首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatographic determination of aflatoxin M1 in milk   总被引:1,自引:0,他引:1  
The official AOAC method for aflatoxin M1 in milk was modified by replacing cellulose column chromatography with cartridge chromatographic cleanup and replacing thin layer chromatographic (TLC) determination with liquid chromatographic (LC) quantitation to yield a new method for bovine and porcine milk. An acetone extract of milk is treated with lead acetate and defatted with hexane, and M1 is partitioned into chloroform as in the AOAC method. Chloroform is removed by evaporation under a stream of nitrogen at 50 degrees C. The residue is dissolved in chloroform, the vessel is rinsed with hexane, and the 2 solutions are applied in sequence to a hexane-activated silica Sep-Pak cartridge. Less polar impurities are removed with hexane-ethyl ether, and M1 is eluted with chloroform-methanol, and determined by C18 reverse phase LC using fluorescence detection. Recoveries of M1 added to bovine milk at 0.25, 0.50, and 1.0 ng/mL were 90.8, 93.4, and 94.1%, respectively. The limit of detection was less than 0.1 ng M1/mL for both bovine and porcine milk.  相似文献   

2.
A modification of the current revised AOAC method, 26.A10-26.A15, is described for the rapid analysis of aflatoxin M1 in milk and nonfat dry milk. The method incorporates chloroform extraction and eliminates the need for column chromatography by using liquid-liquid partition for sample extract cleanup. Quantitation is carried out by using fluorescence detection combined with high pressure liquid chromatography (HPLC) of aflatoxin M1 which has been converted to aflatoxin M2a with trifluoroacetic acid. The method has a detection limit of 0.014 micrograms/L (2 X signal/noise) for whole milk. For 6 samples of naturally contaminated nonfat dry and freeze-dried milk, the modified method gave an average result of 0.698 micrograms/L; the AOAC method gave an average result of 0.386 micrograms/L.  相似文献   

3.
A method is described for rapid cleanup followed by reverse-phase liquid chromatographic (LC) quantitation of aflatoxins in raw peanuts. A modified minicolumn cleanup is used for sample preparation, and a preliminary estimation of aflatoxin content by minicolumn can be made so that highly contaminated samples can be diluted before LC analysis. The use of the simple, quick minicolumn cleanup eliminates the need for further column or cartridge cleanup, thus greatly reducing sample preparation time. Sensitive quantitation is achieved using a phenyl column, a mobile phase of water-tetrahydrofuran (80 + 20, v/v), and postcolumn derivatization with water-saturated iodine followed by fluorescence detection. The recoveries of aflatoxins B1, B2, G1, and G2 from peanut meal spiked at 3 levels ranged from 71.7 to 88.3% (average 80%) with coefficients of variation from 2.7 to 10.4%.  相似文献   

4.
Roasting aflatoxin-contaminated corn will reduce toxin levels. A quantitative analysis for aflatoxin in roasted corn has been developed by modifying a cleanup technique for green coffee extracts approved as official first action by the AOAC. A chloroform extract is partially purified on a Florisil column, and thin layer chromatographic (TLC) plates are developed with methylene chloride-chloroform-isoamyl alcohol-formic acid (81+15+3+1). Recoveries average 101% and the sensitivity limit is 5 ppb aflatoxin B1. A 2-dimensional TLC procedure can also be used to separate the aflatoxins from background interferences.  相似文献   

5.
A rapid, reliable separation and quantitation of zoalene (3,5-dinitro-o-toluamide) from feeds is accomplished by using reverse phase liquid chromatography (LC) and ultraviolet detection. An extraction technique which is similar to the present AOAC official colorimetric method is used before chromatographic analysis. This extraction is followed by an activated alumina cleanup and LC to separate zoalene from feed matrix. The methodology was applied to a variety of spiked feed matrices, and yielded good recoveries. Liquid chromatographic results were shown to correlate with colorimetric determinations.  相似文献   

6.
Using a highly specific antibody against aflatoxin M1, a radioimmunoassay (RIA) and an enzyme-linked immunosorbent assay (ELISA) were developed for the quantitation of M1 in milk. RIA was sensitive in the range of 5-50 ng per assay but was subject to interference by whole milk. Extraction and cleanup were therefore necessary for the detection of M1 in milk at 0.5 ng/mL. An ELISA procedure was developed by using an aflatoxin M1-carboxymethyl-horseradish peroxidase conjugate as the ligand. Competitive assays revealed that this system was relatively more sensitive for M1 than for B1, and had a much lower degree of cross-reactivity for aflatoxins B2, G1, G2, B2a, and aflatoxicol. As low as 0.25 ng M1/mL in artificially contaminated milk (raw, whole, skim) could be detected by ELISA in 3 h without extraction or cleanup. Because of its simplicity, sensitivity, and specificity, ELISA is the preferred method for monitoring aflatoxin M1 in milk.  相似文献   

