首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to analyze and model the effect of knitting parameters on the air permeability of Cotton/Polyester double layer interlock knitted fabrics. Fabric samples of areal densities ranging from 315–488 g/m2 were knitted using yarns of three different cotton/polyester blends, each of two different linear densities by systematically varying knitting loop lengths for achieving different cover factors. It was found that by changing the polyester content in the inner and outer fabric layer from 52 to 65 % in the double layer knitted fabric did not have statistically significant effect on the fabric air permeability. Air permeability sharply increased with increase in knitting loop length owing to decrease in fabric areal density. Decrease in yarn linear density (tex) resulted in increase in air permeability due to decrease in areal density as well as the fabric thickness. It was concluded that response surface regression modeling could adequately model the effect of knitting parameters on the double layer knitted fabric air permeability. The model was validated by unseen data set and it was found that the actual and predicted values were in good agreement with each other with less than 10 % absolute error. Sensitivity analysis was also performed to find out the relative contribution of each input parameter on the air permeability of the double layer interlock knitted fabrics.  相似文献   

2.
This study examined the effects of the total porosity, pore size, and cover factor on the moisture and thermal permeability of woven fabrics made from DTY (draw textured yarns) and ATY (air jet textured yarns) composite yarns with hollow PET (polyethylene terephthalate) yarns. The wicking of the hollow composite yarn fabrics was found to be superior to that of the high twisted yarn fabrics, which may be due to the high porosity in the hollow composites yarns, but this was not related to the cover factor. The drying characteristics of the hollow composite yarn fabric with high porosity were inferior compared to the high twisted yarn fabrics due to the large amounts of liquid water in the large pores, which resulted in a longer drying time of the fabric. The thermal conductivity of the hollow composite yarn fabrics decreased with increasing measured pore diameter due to the bulky yarn structure. The effects of the hollowness of the yarn on the thermal conductivity were more dominant than those of the yarn structural parameters. The air permeability increased with increasing measured pore diameter but the effects of the cover factor on the air permeability were not observed in the hollow composite yarn fabrics. The effects of porosity on the moisture and thermal permeability of the woven fabrics made from the hollow composite filaments were found to be critical, i.e., wicking and air permeability increase with increasing porosity. In addition, the drying rate increased with increasing porosity and the thermal conductivity decreased with increasing pore diameter, but were independent of the cover factor.  相似文献   

3.
Aesthetic properties of fabrics have been considered as the most important fabric attribute for years. However, recently there has been a paradigm shift in the domain of textile material applications and consequently more emphasis is now being given on the mechanical and functional properties of fabrics rather than its aesthetic appeal. Moreover, in certain woven fabrics used for technical applications, strength is a decisive quality parameter. In this work, tensile strength of plain woven fabrics has been predicted by using two empirical modelling methods namely artificial neural network (ANN) and linear regression. Warp yarn strength, warp yarn elongation, ends per inch (EPI), picks per inch (PPI) and weft count (Ne) were used as input parameters. Both the models were able to predict the fabric strength with reasonably good precision although ANN model demonstrated higher prediction accuracy and generalization ability than the regression model. The warp yarn strength and EPI were found to be the two most significant factors influencing fabric strength in warp direction.  相似文献   

4.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

5.
The structural properties of a plain fabric were considered using the lenticular model. The structure of a plain woven fabric can be defined in terms of warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. Many structural variables of the plain fabric could be calculated by the lenticular model using these terms. Also, this model can be used to explain the geometry of the flattened yarns that occur during the weaving process. Flattening factors of threads for various types of fibers were calculated, compared, and explained with the number of yarn twist. Flattening factors were found to affect the structural variables of the fabric such as fabric thickness, air permeability, and yarn crimp. Yarn crimp was also studied with variation of the structural variables of the fabric.  相似文献   

6.
This paper reports an investigation on the predictability of bending property of woven fabrics from their constructional parameters using artificial neural network (ANN) approach. Number of cotton grey fabrics made of plain and satin weave designs were desized, scoured, and relaxed. The fabrics were then conditioned and tested for bending properties. Thread density in fabric, yarn linear density, twist in yarn, and weave design were accounted as input parameters for the model whereas bending rigidity in warp and weft directions of fabric formed the outputs. Gradient descent with momentum and an adaptive learning rate back-propagation was employed as learning algorithm to train the network. A sensitivity analysis was carried out to study the robustness of the model.  相似文献   

