首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of habitat thresholds is a topical issue in ecology, both from theoretical and applied perspectives. We examined how forest structure influences selection of breeding habitat in the Eurasian treecreeper (Certhia familiaris). It is an old-growth forest passerine, which can be considered an umbrella species. Habitat selection data, covering five breeding seasons, were collected from a study area across three spatial scales: (a) territory core scale (a radius of 30 m), (b) territory scale (a radius of 200 m) and (c) large scale (a radius of 500 m). Logistic regression analyses revealed that the radii of 30 and 200 m from the nest were the most important spatial scales for the forest patch occupancy. A loss of forest habitat and a low circumference of stems within the territory decreased the probability of occupancy. There was a distinct threshold in the amount of forest cover on forest patch occupancy when the volume of timber was taken into account. At low timber volumes (0-151 m3/ha) the amount of forest cover was negatively related to the occupancy rate of forest patches. This negative relationship changed abruptly when the volume of timber exceeded 152 m3/ha, after which forest cover had a positive effect on the occupancy rate of forest patches. This is a new way to examine habitat thresholds in relation to forest cover. Furthermore, as debated in recent literature, treecreepers also tend to respond to habitat loss rather than to changes in habitat configuration, which stresses the need for habitat restoration and conservation. Moreover, our results emphasize the importance of within-territory structure over the characteristics of the habitat matrix in selection of breeding habitat.  相似文献   

2.
Large mammal faunas in tropical forest landscapes are widely affected by habitat fragmentation and hunting, yet the environmental determinants of their patterns of abundance remain poorly understood at large spatial scales. We analysed population abundance and biomass of 31 species of medium to large-bodied mammal species at 38 Atlantic forest sites (including three islands, 26 forest fragments and six continuous forest sites) as related to forest type, level of hunting pressure and forest fragment size using ANCOVAs. We also derived a novel measure of mammal conservation importance for each site based on a “Mammalian Conservation Priority index” (MPi) which incorporates information on species richness, population abundance, body size distribution, conservation status, and forest patch area. Mammal abundance was affected by hunting pressure, whereas mammalian biomass of which was largely driven by ungulates, was significantly influenced by both forest type and hunting pressure. The MPi index, when separated into its two main components (i.e. site forest area and species-based conservation index Ci), ordered sites along a gradient of management priorities that balances species-focused and habitat-focused conservation actions. Areas with the highest conservation priority were located in semi-deciduous forest fragments, followed by lowland forests. Many of these fragments, which are often embedded within large private landholdings including biofuel and citrus or coffee crops, cattle ranches and pulpwood plantations, could be used not only to comply with environmental legislation, but also enhance the prospects for biodiversity conservation, and reduce edge effects and hunting.  相似文献   

3.
The results are described of comparisons between actual values for patch occupancy for two species of Australian small mammals (Bush Rat Rattus fuscipes and Agile Antechinus Antechinus agilis) determined from field sampling and predictions of patch occupancy made using VORTEX, a generic simulation model for Population Viability Analysis (PVA). The work focussed on a fragmented forest in south-eastern Australia comprised of a network of 39 patches of native eucalypt forest surrounded by extensive stands of exotic softwood Radiata Pine (Pinus radiata) plantation. A range of modelling scenarios were completed in which four broad factors were varied: (1) inter-patch variation in habitat quality; (2) the pattern of inter-patch dispersal; (3) the rate of inter-patch dispersal; and (4) the population sink effects of the Radiata Pine matrix that surrounded the eucalypt patches. Model predictions were made for the total number of animals, the distribution of animal density among patches, the total number of occupied patches, and the probability of patch occupancy. Predictions were then compared with observed values for these same measures based on extensive field surveys of small mammals in the patch system. For most models for the Bush Rat, the predicted relative density of animals per patch correlated well with the values estimated from field surveys. Predictions of patch occupancy were not significantly different from the actual value for the number of occupied patches in half the models tested. The better models explained 10-16% of the log-likelihood of the probability of patch occupancy. While some of the models gave reasonable forecasts of the number of occupied patches, even in these cases, they had only moderate ability to predict which patches were occupied. Field surveys revealed there was no relationship between patch area and population density for the Agile Antechinus—an outcome correctly predicted by only a few models. Five of the 18 scenarios completed for the Agile Antechinus gave predicted numbers of occupied patches not significantly different from the observed number. In each of these five cases, large standard deviations around the mean predicted value meant uncertainty generated by the simulation model limited the predictive power of the PVA. Some of the models gave reasonable predictions for the number of occupied patches, but those models were unable to predict which ones were actually occupied. The results of our study suggest that key processes influencing which specific patches would be occupied were not modelled appropriately. High levels of variability and fecundity drive the population dynamics of the Bush Rat and Agile Antechinus, making the patch system unpredictable and difficult to model accurately. Despite the fact that both the Bush Rat and the Agile Antechinus are two of the most studied mammals in Australia, there are attributes of their biology that are presently poorly understood (which were not included in the VORTEX model), but which could strongly influence patch occupancy. For example, local landscape features may be important determinants of inter-patch movement and habitat utilisation in the patch system. Further empirical studies are needed to explore this aspect of small mammal biology.  相似文献   