7.
A sample of aflatoxin M1-contaminated lyophilized cow's milk was analyzed by 80 laboratories in 30 countries. Sufficient data were obtained to permit a statistical comparison of the performance of laboratories using AOAC methods I and II and those using high performance liquid chromatography for quantitation. A significant difference was noted between means for laboratories using AOAC method I as opposed to those using HPLC methods. Overall reproducibility (between- plus within-laboratory precision) was best for laboratories using HPLC methods and poorest for those using AOAC method II.  相似文献   

8.
A method is described for simple and rapid determination of aflatoxins in corn, buckwheat, peanuts, and cheese. Aflatoxins were extracted with chloroform-water and were purified by a Florisil column chromatographic procedure. Column eluates were concentrated and spotted on a high performance thin layer chromatographic (HPTLC) plate, which was then developed in chloroform-acetone (9 + 1) and/or ether-methanol-water (94 + 4.5 + 1.5) or chloroform-isopropanol-acetone (85 + 5 + 10). Each aflatoxin was quantitated by densitometry. The minimum detectable aflatoxin concentrations (micrograms/kg) in various test materials were 0.2, B1; 0.1, B2; 0.2, G1; 0.1, G2; and 0.1, M1. Recoveries of the aflatoxins added to corn, peanut, and cheese samples at 10-30 micrograms/kg were greater than 69% (aflatoxin G2) and averaged 91%, B1; 89%, B2; 91%, G1; 78%, G2; and 92%, M1. The simple method described was compared with the AOAC CB method, AOAC BF method, and AOAC milk and cheese method. These methods were applied to corn, peanut, and cheese composites spiked with known amounts of aflatoxins, and to naturally contaminated buckwheat and cheese. Recoveries were much lower for the BF method compared with our simple method and the CB method.  相似文献   

9.
A joint project was undertaken by the Food Safety and Inspection Service (FSIS) and the Agriculture Research Service branches of the U.S. Department of Agriculture to determine the presence of aflatoxins in the U.S. meat supply during a drought year. In 1988, high incidences of aflatoxins occurred in corn grown in regions of the Midwest, Southeast, and South. Six states were identified as having serious aflatoxin contamination in their corn crop: Virginia, North and South Carolina, Texas, Iowa, and Illinois. Swine liver and pillars of diaphragm (muscle) tissues were sampled by federal FSIS Inspectors in plants located in these states. A worstcase sampling plan was conducted. Samples were taken in January 1989 from hogs fed corn soon after harvest and in April 1989 from hogs fed corn originally stored and then fed in the spring. A modification of the official AOAC method for the thin-layer chromatography (TLC) determination of aflatoxins in animal tissue was used to permit quantitation by LC with fluorescence detection. The official AOAC TLC confirmation of identity method was used to confirm all positive samples with B1 concentrations greater than 0.04 ppb and M1 concentrations greater than 0.1 ppb. Sixty samples in the January group and 100 samples in the April group were assayed. Concentrations of aflatoxins B1 and M1 in the first group of pig livers ranged from 0.04 to 0.06 ppb. The identity of aflatoxin B1 was confirmed in all positive samples. Aflatoxin M1 could not be confirmed in any of the positive liver samples because the method was insufficiently sensitive for this aflatoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A systematic method is proposed for determination and confirmation of aflatoxin M1 in cheese by liquid chromatography (LC). A sample of cheese is extracted with chloroform, cleaned up on 2 silica gel columns followed by a Sep-Pak C18 cartridge, and chromatographed on a 5 microns octadecyl silica column with fluorometric detection. The sample extract or standard is treated with n-hexane-trifluoroacetic acid (TFA) (4 + 1) for 30 min at 40 degrees C. Analysis by LC with TFA-treatment of the extract provides quantitative data. Multiple assays of 5 samples of Gouda cheese spiked with aflatoxin M1 at levels of 0.5, 0.1, and 0.05 ng/g showed average recoveries of 93.2, 91.6, and 92.4%, with coefficients of variation of 2.63, 3.97, and 4.52%, respectively. Assay of 5 naturally contaminated cheeses resulted in 0.051-0.448 ng/g of aflatoxin M1. Limit of quantitation is about 0.01 ng/g. The identity of aflatoxin M1 is confirmed by treating aflatoxin M1 or the M2a derivative with TFA-methanol (or ethanol) (3 + 1). The TFA-methanol reaction products of M2a could be detected quantitatively.  相似文献   

