首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 246 毫秒
1.
为准确、高效、自动化的提取大尺度范围冬小麦种植面积,利用Sentinel-2A卫星影像进行试验,提出一种基于中等分辨率影像的面向对象结合深度学习的遥感冬小麦提取方法。利用面向对象分类法和随机森林分类算法对2021年潍坊市冬小麦种植面积及种植区域进行提取和结果对比,证明面向对象分类法在提取冬小麦种植面积时的可行性和有效性。此外,利用面向对象方法得到的二值分类图像作为标签图像,基于TensorFlow框架,利用U-Net构建深度学习神经网络模型,使用训练得到最优模型提取2017—2021年潍坊市冬小麦种植面积。使用实地调查数据对分类结果进行精度验证,并对潍坊市近五年冬小麦种植面积进行年际变化分析。该分类方法的总体分类精度达93.1%,Kappa系数为0.91。本研究方法可为大范围的冬小麦种植指导和农业结构调整提供科学、可靠的依据。  相似文献   

2.
为探讨如何利用遥感影像自动解译技术,实现冬小麦种植情况统计调查、提高提取精度,选择冬小麦关键生育期6个时相的高分二号遥感影像数据,分别从6个时相的近红外灰度(NIR)、红波段灰度(R)、绿波段灰度(G)、蓝波段灰度(B)、比值植被指数(RVI)、归一化植被指数(NDVI) 6个特征中优选出对冬小麦面积提取最敏感的1个特征作为输入变量,每个时相选择1个特征,6个时相共选出6个特征作为输入变量,利用随机森林算法构建模型,提取冬小麦空间分布特征。选择研究区不同长势、不同种植品种的地块样本构建训练集,利用多时相特征构建模型,并将模型推广应用于整个大厂回族自治县,得到大厂回族自治县冬小麦的空间分布情况。通过与统计结果对比分析,经过多时相特征优选构建的模型对冬小麦的识别精度接近90%。经过样本优化和后期处理仍可提升精度,此方法能在保证提取精度的前提下对冬小麦进行快速提取,提高相应的工作效率。  相似文献   

3.
遥感技术能够快速准确地获取农作物空间分布信息,为探究2021年黄淮海平原冬小麦空间分布信息,基于Google Earth Engine(GEE)云平台,以Sentinel-1 SAR雷达影像和Sentienl-2光学遥感影像为数据源,通过计算极化特征、光谱特征和纹理特征,运用随机森林等4种机器学习方法和深度循环神经网络模型,对研究区冬小麦空间分布信息进行提取,并对比各分类器和网络架构的分类精度。结果表明,黄淮海平原冬小麦总面积约为16226667hm2,占研究区总面积的49.17%,其中冬小麦种植面积最大的是河南省,约为4647334hm2,研究区冬小麦种植分布呈现由东向西、由南向北递减的趋势;随机森林是4种机器学习方法中识别精度最高的分类器,总体分类精度为94.30%;在随机森林算法中仅使用Sentinel-1雷达数据总体精度为87.38%,仅使用Sentinel-2光学数据总体精度为93.95%,而融合时序Sentinel主被动遥感数据总体精度为94.30%;在大范围的冬小麦分类上,深度学习模型的泛化性高于机器学习方法。  相似文献   

4.
基于MODIS数据的冬小麦种植面积快速提取与长势监测   总被引:7,自引:0,他引:7  
利用MODIS-NDVI数据,以中国冬小麦主产区为例,探讨了基于遥感影像全覆盖的大尺度冬小麦种植面积遥感综合自动识别及长势监测的方法。通过分析冬小麦的种植结构、物候历特征及其生物学特性和时序NDVI曲线特征,确定了冬小麦信息提取的NDVI阈值,建立了冬小麦面积提取模型,并最终获取了2010—2011年中国农情遥感监测中冬小麦长势监测所需的空间分布数据,与多年平均统计数据比较,总体精度达到81%以上。基于提取的冬小麦面积信息空间分布数据,利用MODIS-NDVI差值模型,对冬小麦2011年的长势进行监测。结果表明,与近5年平均状况对比,2011年冬小麦在其整个生育期内长势基本与常年持平,但时空分布差异较大。  相似文献   

5.
GEE环境下融合主被动遥感数据的冬小麦识别技术   总被引:2,自引:0,他引:2  
遥感技术已成为大宗作物种植面积提取的有效手段。为避免冬小麦提取中受光学数据缺乏的影响,基于随机森林算法(RF)和Google Earth Engine(GEE)云平台,探索时间序列Sentinel-1合成孔径雷达(SAR)数据后向散射系数对冬小麦提取效果,并融合Sentinel-1、2主被动遥感数据,研究后向散射系数、光谱特征、植被指数特征与纹理特征的不同组合对冬小麦识别精度的改善情况。结果表明:仅融合多时相Sentinel-1 SAR数据时,分类总体精度为85.93%,Kappa系数为0.75,冬小麦识别精度达到95%以上。融合多时相SAR数据与单时相光学数据,在充分利用极化信息和光谱信息进行分类后,分类总体精度为95.78%,Kappa系数为0.92,比多时相SAR分类结果分别提高9.85个百分点和约22.67%,对冬小麦的识别精度提高约2个百分点。通过分析不同特征组合情况下纹理特征对分类的影响,发现纹理特征对冬小麦的识别精度影响程度较小。  相似文献   

