首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Marine environments comprise almost three quarters of Earth’s surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5–2.1 wt%), pyruvyl (0.2–4.9 wt%), succinyl (1–1.8 wt%), and sulfate (1.98–3.43 wt%); and few peptides (1.72–6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32–53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.  相似文献   

2.
The prognosis of liver cancer was inferior among tumors. New medicine treatments are urgently needed. In this study, a novel exopolysaccharide EPS364 was purified from Vibrio alginolyticus 364, which was isolated from a deep-sea cold seep of the South China Sea. Further research showed that EPS364 consisted of mannose, glucosamine, gluconic acid, galactosamine and arabinose with a molar ratio of 5:9:3.4:0.5:0.8. The relative molecular weight of EPS364 was 14.8 kDa. Our results further revealed that EPS364 was a β-linked and phosphorylated polysaccharide. Notably, EPS364 exhibited a significant antitumor activity, with inducing apoptosis, dissipation of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS) in Huh7.5 liver cancer cells. Proteomic and quantitative real-time PCR analyses indicated that EPS364 inhibited cancer cell growth and adhesion via targeting the FGF19-FGFR4 signaling pathway. These findings suggest that EPS364 is a promising antitumor agent for pharmacotherapy.  相似文献   

3.
4.
Natural polysaccharides have received much attention due to their wide range of applications. Although most microbial exopolysaccharides (EPSs) use sugars as the major carbon source, such as glucose or sucrose, in this study, EPSs were induced from a squid pen powder (SPP)-containing medium by Paenibacillus mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil. Under the optimal culture conditions, the maximum EPS yield (14.8 g/L) was obtained. MALDI-TOF MS analysis of an EPS fraction purified by gel filtration revealed two mass peaks with molecular weights of ∼1.05 × 104 and ∼1.35 × 104 Da, respectively. The analysis of the hydrolysates of TKU032 EPS with cellulase, pectinase or α-amylase indicated that the glycosidic bond of TKU032 EPS is most likely an α-1,4 glycosidic bond and the hydrolysates are similar to those of starch. In addition, the purified EPS demonstrated strong antioxidant abilities.  相似文献   

5.
Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC) and chitosan oligosaccharide (COS) on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF), a high-fat diet group (HF), Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L), COS1 (COS, number-average molecular weight ≤1000) high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L), and COS2 (COS, number-average molecular weight ≤3000) high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L). All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01), and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01). The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity.  相似文献   

6.
The aim of this study was to compare physical, mechanical and biological properties of 3-dimensional scaffolds prepared from Bombyx mori silk fibroin (SF), fibroin blended with collagen (SF/C), and fibroin blended with gelatin (SF/G) using a freeze-drying technique. The prepared scaffolds were sponge-like structure that exhibited homogeneous porosity with highly interconnected pores. Average pore size of these scaffolds ranged from 65–147 μm. All biodegradable scaffolds were capable of water absorption of 90 %. The degradation behavior of these scaffolds could be controlled by varying the amount of blended polymer. The SF/C and SF/G scaffolds showed higher compressive modulus than that of SF scaffolds which could be attributed to the thicker pore wall observed in the blended constructs. The less crystalline SF structure was observed in SF/G scaffolds as compared to SF/C scaffolds. Thus, the highest compressive modulus was observed on SF/C matrix. To investigate the feasibility of the scaffolds for cartilage tissue engineering application, rat articular chondrocytes were seeded onto the scaffolds. The MTT assay demonstrated that blending collagen or gelatin into SF sponge facilitated cell attachment and proliferation better than SF scaffolds. The blended SF scaffolds possessed superior physical, mechanical and biological properties in comparison to SF scaffolds and showed high potential for application in cartilage tissue engineering.  相似文献   

