。  相似文献   

7.
为实现植物工厂内环境参数的采集和智能远程监控,研究并开发出一套基于LoRa无线数据采集系统和组态软件(力控组态)的智能监控系统。组态软件为控制系统的上位机,基于LoRa无线网关和无线传感节点来采集植物工厂内部的环境参数,通过Modbus通讯协议实现上位机与LoR a网关之间的通讯,并在工控机的上位机软件中实时显示植物工厂的环境参数,通过组态软件来控制PLC实现对执行机构如补光灯、加湿器、空调等进行精准控制。试验在江苏省现代农业装备工程中心的植物工厂中进行,试验结果证明该系统性价比高,鲁棒性好,提高了植物工厂环境参数采集的稳定性和准确性。  相似文献   

8.
基于STM32和STC89C52单片机设计一种分布式无线自动浇灌系统,用以实现农业灌溉的智能化,系统包括一个主机和多个从机,土壤温湿度检测模块和电磁阀浇灌模块与从机相连,完成数据的采集、发送及处理功能,以继电器控制电磁阀工作,通过开关水泵实现自动浇灌,从机个数可根据测量点的需求进行扩展。显示模块和报警模块与主机相连,完成数据的接收、处理、显示及报警功能。主从之间采用NRF905模块进行无线通信,构成"一对多"的通信网络。系统有效地解决传统灌溉体系中低效率的问题,试验结果表明,该浇灌系统无线传输数据可达145 m,实现通过设置不同区域内不同农作物需水量后,自动进行科学灌溉。  相似文献   

9.
针对传统温室大棚参数监控系统大量布线、检测不便等问题,设计一种环境参数采集机器人,可用于温室大棚内的参数检测。采用载重量大、行驶稳定、越障性强的锌合金材料作为该机器人车载底盘二驱履带。数据采集系统由温度、湿度等传感器组成,用来实现环境参数检测。通过应用Wi-Fi无线传输技术,实时传输视频图像以及检测到的环境参数,基于App来实现机器人的前进、后退及转向的控制。结果表明:采用Wi-Fi通信模块作为数据通信的媒介并搭载AGV自动导引装置的参数采集机器人,对实现在温室大棚中的随时参数监测,提高采集数据的质量,降低人工劳动有重要作用。  相似文献   

10.
农用灌溉水水质监测系统设计—基于无线传感设备网络   总被引:1,自引:0,他引:1  
近年来,由于生活垃圾和工业污水的污染,农用灌溉水水体污染严重,较多灌溉区水质发生了很大变化,不再符合农业灌溉标准。为了实现对水参数的监测,提出了一套基于无线传感设备网络的水质监测系统。该系统以无线传感器为基础,通过无线传感设备网络采集水质的p H值、温度及溶氧量等信息,并通过节点完成数据传输与处理,实现对水质环境参数的有效监测。系统以STC15F2K60S2单片机为核心处理器,完成对数据的采集、处理以及通信。试验结果表明:该系统测量精准,运行稳定,数据传输丢包率低。  相似文献   

11.
基于GPRS的茶园环境参数无线监测系统的设计   总被引:1,自引:1,他引:0  
茶园一般建在比较偏远的山区,所以对茶树的管理以及获悉茶树周围每天的生长环境便是一大难题。针对这一情况,设计了一套基于GPRS茶园环境参数的无线监测系统,能够监测茶园大气温度、湿度,土壤温度、含水量以及光照强度等环境参数。该系统硬件部分包括太阳能供电、单片机控制、A/D转换、数据采集与处理、GPRS无线传输5个模块。软件通过KEIL C51进行C程序的编写与调试,主要包括环境参数的采集与处理、数据的无线传输及利用TCP进行网络通讯。采用LabVIEW 8.20开发环境进行上位机监测中心人机界面设计,调用LabVIEW里的文件输入输出函数建立数据库,对茶园环境参数进行每日每月定时的储存与访问,以便对茶树的生长环境进行连续监测。  相似文献   

12.
针对当前蓝莓园灌溉效率低、劳动强度大、管理粗放等问题,设计基于LoRa无线远距离通信和SVM-Markov组合模型的蓝莓园精准灌溉系统。该系统通过LoRa无线数据采集系统采集蓝莓园空气温湿度、土壤湿度、光照度、风速等环境参数,通过LoRa网关和物联网网关将数据包上传到云服务器,灌溉预测系统根据采集到的环境参数,实现灌溉量预测与灌溉决策,并将决策结果反馈到灌溉执行模块。为提高预测精度,引入SVM-Markov灌溉量预测算法。以句容市天王镇蓝莓园为试验对象,预测结果表明:SVM-Markov模型的平均绝对误差为0.188 7 mm/d,均方根误差为0.239 4 mm/d,相比于SVM模型,SVM-Markov的预测精度更高、数据拟合效果更好。该系统能够实现蓝莓园环境的实时监测与精准灌溉,为其它果园精准灌溉的实现提供一定的参考。  相似文献   