4.
Tropical mammals represent some of the most threatened species, but also the least known because they tend to be difficult to study. To objectively evaluate the conservation status of these species, standardized methods are urgently required. The sun bear Helarctos malayanus is a case in point: it is cryptic, difficult to detect and consequently classified on the IUCN Red List as Data Deficient, and the highest priority for bear conservation research. In this study, we apply a detection/non-detection sampling technique using camera trap data with environmental covariates to estimate sun bear occupancy from three tropical forest study areas with different levels of degradation and protection status in Sumatra. Sun bear detections, and encounter rates, were highest in one of the primary forest study areas, but sun bear occupancy was highest in the degraded forest study area. Whilst, sun bears were recorded at a greater proportion of camera placements in degraded forest, these records were often on only one occasion at each placement, which greatly increased the final occupancy estimate. Primary forests with their large fruiting trees undoubtedly represent good sun bear habitat, but our results indicate that degraded forest can also represent important habitat. These forests should therefore not be considered as having limited conservation value and assigned to other uses, such as oil palm production, as has previously happened in Sumatra. Estimating occupancy between years will yield information on the population trends of sun bears and other tropical mammals, which can be used to provide more reliable conservation assessments.  相似文献   

5.
6.
The concept of critical thresholds of habitat loss has recently received considerable attention in conservation biology and landscape ecology, yet empirical examples of thresholds are scarce. Threatened species management could benefit from recognition of thresholds because conditions under which populations are at risk can be specified. In this study, 56 woodland patches in north-west Victoria were surveyed for the white-browed treecreeper Climacteris affinis, a threatened insectivorous bird of the semi-arid zone of southern Australia. Comparisons with historic records indicate the species’ range is contracting in Victoria. Using logistic regression and hierarchical partitioning, two models of patch occupancy were developed. Tree species composition was an important factor in both models, confirming the treecreepers’ affinity for belah Casuarina pauper and slender cypress-pine Callitris gracilis-buloke Allocasuarina luehmannii woodlands in north-west Victoria. The first model emphasized the importance of demographic isolation: probability of patch occupancy decreased with distance to the nearest occupied patch. A threshold response in demographic isolation was apparent. In agricultural landscapes, most suitable woodland patches within 3 km of an occupied patch were occupied, whereas patches beyond the threshold were vacant. The threshold distance increased to a minimum of 8 km in a matrix of native vegetation, suggesting landscape context affects the response of white-browed treecreepers to habitat fragmentation. Demographic isolation is a quasi-dependent variable and therefore a second model was developed using surrogate variables for demographic isolation. A positive relationship with the proportion of woodland cover in the landscape (100 km2) emerged as the pre-eminent explanatory factor. Depending on woodland quality, a threshold of patch occupancy was apparent at levels of woodland cover between 15 and 25%. However, belah and slender cypress-pine-buloke woodlands now cover only 10% of their original extent in the region. These results highlight the inter-dependence of patch isolation with the amount and quality of habitat in the landscape and the implications this has for maintaining functional connectivity. The retention (or restoration) of suitable habitat is the critical issue for conservation of the white-browed treecreeper, but in landscapes below the threshold of habitat cover, viability of local populations may be influenced by the configuration and quality of remaining habitat.  相似文献   