6.
研究不同作物种植成数、田块形状和田块破碎度对作物遥感分类精度的影响,是科学评价作物遥感分类精度的基础。采用GF-1遥感数据,以时序植被指数的主要农作物分类结果为基础,对研究区冬小麦-夏玉米作物种植区的分类精度与种植成分、田块形状和破碎度的关系进行了研究。结果表明,种植成数与分类精度呈正相关,田块破碎度、田块形状指数与分类精度呈负相关。  相似文献   

7.
粮食安全是最根本的民生问题,云、雾等自然因素是影响遥感种植监测的主要因素之一,因此获取精准、高效的耕地种植监测信息的对保障当地粮农安全、粮食估产及面积估算具有重要意义。在利用多时相植被指数(VI)合成模型的构建、农作物特征与耕地信息的可分离性两方面对高原山地农作物耕地面积提取的研究少。本研究基于哨兵2(Sentinel-2)数据,构建了多时相植被指数合成模型,估算了2020-2021年归一化植被指数(NDVI)、增强植被指数(EVI)和红绿叶绿素植被指数(RECI)三种植被指数的提取结果,研究了预测模型与高原山地农作物的相关性,探讨了不同植被指数模型对农作物识别精度。结果表明:①多时相NDVI模型相较EVI、RECI对冬小麦面积提取精度更高,与云南高原山地冬小麦相关性最强,用户精度约为93.28%;②利用三期NDVI组合与两期NDVI组合均可对冬小麦精准提取,但三期NDVI草型提取精度更高。因此,本研究利用多时相NDVI指数模型对冬小麦种植面积的精准预测,证明了该模型可有效适用于云南高原山地冬小麦,并为当地冬小麦面积的预测提供了数据支撑。  相似文献   

8.
【目的】准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004—2013年冬小麦种植面积,并分析了河南省2004—2013年冬小麦种植面积的时空变化。【结果】遥感监测结果与各地市统计值具有较高的相关性(R2=0.938 5),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%。从空间上看,河南省冬小麦种植面积的空间分布总体较为集中,主要分布在河南中东部的黄河平原和淮河平原地区和豫西南的南阳盆地地区。从时间上看,河南省冬小麦种植区域总体变化较小,种植年份较为稳定的区域主要分布于豫东平原地区,累积种植年数显著增加地区主要分布于南阳盆地地区,累积种植年数显著减少地区的分布较为分散,无明显的分布趋势。【结论】基于遥感和统计数据相结合的方法可准确监测平原区冬小麦种植面积,河南省冬小麦种植面积的时空变化均较为稳定,为保障我国粮食安全发挥着重要作用。  相似文献   

9.
为了探索准确、高效地估算冬小麦地上生物量(Dry aerial mass,DAM)的方法,获取了2013—2014年和2014—2015年2个生长季的冬小麦试验数据,采用植被指数反演叶面积指数(LAI),以遥感反演LAI作为遥感与SAFY(Simple algorithm for yield estimates)模型之间的耦合变量,利用主成分分析的复合型混合演化(Shuffled complex evolution with PCA,SP-UCI)算法优化出苗日期(D0)、有效光能利用率(ELUE)和衰老温度(STT) 3个敏感参数,对冬小麦全生育期进行动态生长模拟。结果表明,2014—2015年和2013—2014年冬小麦全生育期模型模拟地上生物量R~2、RMSE和NRMSE分别为0. 887、1. 001 t/hm~2、19. 41%和0. 856、1. 033 t/hm~2、19. 86%。研究表明,耦合高光谱遥感与SAFY作物生长模型能够准确地模拟冬小麦长势的动态变化,对冬小麦地上生物量估算精度较高,可为遥感监测冬小麦长势提供参考。  相似文献   