7.
There is a variety of approaches for investigating bending behavior of woven fabrics. Some of them are based on fabric deformation with one edge fixed; the others are based on measurement of force, moment or energy producing bending deformation. In all methods, bending properties is acquired after testing prepared fabric samples. Therefore, in this work an attempt is made by a mechanical model and a novel calculation technique to determine bending characteristics of the plain woven fabrics before sample production. Theoretical data including bending length, bending rigidity and bending modulus were directly determined for supposed fabric samples with a given yarn count and yarn density using Peirce’s structural model for plain woven fabric and a especial code written in Maple12. Besides, fabric samples with the defined characteristics were woven on a Sulzer-Ruti weaving machine. Then, these fabrics were tested for bending behavior using Shirley bending tester. Comparison showed good agreement between predicted and measured bending characteristics of the fabrics. However, theoretical bending rigidities of the samples were more than experimental values.  相似文献   

8.
The effects of fabric balance and fabric cover on surface roughness values of textured polyester woven fabrics with different constructional parameters were investigated. The warp yarn properties (type, count and warp density) were kept constant while the effect of variation in weft yarn density and weave pattern were studied. Measurements were conducted on pre-treated white fabric samples and the results assessed in relation to their constructional properties. A general overview of the results showed that surface roughness values of polyester fabrics affected by fabric balance and fabric cover and the effects were related to fabric thickness, yarn densities, yarn crimp, positioning of yarns in fabric structure. A change in weave pattern from sateen to plain increased the fabric balance and fabric cover, but decreased the surface roughness. Similarly, an increase in weft density increased the fabric balance and fabric cover, but decreased surface roughness. In order to produce fabrics with smooth surface properties yarn density should be increased, yarn float lengths decreased, cover of fabrics increased and fabric balance improved.  相似文献   

9.
This paper focuses on the reflectance prediction of colored (unicolored) fabrics considering relationship between fractional reflectance values and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of relation between fractional reflectance and cover factor was proposed and usage of the equation was assessed by reflectance measurements. 48 dyed polyester fabrics having different constructional parameters were used and fabrics differed from each other by their cover factors. Warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in experimental sub-groups. The reflectance measurements were conducted on the dyed fabric samples as well as on the individual yarn systems (warp and weft) of the same fabrics. The proposed equation was tested according to different fabric constructional parameters and reasonable results with the experimental data were obtained. The possibilities of general use of derived mathematical relations between theoretical and measured reflectance values were researched. The relation obtained was used to explain the effects of different constructional parameters on reflectance behavior of fabric surfaces.  相似文献   

10.
The effect of blend percentage on comfort and handle related properties of fabrics made from polyester/viscose blended air-jet textured yarn weft were studied and the results were compared with fabrics made from polyester/viscose ring-spun yarn wefts of similar linear densities. It is observed that with increase in polyester content in the blend, the air permeability and water vapour permeability reduces whereas thermal resistance, transverse wicking and shear rigidity increases both in ring-spun yarn and textured yarn fabrics and bending rigidity increases in textured yarn fabrics. Textured yarn fabrics exhibit lower air permeability and extensibility, higher thermal resistance, relative water vapour permeability, transverse wicking values and bending rigidity as compared to the ring-spun yarn fabrics.  相似文献   

11.
This paper focuses on the assessment of the relation among constructional properties, fractional reflectances and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of the relation between fractional reflectance and fabric cover factor was proposed and the usage of the equation was assessed by reflectance measurements. 48 polyester fabrics having different constructional parameters were used and the fabrics differed from each other by their cover factors. The warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in the experimental sub-groups. The reflectance measurements were conducted on the pretreated but undyed fabric samples as well as on the individual yarn systems of the same fabrics. Fabrics with the same cover factors exhibited different fractional reflectances. Reflectances were found to be dependent on the cover factor as well as on yarn fiber fineness, yarn count, yarn density and fabric weave. The changes in crimp of the yarns according to different construction parameters also governed the changes in fractional reflectances of fabric surfaces. The proposed equation was tested according to different fabric construction parameters and it was concluded that fiber fineness and weave pattern were among the most important parameters which govern the total light reflectances from the fabric surfaces, although they are not incorporated in the calculation of the fabric cover factors. The proposed equation was used to explain the effects of these components on the reflectance behavior of the fabric surfaces and on fabric cover.  相似文献   