7.
This review provides a comprehensive summary of the most recent developments of various aspects (i.e., production, purification, structure, and bioactivity) of the exopolysaccharides (EPSs) from Paenibacillus spp. For the production, in particular, squid pen waste was first utilized successfully to produce a high yield of inexpensive EPSs from Paenibacillus sp. TKU023 and P. macerans TKU029. In addition, this technology for EPS production is prevailing because it is more environmentally friendly. The Paenibacillus spp. EPSs reported from various references constitute a structurally diverse class of biological macromolecules with different applications in the broad fields of pharmacy, cosmetics and bioremediation. The EPS produced by P. macerans TKU029 can increase in vivo skin hydration and may be a new source of natural moisturizers with potential value in cosmetics. However, the relationships between the structures and activities of these EPSs in many studies are not well established. The contents and data in this review will serve as useful references for further investigation, production, structure and application of Paenibacillus spp. EPSs in various fields.  相似文献   

8.
This study investigates the influence of in situ exopolysaccharides (EPS) and organic acids on dough rheology and wheat bread quality. Dextran forming Weissella cibaria MG1 was compared to reuteran forming Lactobacillus reuteri VIP. For in situ production of EPS, sourdoughs were supplemented with 15% sucrose. Control sourdoughs were prepared with the same strain but without sucrose. W. cibaria MG1 and L. reuteri VIP formed 5.1 and 5.8 g kg−1 dextran and reuteran, respectively. Formation of EPS from sucrose led to production of high amounts of acetate by L. reuteri VIP, but only small amounts were detected in W. cibaria MG1 sourdough. EPS containing sourdough or control sourdough was incorporated at 10% and 20% in wheat dough. EPS significantly influenced the rheological properties of the dough, with dextran exhibiting the strongest impact. The addition of dextran enriched W. cibaria MG1 sourdough significantly increased CO2 production, whereas increased acidity in reuteran containing dough reduced gas production. The quality of wheat bread was enhanced when 10% of L. reuteri-sucrose sourdough was added. The positive effect of reuteran was masked by increased acidification after 20% sourdough addition. Incorporation of dextran enriched sourdough (10% and 20%) provided mildly acidic wheat bread with improved bread quality.  相似文献   

9.
Exopolysaccharide (EPS) from marine microalgae are promising sources of a new generation of drugs. However, lot of them remain to be discovered and tested. In this study, EPS produced by Porphyridium marinum and its oligomers prepared by High Pressure Homogenizer have been tested for different biological activities, i.e., antibacterial, anti-fungal and antibiofilm activities on Candida albicans, as well as for their effects on the viability of murine breast cancer cells. Results have shown that all EPS samples present some biological activity. For antibacterial and antibiofilm activities, the native EPS exhibited a better efficiency with Minimum Inhibitory Concentration (MIC) from 62.5 µg/mL to 1000 µg/mL depending on the bacterial strain. For Candida albicans, the biofilm formation was reduced by about 90% by using only a 31.3 µg/mL concentration. Concerning breast cancer cells, lower molar masses fractions appeared to be more efficient, with a reduction of viability of up to 55%. Finally, analyses of polymers composition and viscosity measurements were conducted on all samples, in order to propose hypotheses involving the activities caused by the intrinsic properties of polymers.  相似文献   

10.
11.
Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.  相似文献   

12.
Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats’ heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension.  相似文献   

13.
Hydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms. Statistical analysis shows very significant difference on the release of gentamicin between GM containing PLA (PLAGM) and GM containing HAp microspheres within PLA matrix (PLAHApGM) devices, which PLAHApGM displays lower release rates. The use of HAp particles improved drug stabilization and higher drug encapsulation efficiency of the carrier. HAp is also the source of Ca2+ for the regeneration and repair of diseased bone tissue. The release profiles, exhibited a steady state release rate with significant antimicrobial activity against Staphylococcus aureus (S. aureus) (SH1000) even at high concentration of bacteria. The devices also indicated significant ability to control the growth of bacterial even after four weeks of drug release. Clinical release profiles can be easily tuned from drug-HAp physicochemical interactions and degradation kinetics of polymer matrix. The developed systems could be applied to prevent microbial adhesion to medical implant surfaces and to treat infections mainly caused by S. aureus in surgery.  相似文献   