10.
为进一步提升无人机遥感快速监测覆膜条件下冬小麦叶面积指数(Leaf area index, LAI)的能力,以垄沟覆膜冬小麦为研究对象,利用无人机搭载五通道多光谱传感器获取2021—2022年冬小麦出苗期、越冬期、返青期、拔节期、抽穗期和灌浆期的遥感影像数据,使用监督分类剔除背景并计算50种可见光和近红外植被指数,采用主成分分析、相关系数法、决策树排序和遗传算法进行特征降维,结合偏最小二乘、岭回归、支持向量机、随机森林、梯度上升和人工神经网络6种机器学习算法建立不同输入特征变量下的覆膜冬小麦LAI反演模型,并进行精度评价。结果表明,剔除覆膜背景使冬小麦冠层反射率更接近真实值,提高反演精度。采用适宜的特征降维方法结合机器学习算法能够提高覆膜冬小麦LAI的反演精度和稳定性,对比特征降维前的反演精度,主成分分析和相关系数法无法优化反演效果,决策树排序只适用于基于树模型的随机森林和梯度上升算法,遗传算法优化效果明显,遗传算法-人工神经网络模型反演效果达到最优(决定系数为0.80,均方根误差为1.10,平均绝对值误差为0.69,偏差为1.25%)。研究结果可为无人机遥感监测覆膜冬小麦生长状况提供...  相似文献   

11.
为了提高冬小麦种植区识别精度,本文基于谷歌地球引擎(Google Earth Engine, GEE)平台和随机森林算法,对比雷达和光学遥感数据对冬小麦提取效果的差异,并对多类特征变量进行重要性分析,研究特征优选对冬小麦识别精度的影响。选取2019年3—5月冬小麦关键生育期的Sentinel-1和Sentinel-2影像为数据源,构建Sentinel-1的极化特征和纹理特征以及Sentinel-2的光谱特征、植被指数特征、植被指数变化率特征共5类特征变量;设置不同数据源和不同特征组合的冬小麦种植区提取方案;对方案中特征变量进行优选,得出最优特征组合,利用最优特征组合对河南省驻马店市冬小麦种植区进行提取。结果表明,无论是否进行特征优选,基于多源遥感数据的冬小麦识别精度均优于仅采用光学或雷达数据的精度;经过特征优选后,各方案的分类精度均有不同程度的提升,说明多源数据特征变量组合和特征优选均能够提高分类精度。不同月份和类型的特征变量对分类精度的贡献率不同,贡献率由大到小为4月、3月和5月;贡献率由大到小的特征类型为极化特征、植被指数变化率特征、植被指数特征、光谱特征和纹理特征。基于多源数据特...  相似文献   

12.
大田环境下小麦种植行的识别与定位对农机田间喷药和除草等任务的导航作业具有重要意义。以分蘖期和拔节期的冬小麦无人机可见光遥感影像为研究数据,结合深度语义分割和霍夫变换直线检测,提出了一种多生育期小麦种植行检测方法。采用SegNet深度语义分割提取小麦种植区域,克服传统检测方法对光照敏感的同时提高检测精度。基于霍夫变换的小麦种植行预检测结果,提出采用二分k均值聚类进一步提炼检测结果,以识别出小麦种植行区域的中心线。实验结果表明,对于分蘖期和拔节期的冬小麦图像,种植行直线平均位置偏差的绝对值分别为0.55、0.11 cm;平均角度偏差的绝对值分别为0.001 1、0.000 37 rad,检测精度与直线漏检率等指标都显著优于传统方法。研究结果为智能农机导航作业中的作物种植行检测提供了方法支持。  相似文献   

13.
开展冬小麦冠层SPAD值监测,建立“三边”参数与SPAD值之间的高光谱估算模型,以期为高光谱诊断冬小麦冠层SPAD值提供理论依据和技术支持.以冬小麦冠层反射率与冠层SPAD值的相关关系为基础,构建基于“三边”参数的冬小麦冠层SPAD值的一元线性回归模型和主成分回归模型.结果表明:拔节期、抽穗期、灌浆期和全生育期分别以红谷位置、(SDr-SDb)/(SDr+SDb)、红谷幅值、(SDr-SDy)/(SDr+SDy)的相关系数最高,且均具有统计学意义(P<0.01);采用主成分方法构建的光谱模型在拔节期、抽穗期、灌浆期和全生育期相较于同期一元线性回归模型,决定系数R2分别提高49.6%,54.3%,14.3%和8.6%,均方根误差RMSE与相对误差RE均分别减少9.0%,12.4%,13.5%和13.6%,因此采用综合光谱信息构建主成分回归模型,在各生育时段及全生育时段对冬小麦冠层SPAD值均有较高的估算精度,可为冬小麦SPAD值的监测与诊断提供依据.  相似文献   

