首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Analysis of SSR loci and development of SSR primers in Eucalyptus   总被引:1,自引:0,他引:1  
In this study,28,691 genome sequences and16,566 expressed sequence tags(ESTs) of Eucalyptus were derived from the Gen Bank database.A total of 2292 SSR loci were sought out from 1785 effective sequences.Through analyses of SSR loci information,the SSR motif length was negatively correlated with the abundance of the SSRs.In the EST sequences of Eucalyptus,triplet repeat motifs were the most abundant,and dinucleotide repeats motifs had the highest frequencies.Subsequently,395 pairs of primers were designed based on the SSR loci.Using optimized SSR-PCR conditions,340 pairs of primers were successfully screened,with a success rate of 86.1%.By construction of a maximum likelihood phylogenetic tree of six eucalypt species,represented by five species of the genus Eucalyptus and one of the genus Corymbia,the genetic relationships of Eucalyptus urophylla and E.camaldulensis suggested by this tree was found to differ from that suggested by traditional morphological taxonomy.The results provide insights for evaluating geneticdiversity of Eucalyptus and analysis of Eucalyptus phylogenetics using SSR markers.  相似文献   

2.
Simple sequence repeats (SSRs) defined as sequence repeat units between 1 and 6 bp occur abundantly in both coding and non-coding regions in eukaryotic genomes and these repeats can affect gene expression. In this study, ESTs (expressed sequence tags) of Betula pendula (silver birch) were analyzed for in silico mining of EST-SSRs, protein annotation, open reading frames (ORFs), designing primers, and identifying codon repetitions. In B. pendula, the frequency of ESTs containing SSRs was 7.8 % with an average of 1SSR/4. 78 kb of EST sequences. A total of 188 SSRs was identified by using MISA software and di-nucleotide SSR motifs (65.9 %) were found to be the most abundant type of repeat motif followed by tri- (27.1 %), tetra- (4.8 %), and penta- (2.2 %) motifs. Based on ORF analysis, 175 of 178 sequences were predicted as ORFs and the most frequent SSRs were detected in 5′ UTR (58.43 %), followed by in ORF (31.46 %) and in 3′ UTR (8.43 %). 102 of 178 ESTs were annotated as ribosomal protein, transport protein, membrane protein, carrier protein, binding protein, and transferase protein. For a total of 102 SSRs (57.3 %) with significant matches, a set of 102 primers (100 %) with forward and reverse strands was designed by using Primer3 software. Serine (Ser, 19.6 %) was predominant in putative encoded amino acids and most of amino acids showed nonpolar (35.3 %) nature. Our data provide resources for B. pendula and can be useful for in silico comparative analyses of Betulaceae species, including SSR mining.  相似文献   

3.

Key message

Tetracentron sinense Oliver, an endangered species from China, displays a low within-population genetic diversity and high genetic differentiation among populations, and the existing populations could be divided into three conservation and management units.

Context

The endangered tree Tetracentron sinense Oliver has great value; however, little is known regarding the within-population genetic diversity and differentiation among T. sinense populations.

Aims

We examined the genetic diversity and differentiation of T. sinense wild populations, and we tested the effect of small-size population on the level of genetic diversity within these populations.

Methods

Using inter-simple sequence repeat (ISSR), we assessed the genetic variation and structure among 174 individuals from 26 natural populations of T. sinense sampled across its distribution range in China.

Results

The ISSR primers yielded 180 amplified loci (123 were polymorphic). At the species level, the percentage of polymorphic loci (PPL), Nei’s gene diversity (H), and Shannon’s information index (I) were 68.3%, 0.196 and 0.300, respectively. The average population level PPL was 20.0%, and the Na, Ne, H, and I were 1.20, 1.13, 0.076, and 0.112, respectively. AMOVA revealed high genetic differentiation among populations (52.0% of total variance, P?=?0.001), consistent with the gene differentiation coefficient (Gst?=?0.607) and gene flow (Nm?=?0.326). The 174 individuals of the 26 T. sinense populations clustered into three groups, and T. sinense geographic and genetic distance were significantly correlated.