14.
Vernalization requirement, photoperiod response and earliness per se (EPS) of bread wheat cultivars are often determined using controlled environments. However, use of non-field conditions may reduce the applicability of results for predicting field performance as well as increase the cost of evaluations. This research was undertaken, therefore, to determine whether field experiments could replace controlled environment studies and provide accurate characterization of these three traits among winter wheat cultivars. Twenty-six cultivars were evaluated under field conditions using two natural photoperiod regimes (from different transplanting dates) and vernalization pre-treatments. Relative responses to vernalization (RRVGDD) and photoperiod (RRPGDD) were quantified using the reciprocal of thermal time to end of ear emergence, whereas earliness per se was estimated by calculating thermal time from seedling emergence until end of ear emergence for fully vernalized and lately planted material. An additional index based on final leaf numbers was also calculated to characterize response to vernalization (RRVFLN). To test whether the obtained indices have predictive power, results were compared with cultivar parameters estimated for the CSM-Cropsim-CERES-Wheat model Version 4.0.2.0. For vernalization requirement, RRVGDD was compared with the vernalization parameter P1V, for photoperiod (RRPGDD), with P1D, and for earliness per se, EPS was compared with the sum of the component phase durations. Allowing for variation in EPS in the calibration improved the relation between observed versus simulated data substantially: correlations of RRPGDD with P1D increased from r2 = .34 (p < .01), to .82 (p < .001), and of RRVGDD with P1V, from r2 = .88 (p < .001), to .94 (p < .001). In comparisons of observed versus simulated anthesis dates for independent field experiments, the estimated model coefficients resulted in an r2 of .98 (p < .001) and root mean square error of 1d. Overall, the results indicated that combining planting dates with vernalization pre-treatments can permit reliable, quantitative characterization of vernalization requirement, photoperiod response and EPS of wheat cultivars. Furthermore, emphasize the need for further study to clarify aspects that determine EPS, including whether measured EPS varies with temperature or other factors.  相似文献   

15.
Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFβ1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.  相似文献   

16.
CIMMYT hexaploid spring wheat (Triticum aestivum L.) germplasm has played a global role in assisting wheat improvement. This study evaluated four classes of CIMMYT germplasm (encompassing a total of 273 lines), along with 15 Australian cultivars (Oz lines) for grain yield, yield components and physiological traits in up to 27 environments in Australia's north-eastern region, where terminal drought frequently reduces grain yield and grain size.Broadly-adapted CIMMYT germplasm selected for grain yield had greater yield potential and improved performance under drought stress, being up to 5% greater yielding in High-yielding (mean yield 429 g m−2) and 4-10% greater yielding than adapted Oz lines in Low-yielding environments (mean yield 185 g m−2). Whilst maintaining statistically similar harvest index and spikes m−2 compared to broadly-adapted Oz lines across all environments, sets of selected CIMMYT lines had greater canopy temperature depression (0.18-0.27 °C), dry weight stem−1 (0.20-0.37 g), increased grains spike−1 (0.8-3.4 grains), grain number m−2 (ca. 20-800 grains), and maturity biomass (56-83 g m−2). Compared to selected Oz lines, broadly-adapted CIMMYT lines had a smaller reduction in Low compared to High-yielding environments for these traits, especially dry weight stem−1, such that CIMMYT lines had ca. 25% and 10% greater dry weight stem−1 than the Oz lines in Low- and High-yielding environment groups, respectively. Broadly-adapted CIMMYT germplasm also had slightly higher stem water soluble carbohydrate concentration at anthesis (ca. 6 mg g−1), which contributed to their higher grain weight (ca. 0.5 mg grain−1), and maintained an agronomically appropriate time to anthesis and plant height. Thus current CIMMYT germplasm should be useful donor sources of traits to enrich breeding programs targeting variable production environments where there is a high probability of water deficit during grain filling. However, as multiple traits were important, efficient introgression of these traits in breeding programs will be complex.  相似文献   