14.
开展小麦籽粒蛋白质含量的监测预报研究对于指导农户调优栽培、企业分类收储、期货小麦价格、进口政策调整等具有重要意义。本研究以冬小麦主产区(河南省、山东省、河北省、安徽省和江苏省)为研究区域,构建了冬小麦籽粒蛋白质含量多层线性预测模型,并实现了2019年冬小麦蛋白质含量预报。为了解决预测模型在年际扩展和空间扩展存在偏差的问题,在蛋白质含量估算模型中考虑了气象因素(温度、降水、辐射量)、冬小麦筋型、抽穗—开花期增强型植被指数(EVI)等因素。结果表明,融合3个气象因素的蛋白质含量估算模型建模集精度(R2 = 0.39,RMSE = 1.04%)与验证集精度(R2 = 0.43、RMSE = 0.94%)均高于融合2个气象因子的估算模型和单个气象因子的估算模型。将蛋白质含量估算模型应用冬小麦主产区的蛋白质含量遥感估算,得到了2019年冬小麦主产区品质预报图,并形成黄淮海地区冬小麦品质分布专题图。本研究结果可同时为后续小麦种植区划和实现绿色、高产、优质、高效粮食生产提供数据支撑。  相似文献   

15.
基于Hyperion高光谱影像的冬小麦地上干生物量反演   总被引:3,自引:0,他引:3  
在黄淮海粮食主产区选择河北省衡水市深州市为试验区,以冬小麦地上干生物量为研究对象,以作物冠层高光谱和EO-1 Hyperion高光谱卫星数据为主要数据源,在分析冠层高光谱构建的窄波段植被指数(N-VIs)与实测冬小麦地上干生物量间相关性基础上,提出了利用拟合精度R2极大值区域重心确定冬小麦干生物量敏感的光谱波段中心的方法,并运用该方法确定了冬小麦生物量敏感波段中心。在此基础上,以敏感波段中心筛选结果为指导,利用窄波段植被指数及相关波段开展Hyperion高光谱卫星遥感区域冬小麦干生物量遥感反演和精度验证。最终,按精度最高原则优选区域冬小麦地上生物量反演结果。其中,研究采用了冬小麦孕穗期Hyperion数据,涉及的植被指数包括窄波段归一化植被指数(N-NDVI)、窄波段差值植被指数(N-DVI)和窄波段比值植被指数(N-RVI)。结果表明,通过与实测冬小麦地上干生物量对比,利用冠层高光谱冬小麦地上干生物量反演敏感波段筛选结果及其相应波段构建的Hyperion窄波段植被指数进行孕穗期作物干生物量估算取得了较好结果,其精度由大到小为:NNDVI、N-RVI、N-DVI。其中,以波段B18(波长528.57 nm)、波段B82(波长962.91 nm)构建的Hyperion N-NDVI估算区域冬小麦地上干生物量精度最高,相对误差(RE)和归一化均方根误差(NRMSE)分别为12.65%和13.78%。  相似文献   

16.
为进一步提高无人机遥感估产的精度,本研究以2021—2022年的覆膜冬小麦为研究对象,对返青期、拔节期、抽穗期和灌浆期的多光谱影像进行覆膜背景剔除,并优选最佳遥感窗口期,基于最优植被指数构建覆膜冬小麦估产模型。结果表明,利用支持向量机监督分类法剔除覆膜背景后冠层反射率更接近真实值,抽穗期和灌浆期的估产精度更高。将不同生育期的植被指数与产量进行相关性分析发现,最佳遥感窗口期为抽穗期。基于逐步回归和全子集回归法优选最优植被指数时发现,基于逐步回归法筛选变量为MCARI、MSR、EVI2、NDRE、VARI、NDGI、NGBDI、ExG时产量反演模型精度最高。此外,利用偏最小二乘法、人工神经网络和随机森林3种机器学习法构建的产量反演模型中,基于逐步回归法的随机森林模型的反演精度最高,R2为0.82,RMSE为0.84t/hm2。该研究可为提高遥感估产精度、实现农业生产精细化管理提供技术支持。  相似文献   

17.
为了进一步提高冬小麦产量预测的准确性,针对麦玉轮作体系缺乏直接把前茬作物信息纳入到当季作物的产量估算及管理中的研究状况,利用前茬玉米季中长势遥感信息及产量信息,融合小麦拔节期、灌浆期及成熟期长势遥感信息、播前施肥信息及土壤特性信息等多时相多模态数据,基于GPR算法,建立多时相多模态参数融合的麦玉轮作体系小麦产量估算模型,结果显示:基于多生育期的产量估算模型较单生育期最优产量估算模型性能有所提升,R2提高0.01~0.03。其中基于拔节期产量估算模型精度略低于多生育期产量估算模型,但精度相近。基于多模态参数融合的产量估算模型中,除玉米作物信息与土壤特性信息融合构建的产量估算模型,多模态参数融合的产量估算模型精度较相应低模态参数融合的产量估算模型精度高。四模态参数融合的GPR模型决定系数R2为0.92,RMSE为213.75 kg/hm2,较其他模型,R2提高0.02~0.41。对于小麦产量估算模型,各模态参数影响由大到小依次为施肥信息、小麦遥感信息、土壤特性信息、玉米作物信息。玉米作物信息对于多模态参...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号