13.
针对作物育/选种过程中,采用人工操作方式对作物样本植株个体的生理指标和生长环境参数进行高频次采集,存在数据采集精度低、生产效率低、劳动强度大等问题,设计一种以AGV为采集终端的盆栽作物生长环境智能监控系统。系统以FPGA控制器为硬件核心,结合传感器、采集装置、导航、定位和Wi-Fi传输模块将采集的环境参数和图像信息传至上位机,上位机根据预先设定指令控制AGV执行终端依次对选取样本植株个体的图像和生长环境信息进行自动采集,并结合设定参数实现执行机构的远程控制功能,提高了育/选种过程中的智能化管理水平。试验结果表明,该系统采集盆栽作物的生长环境参数精度高、图像信息完整清晰、采集样本位置精度误差为25 mm、停车定位精度误差为±10 mm,无走偏和脱轨现象。该研究有利于技术人员快速、准确获取作物的生长环境和生长态势信息,为培育出更优质的农作物品种提供科学依据。  相似文献   

14.
温室大棚无线温湿度监测装置的设计   总被引:1,自引:0,他引:1  
设计了一种无线温度、湿度监测装置,该装置通过一体化温湿度传感器SHT11对温室大棚内温度、湿度进行采集,然后将采集到的数据按照协议通过无线模块发送出去;接收方接收到数据后解包,计算出温度、湿度值并显示在液晶屏上。该系统发射部分以AT89C2051为内核,包括温度、湿度采集模块和无线发射模块;接收部分以AT89S52为核心,将无线接收,液晶显示等模块结合起来,通过软、硬件抗干扰处理,设计出的实用、小型的无线监测温度、湿度装置可广泛应用到温室、粮仓等场合中。  相似文献   

15.
基于Arduino和VI的农田信息无线采集系统设计   总被引:2,自引:0,他引:2  
现代化农业生产过程中,需要对农作物的各种生长环境信息进行采集,以便为农业决策服务。为此,设计了一种基于Arduino控制板和VI的农田信息无线采集系统。系统使用Arduino控制板作为采集控制端,结合各种环境信息采集模块及无线数据收发模块等组成整套系统,实现了对气温、土壤温湿度、光照、墒情及降水等农田特征信息的采集、显示、存储及监测报警等功能。该系统适用于现代精细化农业生产过程中进行田间信息的快速采集等场合。  相似文献   

16.
温室环境无线数据采集系统的研究   总被引:3,自引:0,他引:3  
针对传统温室有线数据采集系统存在着成本较高、可靠性和移动性较差等问题,提出了一种由微机与GP32单片机系统为核心的温室无线数据采集系统,通过CC2420无线收发模块实现温室内各种生长环境检测传感器无线化,现场从机采集的数据通过无线信道传送到主机,主机通过RS232与上位机PC进行串行通信,采用Visual Basic 6.0作为软件开发工具设计了实时监控平台,从而实现温室内作物生长环境的无线智能调控。本系统是针对现代温室的生产特点设计的,它可以对温室内的多种环境参数进行有效的监测与控制,从而提高了温室生产的技术水平,减轻了劳动强度,提高了劳动效率。  相似文献   

17.
以STC12C5A60S2单片机为核心设计的"二氧化碳监控系统"由采集、传输、显示处理和控制模块组成,利用TGS4161传感器采集CO2浓度数据,经NRF905无线传输模块将数据传给主机,再经串口传给上位机(PC机),PC机内装载"VB可视化监控平台",实现CO2浓度"阈值"设定、数据的实时显示、处理和报警;利用GSM模块,通过中文短信指令实现对CO2补偿装置的远程上位控制。  相似文献   

18.
本文主要论述了一种基于zigbee网络的数据采集系统的设计与实现。该系统以CC2530为中央处理单元,通过按键可以选择模块的功能,将数据(温度信号)经过传感器模块将处理后,将数据通过无线网络发送到协调器,并进行上位机数据的显示。  相似文献   

19.
温度采集是测量系统中重要的指标之一,针对当前温度采集系统存在的传输距离短、实时性差、成本高等特点,笔者设计了一种基于FPGA的智能温度采集系统。该智能温度采集系统分为数据采集前端和后台数据处理两部分。数据采集前端采用FPGA作为中央处理器,通过Wi Fi模块将数据发送到OneNet平台上,实现数据的远程查看,还可以通过以太网收发电路将温度信号发送到后台数据处理端,实现温度采集电路的数据传输。后台数据采集端包括服务器和数据分析处理软件,可接收主机传输过来的温度信息,实现前端温度信息的远程监控。另外,可以通过在服务器上进行必要的参数远程设置,实现温度智能检测的目的。  相似文献   

20.
张立辉  李君兴  赵波  李旭 《农业机械》2011,(11):121-124
基于虚拟仪器设计理论,采用以STC89C51单片机为核心的数据自动采集系统对粮仓内粮食的温湿度进行实时采集,然后通过无线模块nRF905将采集到的数据发送到测控主机,测控主机进行相应的处理后最终到达上位机。上位机计算机管理系统利用LabVIEW软件对数据进行获取、显示、存储,处理等功能。用户根据实时显示的数据,对粮仓及粮食进行相应处理,以实现安全储粮的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号