7.
The loss and fragmentation of forest habitats by human land use are recognised as important factors influencing the decline of forest-dependent fauna. Mammal species that are dependent upon forest habitats are particularly sensitive to habitat loss and fragmentation because they have highly specific habitat requirements, and in many cases have limited ability to move through and utilise the land use matrix. We addressed this problem using a case study of the koala (Phascolarctos cinereus) surveyed in a fragmented rural-urban landscape in southeast Queensland, Australia. We applied a logistic modelling and hierarchical partitioning analysis to determine the importance of forest area and its configuration relative to site (local) and patch-level habitat variables. After taking into account spatial autocorrelation and the year of survey, we found koala occurrence increased with the area of all forest habitats, habitat patch size and the proportion of primary Eucalyptus tree species; and decreased with mean nearest neighbour distance between forest patches, the density of forest patches, and the density of sealed roads. The difference between the effect of habitat area and configuration was not as strong as theory predicts, with the configuration of remnant forest becoming increasingly important as the area of forest habitat declines. We conclude that the area of forest, its configuration across the landscape, as well as the land use matrix, are important determinants of koala occurrence, and that habitat configuration should not be overlooked in the conservation of forest-dependent mammals, such as the koala. We highlight the implications of these findings for koala conservation.  相似文献   

8.
Conservation planning at broad spatial scales facilitates coherence between local land management and objectives set at the state or provincial level. Habitat suitability models are commonly used to identify key areas for conservation planning. The challenge is that habitat suitability models are data hungry, which limits their applicability to species for which detailed information exists, but managers need to address the needs of all at-risk species. We propose a modeling approach useful for regional-scale conservation planning that accommodates limited species knowledge, and identifies what managers should aim for at the local scale. For twenty at-risk bird species, we built models to identify potential habitat using both literature information and empirical data. Species occupancy within potential habitat depends on the presence of intrinsic elements, which we identified for each species so that managers can enhance these elements as appropriate. For most species, the estimated amount of habitat needed to meet population targets was <10% of the mapped potential habitat, with notable exceptions for Northern Goshawk (Accipiter gentilis; 100%), Brown Thrasher (Toxostoma rufum; 63.7%), and Veery (Catharus fuscescens; 17.9%). Model validation showed that interior forest species models performed best. Our modeling framework allowed us to build potential habitat models to various endpoints for different species, depending on the information available, and revealed a number of species for which basic natural history data are missing. Our potential habitat models provide regional perspective and guide local habitat management, and assist in identifying research priorities.  相似文献   

9.
The effects of habitat fragmentation on the Australian avifauna have been widespread with species richness and abundance declining with reduced remnant size and habitat quality and increased habitat isolation. The speckled warbler, Chthonicola sagittata is one species from the highly fragmented temperate woodlands of eastern Australia that has declined across its range and populations that remain appear to be patchily distributed in habitat remnants. Specific causes of decline are unknown but several aspects of its biology make the species particularly vulnerable to decline in fragmented landscapes. Here, we analyse survey data (presence/absence) of speckled warblers in a large sample of habitat remnants from three regions to identify patterns of occupancy. We explore the effects of patch size on extinction risk using population viability analyses (PVA) and detailed demographic data from a behavioural study of individuals in the Australian Capital Territory, south-eastern Australia. Patch size was a strong predictor of the persistence of speckled warblers in habitat remnants. High density populations had higher probabilities of persisting, and inclusion of an Allee effect during drought decreased the probability of persistence. In the absence of an Allee effect, only high density populations in patches greater than 300 ha and low density populations in patches greater than700 ha had more than an 80% probability of persisting over 100 years. The accelerating decrease in population persistence below approximately 200-400 ha suggests that small populations were particularly vulnerable to stochastic demographic and environmental events. Adult female mortality was the single most important factor in driving population extinction. Our PVA model predictions matched the survey data for the Australian Capital Territory region remarkably well, but failed to predict occupancy rates in remnants in other regions. Differences in occupancy patterns between regions may, however, have resulted from inbreeding depression. This study demonstrates both the strengths and limitations of PVA analysis. PVA can predict occupancy patterns with reasonable accuracy, given good demographic data, but data for one region cannot be used universally for all regions. We highlight the need for studies of demography in different regions to interpret regional patterns of occupancy and to identify mechanisms of decline in remnant habitat.  相似文献   