12.
In this research work, air permeability variations of core spun cotton/spandex single jersey and 1×1 rib knitted structures were studied under relaxation treatments. Results are compared with similar fabrics made from 100 % cotton material. Even though cotton/spandex fabrics knitted with same stitch lengths, their structural spacing and stitch densities vary with the progression of treatments. Similar behavior was also observed with 100 % cotton knitted structures. Under higher machine set stitch lengths (i.e., lower fabric tightness factor), higher structural spacing and lower stitch densities were resulted and those variations significantly affected on the air permeability variations of knitted structures. 1×1 rib knitted structures showed significantly higher air permeability than single jersey structures and it is more prominent with cotton rib structures. However, cotton/spandex 1×1 rib and single jersey structures have not showed such significant deviations. Air permeability of cotton/spandex and 100 % cotton rib and single jersey knitted structures decreased with lower machine set stitch lengths (i.e., at higher fabric tightness factors). There was a correlation with fabric tightness, air permeability, areal density and fabric thickness such as knitted fabrics became tighter, their weight and thickness were higher, while their air permeability was lower. Thus, fabric areal density and fabric thickness are positively correlates to machine set stitch length?1 (fabric tightness factor). Air permeability of a knitted structure depends on material type, knitted structure, stitch length, relaxation treatment, structural spacing and stitch density.  相似文献   

13.
In our previous works, we had predicted cotton ring yarn properties from the fiber properties successfully by regression and ANN models. In this study both regression and artificial neural network has been applied for the prediction of the bursting strength and air permeability of single jersey knitted fabrics. Fiber properties measured by HVI instrument and yarn properties were selected as independent variables together with wales’ and courses’ number per square centimeter. Firstly conventional ring yarns were produced from six different types of cotton in four different yarn counts (Ne 20, Ne 25, Ne 30, and Ne 35) and three different twist multipliers (α e 3.8, α e 4.2, and α e 4.6). All the yarns were knitted by laboratory circular knitting machine. Regression and ANN models were developed to predict the fabric properties. It was found that all models can be used to predict the single jersey fabric properties successfully. However, ANN models exhibit higher predictive power than the regression models.  相似文献   

14.
The effects of some yarn properties (i.e. type, count, twist level, ply number, unevenness and crimp) and fabric constructional properties (i.e. cover, thickness and balance) on surface roughness values of cotton woven fabrics were investigated. A general overview of the results showed that surface roughness values of fabrics were affected from yarn and fabric properties and the effects were related to fabric balance, fabric cover (not cover factor), fabric thickness and crimp values of yarns in fabric structures. Surface roughness values of fabrics decreased as yarn fineness and yarn twist levels increased but as yarn ply number decreased. Also, surface roughness values gradually decreased from open-end yarn constituting fabrics to combed yarn constituting fabrics. Results showed that different properties of yarns caused changes in yarn crimps in fabric structure and also governed the changes in fabric balance, as well as changes in roughness of fabric surfaces. The changing properties of yarns and impact of these properties on fabric construction affected the formation of cotton fabric surfaces from smooth to coarse.  相似文献   

15.
A modified ring spinning technique has been recently developed by incorporating false twisting devices into the conventional ring frame. Its application on the coarser yarn counts (7–32 Ne) showed notable advantages in modified yarn and fabric performance. More recently, it was noted that this technique can also be applied for producing finer cotton yarns. Thus this paper aims to carry out a systematic study of the physical properties of the finer modified yarns (80 Ne) and woven fabrics with respect to the conventional ones. Physical properties of conventional and modified single yarns were evaluated and compared. These two types of single yarn were used for the production of woven fabrics. Moreover, the above two types of single yarn were also plied and used for the production of woven fabrics under a commercial condition. All woven fabrics were assessed in terms of fabric tensile strength, tearing strength, abrasion resistance, fabric weight, and air-permeability as well as other fabric performance measured by the Kawabata Evaluation System (KES). Experimental results showed that finer modified yarns and fabrics exhibit higher strength, lower hairiness, and improved abrasion resistance, slightly better compression property, and smoother surface with relatively larger thickness.  相似文献   