17.
In the last decades, research has focused on the capabilities of microbes to secrete exopolysaccharides (EPS), because these polymers differ from the commercial ones derived essentially from plants or algae in their numerous valuable qualities. These biopolymers have emerged as new polymeric materials with novel and unique physical characteristics that have found extensive applications. In marine microorganisms the produced EPS provide an instrument to survive in adverse conditions: They are found to envelope the cells by allowing the entrapment of nutrients or the adhesion to solid substrates. Even if the processes of synthesis and release of exopolysaccharides request high-energy investments for the bacterium, these biopolymers permit resistance under extreme environmental conditions. Marine bacteria like Bacillus, Halomonas, Planococcus, Enterobacter, Alteromonas, Pseudoalteromonas, Vibrio, Rhodococcus, Zoogloea but also Archaea as Haloferax and Thermococcus are here described as EPS producers underlining biopolymer hyperproduction, related fermentation strategies including the effects of the chemical composition of the media, the physical parameters of the growth conditions and the genetic and predicted experimental design tools.  相似文献   

18.
For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50–60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.  相似文献   

19.
Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in mice. C57BL/6J male mice were given diets of 30 energy% fat consisting of FO or safflower oil plus butter as control oil (Con). After administration for 9 days, respiration in mice was monitored, and then the data were used to calculate DIT and EE. DIT increased significantly by 1.2-fold in the FO-fed mice compared with the Con-fed mice. Body weight gain was significantly lower in the FO-fed mice. FO increased the levels of uncoupling protein 1 (Ucp1) mRNA and UCP1 protein in brown adipose tissue (BAT) by 1.5- and 1.2-fold, respectively. In subcutaneous white adipose tissue (subWAT), the levels of Ucp1 mRNA and UCP1 protein were increased by 6.3- and 2.7-fold, respectively, by FO administration. FO also significantly increased the expression of markers of browning in subWAT such as fibroblast growth factor 21 and cell death-inducing DNA fragmentation factor α-like effector a. Thus, dietary FO seems to increase DIT in mice via the increased expressions of Ucp1 in BAT and induced browning of subWAT. FO might be a promising dietary fat in the prevention of obesity by upregulation of energy metabolism.  相似文献   

20.
A new versatile actinobacterium designated as strain NJES-13 was isolated from the feces of the Antarctic emperor penguin. This new isolate was found to produce two active gephyromycin analogues and bioflocculanting exopolysaccharides (EPS) metabolites. Phylogenetic analysis based on pairwise comparison of 16S rRNA gene sequences showed that strain NJES-13 was closely related to Mobilicoccus pelagius Aji5-31T with a gene similarity of 95.9%, which was lower than the threshold value (98.65%) for novel species delineation. Additional phylogenomic calculations of the average nucleotide identity (ANI, 75.9–79.1%), average amino acid identity (AAI, 52.4–66.9%) and digital DNA–DNA hybridization (dDDH, 18.6–21.9%), along with the constructed phylogenomic tree based on the up-to-date bacterial core gene (UBCG) set from the bacterial genomes, unequivocally separated strain NJES-13 from its close relatives within the family Dermatophilaceae. Hence, it clearly indicated that strain NJES-13 represented a putative new actinobacterial species isolated from the gut microbiota of mammals inhabiting the Antarctic. The obtained complete genome of strain NJES-13 consisted of a circular 3.45 Mb chromosome with a DNA G+C content of 67.0 mol%. Furthering genome mining of strain NJES-13 showed the presence of five biosynthetic gene clusters (BGCs) including one type III PKS responsible for the biosynthesis of the core of gephyromycins, and a series of genes encoding for bacterial EPS biosynthesis. Thus, based on the combined phylogenetic and active metabolites characterization presented in this study, we confidently conclude that strain NJES-13 is a novel, fresh actinobacterial candidate to produce active gephyromycins and microbial bioflocculanting EPS, with potential pharmaceutical, environmental and biotechnological implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号