Conclusions

T. sinense exhibited intermediate within-species genetic diversity, indicating preserved evolutionary potential. The low within-population genetic diversity and high genetic differentiation among T. sinense populations may be one of important factors causing endangerment. Three conservation units were determined based on genetic difference and structure. Inter-population introduction of individuals within units via appropriate propagation and seedling management might be an effective strategy for increasing T. sinense within-population genetic diversity and population size.
  相似文献   

4.
Information on population genetic structure and crop genetic diversity is important for genetically improving crop species and conserving threatened species. The PAL gene sequence is part of a multigene family that can be utilized to design DNA marker systems for genetic diversity and population structure investigation. In the current study, genetic diversity and population structure of 100 accessions of wild Pistacia species were investigated with 78 PAL markers. A protocol for using PAL sequences as DNA markers was developed. A total of 313 PAL loci were recognized, showing 100% polymorphism for PAL markers. The PAL markers produced relatively more observed and effective alleles in Pistacia falcata and Pistacia atlantica, with a higher Shannon’s information index and expected heterozygosity in P. atlantica, Pistacia vera and Pistacia mutica. Pairwise assessment of Nei’s genetic distance and genetic identity between populations revealed a close association between geographically isolated populations of Pistacia khinjuk and Pistacia chinensis. The accessions of wild Pistacia species had more genetic relationship among studied groups of species. Analysis of molecular variance indicated 19% among-population variation and 81% within-population variation for the PAL gene based DNA marker. Population structure analysis based on PAL revealed four groups with high genetic admixture among populations. The results establish PAL markers as a functional DNA marker system and provide important genetic information about accessions from wild populations of Pistacia species.  相似文献   

5.
Soil microbes may be critical players in determining the allelopathic potential of some plants. Low levels of plant community biodiversity in Eucalyptus plantations have been attributed to the allelopathic potential of these tree species. The role of soil microbes in the allelopathic effect of leaf leachates of the hybrid tree Eucalyptus grandis × E. urophylla, was tested in Petri dish assays with Brassica chinensis as a receiver plant. Soils were collected from either a local garden (soil A) or a Eucalyptus plantation (soil B) and half of each soil was sterilized to remove microbes. These soils were then treated with E. grandis × E. urophylla leachates for 0–72 h. Seed germination of B. chinensis was significantly inhibited in soils treated with leaf leachates relative to untreated soils. The inhibitory effect of the leaf leachates was more pronounced in sterilized soils. Total phenolic content was obvious lower in nonsterile leachate-treated soils than in sterile soils. Biomass of B. chinensis was negatively correlated with the total phenolic content in soils. Our findings suggest that soil microbes can alleviate the allelopathic potential of Eucalyptus and thereby its negative impact on plant growth.  相似文献   

6.
Castanea sativa is a valuable tree species in Hyrcanian forests, an evolutionary relict ecosystem whose communities suffer from overexploitation and fungal diseases. In the current study, three species delimitation methods were utilized with ITS regions sequencing to determine the taxonomic status of Septoria causing leaf blotch of C. sativa in Hyrcanian forests. The results indicated that the length of ITS region in the genus Septoria (extracted from GenBank) varied from 650 to 680 bp. There were almost three times more variable sites in ITS1 than in ITS2. The ITS2 secondary structure of Hyrcanian Septoria community had the highest similarity with Septoria castaneicola, except for some differences in helix II and III. Also, Hyrcanian samples had minimum genetic distances with S. castaneicola and maximum with Septoria quercicola. The maximum parsimony method divided the studied Septoria genus into three distinct clades, mostly located in clade I. Clade II consisted entirely of Septoria aciculosa, while clade III contained S. castaneicola as well as Hyrcanian samples.  相似文献   

7.
RAPD (randomly amplified polymorphic DNA) markers were employed to characterize polymorphisms among 5 provenances of Acacia leucophloea and to detect genetic relatedness of the species with 6 other acacias (A. holosericea, A. auriculiformis, A. mangium, A. dealbata, A. ferruginea, and A. nilotica) widely grown in India. Of 194 markers scored for the provenances, 29.38% exhibited polymorphism. Also, 326 markers were generated among 7 species of Acacia, accounting for 55.82% of the polymorphisms. The fifteen 10-mer primers employed were capable of producing 1–8 polymorphic bands for the provenances, and 6–17 for all seven species of Acacia. The genetic similarity coefficient based on Jaccard’s coefficient revealed that provenances Thirumangalam and Dharmapuri were closely related. The dendrogram based on a sequential agglomerative hierarchical non-overlapping (SAHN) clustering analysis grouped 4 provenances of A. leucophloea (Dharapuram, Thirumangalam, Pudukottai and Dharmapuri) into one cluster and the other provenance, Sendurai, into a separate cluster. The genetic similarity matrix for 7 Acacia species showed that A. nilotica and A. dealbata were distantly related, while A. holosericea and A. ferruginea were very closely related. Cluster analysis grouped the species of Acacias into 3 major groups of which A. dealbata alone formed a separate group. The RAPD markers generated 36 provenance-specific markers and 162 species-specific markers that could have strong applications for species identification and tree breeding programs for A. leucophloea and for other Acacia species included in this study.  相似文献   