10.
The damselfly Coenagrion mercuriale (Charpentier) (Odonata: Coenagrionidae) is threatened throughout Europe. It is listed on the EC Habitats and Species Directive and is the only odonate currently given priority status in the UK Biodiversity Action Plan. Information about the habitat preferences of this species is required to guide conservation and management programmes. We obtained estimates of density of mature adult C. mercuriale during an intensive mark-release-recapture study over 7.65 km of a water meadow ditch network in the Itchen Valley, Hampshire. Detailed habitat information was also collected, including a variety of physical variables, and data about the in-channel and bankside vegetation. C. mercuriale density and movement were analysed in relation to habitat variables and local population size using Generalized Linear Models. Mean adjacent population density was the single most important factor determining density. However the species was also associated with a number of habitat features, the most important of which were: a channel substrate consisting primarily of silt, wide underwater ledges (berms), in-channel emergent dicots, and bankside monocots. The presence of trees was negatively associated with damselfly density. Mean net lifetime movement was greatest from sections with low density, with smaller than average berms, and with deeper water. The causes and consequences of these findings are discussed in relation to the conservation and management of this rare species.  相似文献   

11.
We tested whether the landscape occupancy and local population size of the monophagous butterfly Cupido minimus can be predicted by patch size and isolation of its host plant or by other habitat characteristics. C. minimus and its larval food plant Anthyllis vulneraria are classified as rare and endangered in northern Germany. Adults of C. minimus are ranked as the most sedentary butterfly species in northern Europe.Around the city of Göttingen (Germany), we checked all known locations of A. vulneraria (n=70) in June 2002 for butterfly eggs (in blooming flowerheads) and adult butterflies (within 20-min transects).We found eggs of C. minimus or a high number of adults (>7) in all habitats with A. vulneraria (which are calcareous grasslands) even when isolated up to 2-4 km. In multiple regression analyses, local population size of adult butterflies was positively related to the cover of its larval food plant A. vulneraria explaining 65% of variance. Cover of A. vulneraria increased with increasing habitat area and increasing cover of plant species in flower and decreased with increasing cover of shrub layer. Habitat isolation and further factors describing habitat quality were not related to C. minimus population size or cover of its larval food plant.The results suggest that dispersal ability of C. minimus is greater than expected and that management should focus to increase A. vulneraria patches. For conservation, low impact grazing once a year and removing of excessive shrubs in winter seems to be the most appropriate strategies.  相似文献   

12.
Habitat colonization and abandonment affects the distribution of a species in space and time, ultimately influencing the duration of time habitat is used and the total area of habitat occupied in any given year. Both aspects have important implications to long-term conservation planning. The importance of patch isolation and area to colonization-extinction events is well studied, but little information exists on how changing regional landscape structure and population dynamics influences the variability in the timing of patch colonization and abandonment events. We used 26 years of Kirtland’s Warbler (Dendroica kirtlandii) population data taken during a habitat restoration program (1979-2004) across its historical breeding range to examine the influence of patch attributes and temporal large-scale processes, specifically the rate of habitat turnover and fraction of occupied patches, on the year-to-year timing of patch colonization and abandonment since patch origin. We found the timing of patch colonization and abandonment was influenced by patch and large-scale regional factors. In this system, larger patches were typically colonized earlier (i.e., at a younger age) and abandoned later than smaller patches. Isolated patches (i.e., patches farther from another occupied patch) were generally colonized later and abandoned earlier. Patch habitat type affected colonization and abandonment; colonization occurred at similar patch ages between plantation and wildfire areas (9 and 8.5 years, respectively), but plantations were abandoned at earlier ages (13.9 years) than wildfire areas (16.4 years) resulting in shorter use. As the fraction of occupied patches increased, patches were colonized and abandoned at earlier ages. Patches were abandoned at older ages when the influx of new habitat patches was at low and high rates. Our results provide empirical support for the temporal influence of patch dynamics (i.e., patch destruction, creation, and succession) on local colonization and extinction processes that help explain large-scale patterns of habitat occupancy. Results highlight the need for practitioners to consider the timing of habitat restoration as well as total amount and spatial arrangement of habitat to sustain populations.  相似文献   