16.
In order to meet the required strength of a fabric, selection of yarn is difficult because tensile strength of woven fabric depends upon a number of factors. Still, the manufacturers have to use hit and trial method in order to select the yarn for the required tensile strength of fabric. This study was carried out to develop regression equations for the prediction of yarn tensile strength suitable for the predefined strength of cotton woven fabrics. These equations were developed by using empirical data obtained from two hundred and thirty four fabric samples prepared under a systematic plan with different constructions. Prediction proficiency and precision of these regression equations were evaluated by correlation analysis of the predicted and actual warp and weft yarn strength values of another set of thirty six fabric samples. The results show a very strong prediction precision of the equations.  相似文献   

17.
The aim of this study was to understand the effects of softening treatment on pull-out properties of plain, ribs and satin fabrics. Polyester woven fabrics were used to conduct the pull-out tests. Data generated from these tests included pullout force, crimp extension and fabric displacement. A developed yarn pull-out fixture was used to perform single and multiple pull-out tests on treated and untreated polyester fabrics. Yarn pull-out forces depend on fabric treatments, fabric density, fabric weave, and the number of pulled ends in the fabric. The results of regression model showed that multiple and single yarn pull-out forces of treated fabrics were lower than those of untreated fabrics. The multiple yarn pull-out force was higher than that of the single yarn pull-out force, and that dense fabric had a high pull-out force. Treated and untreated plain fabrics had high single and multiple pull-out forces compared to those of treated and untreated ribs and satin fabrics. Yarn crimp extension depends on directional crimp ratios in the fabric and the number of pulled yarn ends. High directional crimp ratio fabric showed high directional yarn crimp extension. Fabric displacement depends on the number of pulled yarn ends and also fabric treatments. Fabric displacement in multiple pull-out tests showed high fabric displacement compared to that of single pull-out tests. On the other hand, the regression model could be used in this study as a viable and reliable tool.  相似文献   

18.
The aim of this study was to understand the effects of fabric sample dimensions on pull-out properties of fabric weaves. Polyester woven fabrics were used to conduct the pull-out tests. A yarn pull-out fixture was developed and data generated from this research. Yarn pull-out forces depend on sample dimensions, fabric density, fabric weave, and number of pulled ends in the fabric. Results showed that multiple and single yarn pull-out forces of long samples were higher than those of short samples, and the multiple yarn pull-out force was higher than that of the single yarn pull-out force, and dense fabric has high pull-out force. Plain fabric weave showed high single and multiple pull-out forces compared to ribs and satin fabric weaves. The regression model could be used in this study as a viable and reliable tool. This research could be valuable for development of multifunctional fabrics in technical textile applications.  相似文献   

19.
Aramid fibers are mainly used for industrial applications and human body protection against ballistic threats. But they are used mostly in forms of composites. And fabrics woven with a high yarn count offer a moderate protection performance against the knife stabbing due to the low shear strength. This research is focused on investigating the effect of the aramid core-spun yarns on the stab resistance of the woven fabrics. With the aramid core-spun yarns with core to sheath weight ratio of 1 to 2.5 the armor specimens having different fabric densities were prepared and the knife edge impact test was conducted. On the impact energy of the knife at the level 1 according to the NIJ standard, the drop tower test results demonstrated that fabric density of the armor specimens affected the stab resistance significantly. The penetration depth of the impactor through the armor specimens was associated with the thickness and mass of the armor sample in different ways. Being the stab resistance introduced by considering the penetration depth of the impactor via thickness and weight per surface area, the effects of the fabric conditions on the anti-stabbing property could be systematically analyzed and turned out that there was an optimal level of the fabric density, showing the most effective stab resistance.  相似文献   

20.
In this study, electromagnetic shielding characteristics of woven fabrics made of hybrid yarns are investigated. For this purpose, initially the hybrid yarns containing stainless steel wire are produced with hollow spindle covering technique, and then eight different fabric samples are produced using these hybrid yarns. Electromagnetic shielding values of fabric samples are determined by a test set up based on enclosure measurement technique. Measurements are made in the frequency range of 30 MHz-9.93 GHz. Test results show that woven fabric samples investigated in this study have 25–65 dB electromagnetic shielding effectiveness for incident frequency. It was also shown that the direction, density and settlement type of conductive hybrid yarn in fabric structure are important parameters affecting electromagnetic shielding characteristics of woven fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号