11.
An international collaborative study involving 14 collaborators from 5 different countries was conducted to test a rapid liquid chromatographic (LC) method for detecting aflatoxins M1 and M2 in fluid milk. Each collaborator prepared artificially contaminated milk samples (0.078-1.31 ng M1/mL and 0.030-0.13 ng M2/mL) by adding solutions containing various concentrations of aflatoxins M1 and M2 to fresh milk. Recoveries ranged from 85.2 to 102.5% (av. 93.7%) for aflatoxin M1 and from 99.5 to 126.7% (av. 109.8%) for aflatoxin M2. Coefficients of variation averaged 21.4% (M1) and 35.9% (M2). An analysis of variance was calculated from combined data to determine variance components. The within-laboratory variations (So) (repeatability) were 27.9% (M1) and 23.9% (M2), and the among-laboratory variations (Sx) (reproducibility) were 44.5% (M1) and 64.7% (M2). No visual differences were determined between normal or reverse phase LC for contaminated samples; however, there were an insufficient number of collaborators using normal phase to give meaningful separate statistical data. For 26 observations of uncontaminated milk, 3 false M1 positives were reported for normal phase LC determinations and 2 false M1 positives were reported for reverse phase LC determinations. Three normal phase and 11 reverse phase false M2 positives were reported for 104 observations in uncontaminated milk. The reverse phase LC method for determination of aflatoxins M1 and M2 in fluid milk has been adopted official first action.  相似文献   

12.
A fast and ultrasensitive chemiluminescent enzyme immunoassay for aflatoxin M(1) in milk samples has been developed and validated. The method is an indirect competitive type format involving the immobilization of an aflatoxin M(1)-bovine serum albumin conjugate on 384 well black polystyrene microtiter plates and the use of a secondary antibody labeled with horseradish peroxidase detected with a luminol-based substrate. Aflatoxin M(1) standard solutions were prepared in milk-based buffer, and milk samples were analyzed without any cleanup procedure. The limit of quantification was 1 ppt, the coefficient of variation was below 9% for both intra- and interassay precision, and the recovery ranged from 96 to 122%. The method is specific, and other aflatoxins do not significantly cross-react with the antibody. Twenty-four milk samples were analyzed, and a good correlation was observed (y = 0.98x + 1.71, r(2) = 0.98, n = 24) when the data were compared with a reference high-performance liquid chromatography method with a fluorescent detector. The developed method is suitable for an accurate, sensitive, and high-throughput screening of aflatoxin M(1) in milk samples with a reduction of costs and increased detectability, as compared with previously developed immunoassays.  相似文献   

13.
利用~(14)C-六六六,验证浓硫酸净化法与国际公认的美国化学家协会方法检测稻米中六六六农药残留量的结果表明,前者平均回收率达90.0%,平均相对标准偏差为8.0%(n=9);后者的回收率88.9%、平均相对标准偏差为3.0%。两种方法统计学上无显著差异,即两种方法有可比性,证实我国沿用已久的浓酸净化法是可行的。  相似文献   

14.
A method was developed for the determination of aflatoxin B1 in commercially prepared feeds. The method incorporates methylene chloride and citric acid solution extraction, cleanup on a small silica gel column, and thin layer chromatography for quantitation. Commercial turkey starter, catfish chow, medicated pig starter, broiler finisher, rabbit chow, horse feed, rat chow, and dog chow were investigated. The feeds were spiked with naturally contaminated corn at 4 different levels of aflatoxin B1 (16-130 microgram/kg). Three assays were run on each of the 32 combinations of feed and levels of aflatoxin. Mean recoveries were 85.9-92.8% at levels of 16.5, 32.9, 65.8, and 131.6 micrograms/kg. The relative standard deviation per assay was 18.6%. This method is more rapid and less involved than most previously published methods for mixed feeds.  相似文献   

15.
Quantitation of aflatoxins by liquid chromatography with postcolumn iodine derivatization (LC-PCD) and fluorescence detection was compared with quantitation by the AOAC CB method, 968.22. Thirty-seven naturally contaminated corn samples were ground and then divided. One portion was extracted, and the extract was cleaned up and analyzed by thin-layer chromatography according to the CB method. The second portion was extracted and cleaned up in a similar fashion, but quantitation was by the LC-PCD method. For aflatoxin B1 concentrations ranging from 0 to 150 ng/g, results obtained by the 2 methods were fitted to a linear equation with the LC-PCD results as the dependent variable. The correlation coefficient was 0.99, the intercept was near 0, and the slope was near 1. For aflatoxin B2, the correlation coefficient was 0.97, and the intercept was near 0. However, the slope of the equation relating LC-PCD concentration to TLC concentration was only 0.5. We believe that this lack of equivalence between the methods for determination of aflatoxin B2 is due to overestimation by the TLC method because the low levels present are near the TLC detection limit for B2.  相似文献   