13.
Metapopulation theory is one of the most popular approaches to identify the factors affecting the spatial and temporal dynamics of populations in fragmented habitat networks. Habitat quality, patch area and isolation are mainly focused on when analyzing distribution patterns in fragmented landscapes. The effects of landscape heterogeneity in the non-occupied matrix, however, have been largely neglected. Here, we determined the relative importance of patch quality and landscape attributes on the occurrence, density and extinction of the Dupont’s lark (Chersophilus duponti), an endangered steppe passerine whose habitat has been extremely reduced to highly isolated and fragmented patches embedded in a mainly unsuitable landscape matrix. Habitat patch quality, measured in terms of vegetation structure, grazing pressure, arthropod availability, predator abundance, and inter-specific competition, did not affect occurrence, density or extinction. At the landscape scale, however, the species’ occurrence was principally determined by the interactions among patch size, geographic isolation and landscape matrix. Isolation had the main independent contribution to explaining the probability of occurrence, followed by landscape matrix composition and patch size. The species’ density was negatively correlated to patch size, suggesting crowding effects in small fragments, while extinction events were exclusively related to isolation. Our findings suggest that landscape rather than local population characteristics are crucial in determining the patterns of distribution and abundance of non-equilibrium populations in highly fragmented habitat networks. Consequently, conservation measures for these species should simultaneously involve patch size, isolation and landscape matrix and apply to the entire metapopulation rather than to particular patches.  相似文献   

14.
Phyllostomid bat diversity in a variegated coffee landscape   总被引:1,自引:0,他引:1  
We examined bat diversity at two different spatial scales: habitat and matrix, in the Quindío coffee region in Colombia. Habitats were: forest, shaded coffee and associated coffee; and matrices were: associated coffee (M1) and shaded coffee (M2). Three sampling sites from each type of habitat were located at each matrix. The forest areas of the Quindío region are severely fragmented and less structurally complex than coffee patches. The shaded coffee habitat had patches that were larger and more complex. In spite of limited patch size and lower complexity, the forest remnants were those with greatest species richness and demonstrated clear similarities even between the two matrices. This was not observed in coffee plantations, neither in associated coffee nor shaded coffee. On the landscape scale, M2 showed lower β diversity and greater edge density (ED) than M1. This fact explains that greater connectivity between different habitats exists in M2 than in M1. Our results suggest that production and conservation are compatible, as maintenance of forest remnants in a mosaic structure by landowners of the vegetation is sufficient to conserve phyllostomid bats at landscape level.  相似文献   

15.
We propose an objective method for assessing the vulnerability of species and for prioritizing species and populations for conservation, especially insects. Species of water beetles from two Spanish provinces of the southeast of the Iberian Peninsula were ranked according to their conservation priority at the local, national and global levels taking into consideration a set of six variables: general distribution, endemicity, rarity, persistence, habitat rarity and habitat loss. Each variable was categorized into four ranks (0-3) of increasing risk for survival. Ochthebius glaber, Ochthebius irenae, Ochthebius montesi, Ochthebius albacetinus and Hydraena mecai were seen to be the most vulnerable, for which reason we propose they should be included in the national red list. Furthermore, O. glaber, O. irenae and O. montesi are proposed for inclusion in the IUCN red list as “Vulnerable”. These species are Iberian endemisms, with geographic ranges restricted to the southeast, and are threatened by habitat loss. Effective protection of these species requires measures directed at the conservation of their habitats. Crucial target habitats for protection in the southeast of the Iberian Peninsula include freshwater streams at medium altitudes, saline streams and endorreic lagoons.  相似文献   

16.
Developing a predictive theory for species responses to habitat fragmentation is a large, complex challenge in conservation biology, and meeting this challenge likely requires tailoring predictions to specific habitats and taxa. We evaluate the effects of fragmentation on forest birds living in three distinct forest ecosystems found in Brazilian Atlantic forest: seasonal semi-deciduous forest (SF), mixed rain forest (MF), and dense rain forest (DF). We test the hypotheses that (1) bird species most prevalent in SF (relative to other habitat types) will be least vulnerable to population declines in fragmented SF, and (2) species with stronger affiliations with DF or MF will be relatively more sensitive to fragmentation in SF. Using an exploratory statistical technique called “Rank Occupancy–Abundance Profiles (ROAPs),” we compared distribution and abundance of birds among large “continuous” areas of each forest type, then compared abundances in continuous SF forests with patterns of abundance in small fragments of SF, where edge effects could play a marked role in population dynamics. Overall, 39 species showed substantially lower local abundance, occupancy, or both in SF fragments versus continuous SF. As predicted, a higher proportion of bird species associated with DF appeared sensitive to fragmentation in SF; by contrast, species most abundant in SF and MF were similarly abundant in fragmented SF. Our study demonstrates how quantifying distribution and abundance in diverse habitats may enhance managers’ ability to incorporate species-specific responses to human disturbances in their conservation plans, and points out ways that even small reserves may have significant conservation value.  相似文献   