8.
Indonesia’s pulp and paper industry needs a large area of sustainably grown plantations to support its continued development. Acacia mangium has been the key species underpinning the pulp and paper industries in Sumatra, however increased disease pressure on A. mangium is expected to require large-scale conversion of Acacia plantations to Eucalyptus in the near future. The effect of such a large scale change in plantation species on soil moisture, for both tree production, and catchment hydrology is unknown. In this study we sought to characterize the impacts of plantation species (Acacia or Eucalyptus) and nitrogen management, on soil moisture, soil water depletion and depth to groundwater under stands of Acacia mangium and Eucalyptus pellita over the first 2–3 years after establishment. The study was conducted in experiments at four sites in Sumatra, Indonesia. Soil moisture and soil water depletion were not influenced by plantation species or fertilizer treatment. Soil moisture content and soil water depletion were strongly influenced by shallow groundwater at two of the four sites, however depth to groundwater did not influence stem growth. Results from the field trials cautiously suggest that large scale conversion of Acacia mangium to Eucalypt species in these regions is unlikely to result in increased moisture stress, nor is conversion of plantation species likely to lead to substantial differences in catchment hydrology. This study demonstrated the importance of conducting multi-site studies when investigating biophysical relationships in forest/plantation systems.  相似文献   

9.
In this study, we subjected the root systems of eight Eucalyptus hybrids currently cultivated in southern China to heterogeneous phosphorus stress to provide a scientific basis for the selection of a highly phosphorus-efficient Eucalyptus variety. When the ability of these hybrids to locate phosphorus under different experimental conditions (phosphorus supply in a homogeneous or heterogeneous manner vs. no phosphorus supply) was compared, the main growth characteristics of Eucalyptus, such as plant height, diameter, dry mass, and phosphorus content, significantly improved when the phosphorus supply was increased from no phosphorus or heterogeneous phosphorus (half of the phosphorus amount) to homogeneous phosphorus. Across these three conditions, the growth traits of different Eucalyptus hybrids differed significantly, indicating different adaptabilities of the hybrids to various phosphorus conditions. The growth traits of the aboveground tissues of Eucalyptus under different phosphorus conditions were largely influenced by the morphology of the underground root system. In addition, the root morphology of Eucalyptus under heterogeneous phosphorus treatment suggested that there were two mechanisms for locating nutrients. Eucalyptus hybrids such as Urophylla 3229, Grandis 9, Guanglin 3, 201-2, and Dunn produced more roots proximal to the phosphorus supply; the other hybrids, Urophylla 3216, Grandis 5, and Guanglin 9, relied mainly on the growth of roots opposite the phosphorus supply to obtain adequate nutrients for growth. With these two strategies, a wide range of nutrients was obtained, root distribution was greater, more soil volume was covered, the contact area of the roots with soil phosphorus was increased, and the uptake of phosphorus by the root system was increased. These results demonstrate that Eucalyptus relies on changes to morphological characteristics of the root system to increase accessibility to phosphorus resources.  相似文献   

10.
Calamus species yields the raw materials for the cane industry. However, the extraction of the cane from the forests is being carried out indiscriminately without considering the sustenance of the species. Plants of both sexes should co-exist for reproductive success. The sex of Calamus plants can be identified only after flowering and hence proper planning of managed forestry practices cannot be accomplished. A study was carried out in this background and male specific ISSR markers for C. tenuis and C. flagellum and SSR markers for C. thwaitesii were identified. The diagnostic potential of these markers can be exploited to sex the Calamus species at the seedling stage for proper breeding and agroforestry management.  相似文献   

11.
Most Eucalyptus plantations are intensively managed as short-rotation plantations and carbon (C) storage in plants and soils in stands older than 10 years is not well understood. We examined the changes in plant biomass C and soil organic C (SOC) storage across a chronosequence of E. urophylla × E. grandis forests (4-, 7-, 10-, 13-, and 21-year-old) in subtropical China. Biomass C stock significantly increased with stand age. SOC storage increased initially after afforestation, peaking in 10-year-old stands, and declined gradually. Ecosystem C pools in the five development stages were 111.76, 167.66, 234.04, 281.00, and 299.29 Mg ha?1, respectively. Trees and soils were the dominant C pools across all stand ages with the contribution of tree biomass C storage significantly increasing and SOC storage decreasing with age. Eucalyptus plantations are still in vigorous growth phase and have great potential for C sequestration at the end of the current rotation length (within 7 years). Considering the sharp decrease of annual biomass C increment rate and the gradual loss of SOC storage in stands older than 13 years, we recommend the optimal length for one full Eucalyptus plantation cycle should be 12–15 years in subtropical China to maximize land-use value and carbon sink value.  相似文献   