16.
Several authors have studied histamine using gas chromatography (GC) as a tool for quantitation, but the methods used were not always suitable depending on the kind of food. Problems frequently cited include incomplete histamine elution from the columns and peak tailing. Histamine is of interest because it is the factor common to all cases of scombroid poisoning, it has physiological and biological activity, and it is a chemical indicator of fish quality. In this study a modified GC method was used to quantify histamine in mahi-mahi (Coryphaena hippurus). Mean recovery was 67% for the GC method, compared with 90% for the AOAC fluorometric method. There was a 0.96 correlation of the GC histamine values with those of the AOAC fluorometric method. A temperature program, splitless/split injection, and analyte cleanup were essential for GC properties. Histamine retention time was 8.2 min. The method allowed peak height to be used for quantitation and simultaneous analysis of cadaverine and putrescine.  相似文献   

17.
Thirteen laboratories in 7 different countries participated in a collaborative trial to evaluate the immunoaffinity column cleanup procedure with quantitation by fluorescence liquid chromatography (post-column derivatization) for the determination of aflatoxins in peanut butters. Participants were sent 10 randomly numbered samples of roasted peanut butter for analysis (5 pairs of undisclosed duplicates). Two of the pairs were "blank" peanut butters to which aflatoxin standards had been added; these "spiked" samples were used for recovery purposes. The other 3 pairs of samples were a nominal "blank" and 2 naturally contaminated peanut butters. A full statistical presentation of the results is given. Coefficients of variation (CVs) for the total aflatoxin determinations for mean levels of 4, 15, and 38 microns/kg were between 32 and 44% for the blank and 2 trial samples. Recovery levels for the 2 spiked samples were 51-67%, with aflatoxin B1 recovery of 60%. Relative standard deviations for method repeatability (RSDr) and reproductibility (RSDR) for the 3 trial samples were 15-26% and 33-45%, respectively.  相似文献   

18.
A chemical cleanup procedure for low-level quantitative determination of aflatoxins in major economically important agricultural commodities using HPLC has been developed. Aflatoxins were extracted from a ground sample with MeOH/H2O (80:20, v/v), and after a cleanup step on a minicolumn packed with Florisil, aflatoxins were quantified by HPLC equipped with a C18 column, a photochemical reactor, and a fluorescence detector. Water/MeOH (63:37, v/v) served as the mobile phase. Recoveries of aflatoxins B1, B2, G1, and G2 from peanuts spiked at 5, 1.7, 5, and 1.7 ng/g were 89.5+/-2.2, 94.7+/-2.5, 90.4+/-1.0, and 98.2+/-1.1, respectively (mean+/-SD, %, n=3). Similar recoveries, precision, and accuracy were achieved for corn, brown and white rice, cottonseed, almonds, Brazil nuts, pistachios, walnuts, and hazelnuts. The quantitation limits for aflatoxins in peanuts were 50 pg/g for aflatoxin B1 and 17 pg/g for aflatoxin B2. The minimal cost of the minicolumn allows for substantial savings compared with available commercial aflatoxin cleanup devices.  相似文献   

19.
A simplified liquid chromatographic (LC) method for determining vitamin D in vitamin AD concentrates (greater than or equal to 5000 IU vitamin D/g) was collaboratively studied. In the simplified method, the 2 columns specified in AOAC LC method 43.101-43.109 are replaced by a single column, which separates the vitamin D isomers and the vitamin A esters. The procedure for oils includes dissolution and quantitation by normal phase LC. Dry multivitamin concentrates and aqueous dispersions are treated with an enzyme system and the vitamins are extracted with n-pentane. Six coded samples were distributed to 16 laboratories; 15 collaborators returned their results. Estimates of repeatability and reproducibility for the oil samples were 1.1 and 3.1%, respectively; for the high-level concentrated dry preparation 1.4 and 3.9% and for the low-level concentrated dry preparation 1.3 and 11.4%, respectively. These values are a considerable improvement over the results obtained in the 1979 multivitamin collaborative study. The method has been adopted official first action for determination of vitamin D in vitamin AD concentrates containing greater than or equal to 5000 IU vitamin D/g.  相似文献   

20.
Because thin-layer chromatographic (TLC) confirmation of identity and reverse-phase liquid chromatographic (LC) determination with fluorescence detection of aflatoxin M1 both require the derivative formed in the reaction of M1 and trifluoroacetic acid (TFA), various reaction conditions were studied to obtain complete derivative formation. Of the various organic solvents tested, the reaction between M1 and TFA proceeded best in the nonpolar solvents hexane and isooctane. Other parameters investigated were reaction temperature and time, aflatoxin M1 concentration, and solvent volume. The following procedure is considered optimum: 200 microL each of hexane and trifluoroacetic acid are mixed with M1 standard in a silylated glass vial or with milk residue in a regular glass vial with a Teflon-lined screw cap and heated 10 min at 40 degrees C. The mixture is evaporated to dryness under N2, and the derivative is saved for TLC or LC. No unreacted aflatoxin M1 was detected by reverse-phase LC after this procedure was incorporated for analysis of milk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号