17.
The conservation of rare species on islands is a special challenge, especially when the islands are faced with increasing human impact. Two endangered wild felids in Japan provide a contrast that is useful for examining conservation strategies. The Iriomote cat (Prionailurus bengalensis iriomotensis) is endemic to Iriomotejima Island in Okinawa, and the Tsushima leopard cat (Prionailurus bengalensis euptilurus) occurs in the Tsushima islands in Japan, although a related subspecies found in the Korean Peninsula. Population size was approximately 100 individuals for each subspecies. While the population of Iriomote cat appears relatively stable, the population and abundance of the Tsushima leopard cat has decreased in recent decades. Because of their small population sizes and restricted habitats both are listed as endangered species/subspecies in Japan’s Red List, and the Iriomote cat is listed as an endangered subspecies in the IUCN Red List. Although both are similar-sized felids living on small islands, their ecological characteristics such as food habit, habitat selection, and density differ. These differences seem to be caused by the climate, the biological environment (the species composition of fauna in each island, and the presence of competitors), and the artificial background. The threats facing these two felids are also similar. Habitat destruction, traffic accidents, and negative influences by introduced species are the principal threats to be addressed for their conservation. At the same time, there are differences in the degree of impact by each threat, in each species’ conservation programs in practice, and in the stages of progress and operation of programs. These differences are partly because they have different ecological features and partly because the social background of each island, such as human population, main industry, and historical relationship between human and wildlife, are quite different. We will compare the ecology and state of these two wild felids and discuss the different conservational situations in relation to felid ecology and human society.  相似文献   

18.
As urban development continues to encroach on the natural and rural landscape, land-use planners struggle to identify high priority conservation areas for protection. Although knowing where urban-sensitive species may be occurring on the landscape would facilitate conservation planning, research efforts are often not sufficiently designed to make quality predictions at unknown locations. Recent advances in occupancy modeling allow for more precise estimates of occupancy by accounting for differences in detectability. We applied these techniques to produce robust estimates of habitat occupancy for a subset of forest breeding birds, a group that has been shown to be sensitive to urbanization, in a rapidly urbanizing yet biological diverse region of New York State. We found that detection probability ranged widely across species, from 0.05 to 0.8. Our models suggest that detection probability declined with increasing forest fragmentation. We also found that the probability of occupancy of forest breeding birds is negatively influenced by increasing perimeter-area ratio of forest fragments and urbanization in the surrounding habitat matrix. We capitalized on our random sampling design to produce spatially explicit models that predict high priority conservation areas across the entire region, where interior-species were most likely to occur. Finally, we use our predictive maps to demonstrate how a strict sampling design coupled with occupancy modeling can be a valuable tool for prioritizing biodiversity conservation in land-use planning.  相似文献   

19.
Echinocactus platyacanthus is a candy barrel cactus endemic to Mexico and an endangered species owing to its exploitation and the destruction of its habitat. The population dynamic of this species is analyzed using matrix models. Three consecutive censuses were carried out (1997, 1998, and 1999) for six populations of this species in the Tehuacán-Cuicatlán Biosphere Reserve. Fruit contain many seeds (mean = 171 ± S.E. 11.03 seeds/fruit); seedling establishment and survival are low (2 × 10−6), and fecundity increases as the diameter of the individuals increases (62 seeds in adult 1-4322 in adult 4). The rates of population growth (λ) range from 0.9285 to 1.0005. Elasticity values for demographic processes indicate that the stasis of the adults is the greatest contribution (S = 0.982), followed by growth (G = 0.017) and fecundity (F = 0.001) to λ. The populations are located in the lower left corner of the demographic triangle; however, there are variations for a given population from one year to the next. Life table response experiments indicate that although there are local variations, the most important differences in the values of λ between populations and between years are associated with changes in the stasis of the adults. The disturbance index is not directly related to population density or to the current value of λ. The protection of adult E. platyacanthus must be taken into account for the management of this species and its conservation in the study area.  相似文献   

20.
The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of stand-replacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004–2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号