12.
Plantations of Eucalyptus species are expanding across South America into regions where drought conditions can reduce growth rate and result in substantial commercial loss. Understanding the mechanisms of drought tolerance in Eucalyptus is essential for the successful production in drought-regions. The main objectives of this study were to evaluate how water availability preceding a long-term drought period affects morphological, physiological and molecular traits of four Eucalyptus clones grown under field conditions. The study areas are located in north-eastern Brazil with an average rainfall of 800 and 1500 mm per year. At each rainfall regime, the following clones were evaluated: 1404 (Eucalyptus urophylla), 1407 (E. urophylla × E. camaldulensis), 1296 and 6500 (E. grandis × E. urophylla). Our results indicate that trees growing in the area with higher annual precipitation were more stressed after long-term drought, compared to those stands previously exposed to mild water-restriction period. The genetic materials showed distinct responses to drought, which allowed their separation in two groups: drought-tolerant (1404 and 1407) and drought sensitive (6500 and 1296). The former group shows some important adaptations to drought, such as decreased leaf area (avoiding excessive transpiration rates), higher antioxidant activity and carotenoid concentration (leading to lower lipid peroxidation). In conclusion, previous exposure to water deficit may provide the benefit of increased defense protection during future water deficit. From all measured variables, the leaf area, antioxidant compounds and changes in 13C and 18O isotope abundance reflect some of the most important morphological and physiological alterations in order to mitigate the water stress damage in drought-tolerant genotypes.  相似文献   

13.
Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.  相似文献   

14.
基于桤木属转录组测序的SSR分子标记的开发   总被引:2,自引:1,他引:1       下载免费PDF全文
[目的]基于转录组数据开发适用于桤木属树种的SSR标记,揭示其在转录组序列中的分布类型及特征,为桤木属树种分子标记辅助育种提供有利工具。[方法]利用Micro SAtellite(MISA)软件对所有转录组序列进行SSRs搜索,并对SSR位点的数量、分布特征进行统计分析。设计100对SSR引物,采用琼脂糖凝胶电泳和毛细管电泳分离检测方法对3种不同倍性桤木属植物(12份材料)进行遗传多样性检测,确定引物多态性及通用性。[结果]85 769条Unigenes序列中发现8 678个SSR位点,分布在8 298条Unigenes中发生频率为9.67%,转录组序列中平均每14.04 kb长度就有一个SSR位点分布。其中,二核苷酸重复类型数量最多,占65.87%。根据转录组Unigenes序列,利用Primer 3软件共设计出4 531对符合要求的引物,挑选出的100对SSR引物中,获得18对多态性高、稳定性好的SSR引物。[结论]本研究可扩增出多态性位点的引物重复单元以二、三核苷酸重复为主。基于桤木属转录组序列的SSR标记开发是可行的,开发的引物为桤木属遗传多样性分析、分子育种、遗传图谱构建和功能基因的挖掘提供了丰富的候选分子标记。  相似文献   

15.
Species of the Santalum genus are well known for their fragrant hardwood, which has great value in medicinal, pharmaceutical and cosmetic industries. Sandalwood oil is derived from the heartwood of Santalum sp. and contains α-, β- and epi-β-santalols, which are responsible for its pleasant fragrance. Oil content can vary from species to species. Pressure on natural populations due to habitat loss, legal and illegal harvesting and disease is increasing. This paper highlights the development of molecular markers for the refinement of phylogenetic studies, identification of various Santalum and adulterant species, assessment of genetic diversity, genetic differentiation, clonality and management units within species, and for marker-assisted breeding. The identification of quantitative trait loci for sandal spike disease and for other traits such as specific rare secondary metabolites in the essential oil and related to its fragrance, would also benefit from molecular advances. RNA sequence analyses have already identified changes in gene expression and metabolic pathways in developing Santalum album L. haustoria.  相似文献   

16.
The selection of wood species and the styles of sculpture play key roles in the characterization of Buddhist statues. After Jianzhen, a Chinese Buddhist monk, visited Japan in the mid-eighth century, wood of the genus Torreya had been frequently used to produce single-bole statues. Establishing measures for the accurate identification of wood in the genus Torreya is effective for investigating the drastic change in the production of statues during this period. Analyzing the plastid deoxyribonucleic acid (DNA) fragments extracted from wood is considered helpful in the identification of species in the same genus. This study analyzed the sequences and residual amounts of plastid DNA fragments in the wood of Torreya nucifera. Nucleotide substitutions in the plastid DNA were clearly identified between T. nucifera and the species distributed in China, indicating that the wood of Torreya sp. can be discriminated based on the plastid DNA sequences. DNA polymorphism analyses revealed sequence diversity for the intergenic spacers on the T. nucifera plastid DNA. A series of polymerase chain reaction (PCR) analyses demonstrated that the plastid DNA fragments with a length of approximately 100 bp could be amplified from the residual DNA extracted from the T. nucifera sapwood with longer elapsed years after cutting. Therefore, an identification of wood species in the genus Torreya based on their plastid DNA is considered to be one of the most effective measures taken in the study regarding the historical changes of Buddhist statues.  相似文献   

17.
Pinus parviflora Sieb. et Zucc. var. parviflora is a coniferous tree species distributed in mountainous areas of temperate zones from southern Tohoku to the Kyushu area in Japan. Some P. parviflora populations have become small and endangered due to massive death resulting from pine wilt disease, scab canker, and presumably climate change. We developed 11 microsatellite markers for P. parviflora by the dual-suppression technique and next-generation sequencing using 32 individuals of P. parviflora collected from Aokigahara at the foot of Mt. Fuji. The number of alleles for each locus ranged from two to 10. The averages of observed and expected heterozygosities were 0.61 and 0.59, respectively. These markers will become powerful tools for assessing genetic diversity, genetic connectivity, and genetic structure in P. parviflora populations, which will facilitate our understanding and conservation of P. parviflora.  相似文献   

18.
The endangered Vatica mangachapoi, a long-lived, tropical tree with economic and ecological importance found in Hainan, China, was used to assess the hypothesis that historical human activities in Hainan’s tropical rain forest could have negative effects on the genetic diversity of V. mangachapoi. Three hundred and twenty individuals from 11 natural populations—which were classified into three groups according to levels of disturbance—were sampled and analyzed with ISSR markers. Although genetic diversity of V. mangachapoi is high at the species level, it is relatively low within populations. A significant genetic differentiation occurs among different disturbance levels. Significant isolation-by-distance indicated relevant historical anthropogenic changes. Our findings showed that historical human disturbances significantly increase the genetic differentiation and slightly decrease the genetic diversity of long-lived tree V. mangachapoi. Relevant targeting conservation actions were recommended.  相似文献   

19.
The naturally occurring Verticillium nonalfalfae shows promise for biocontrol of the highly invasive Tree of Heaven (Ailanthus altissima), but might also bear a risk for non-target tree species. In this study, we conducted inoculations on potted seedlings of A. altissima as well as on eight indigenous and two invasive tree species associated with Tree of Heaven in Austria. Although vascular discolourations developed in all inoculated tree species, V. nonalfalfae was reisolated from Ailanthus and eight of the ten non-target-species, whereas typical disease symptoms and mortality only occurred on A. altissima. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae but indicated tolerance (T) of Acer campestre, Acer pseudoplatanus and Quercus robur, possible resistance (PR) of Fraxinus excelsior, Populus nigra, Tilia cordata, Ulmus laevis and Ulmus minor and resistance (R) of Fraxinus pennsylvanica and Robinia pseudoacacia to this potential biocontrol agent. Results from seedling inoculations were confirmed by cursory field observations in Ailanthus-inoculated forest stands, where admixed A. campestre, A. pseudoplatanus, F. excelsior, Populus alba, R. pseudoacacia and U. laevis canopy trees remained asymptomatic, while mortality was induced in Ailanthus.  相似文献   

20.
Forty-one E. bosistoana families were evaluated for the production of heartwood quantity and quality in two sites. High estimated heritabilities of heartwood diameter (HWD) were found in both sites (0.66 and 0.71). The estimated heritabilities of extractives content (EC) were lower with 0.16 and 0.25. Weak genetic correlations between HWD and EC were found in one site, but highly negative (??0.86) genetic correlations were observed in the other. The G?×?E interaction had no significant influence on growth traits but a small-level influence on the EC. Five families were selected for tree breeding as they produced both large HWD and high EC in both sites. It was suggested that genetic breeding selection could improve the heartwood quantity and quality of E. bosistoana plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号