首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays L.), soybean (Glycine max L.), and tomato (Lycopersicon esculentum Mill.) plants were grown in a controlled environment and exposed for 6 hr daily for 7 days to O3 at 0.15 μL L?1 and/or SO2 at 0.30 μL L?1 (daily exposures). Some plants exposed daily to O3 were also exposed to SO2 for 6 hr on the first, third, fifth, or seventh day of O3 exposure (variable exposures) and some plants exposed daily to SO2 were treated similarly with O3 to determine the growth effects of O3 or S02 pre- and/or post-treatments on S02 and O3 mixture response. Growth sensitivity to 6 hr S02 or 6 hr O3 treatments was generally affected by the previous history of O3 or SO2 exposure, respectively. Species differed in the number of days of O3 or SO2 treatments required to elicit maximum sensitivity to a single 6 hr O3 and SO2 treatment. Linear contrasts compared variable with daily exposures for the S02 and O3 regimes. Plants exposed to the gas mixture for a single day (variable exposures) tended to be smaller than those exposed to the gas mixture daily, with the exception of soybean exposed to SO2 during daily O3. The six treatments were carried out in eight exposure chambers, as a partially balanced incomplete block design in blocks of four due to separate environmental control of the exposure facilities. The partially balanced incomplete block design proved to be about 2.6 times as efficient as a complete block design. The inclusion of covariates further increased precision.  相似文献   

2.
Soybean plants (Glycine max L. cv. Buchanan) were subjected to one of three levels of salinity preteatment (with electrical conductivities of 0.7, 4.4 and 6.5 dS m?1) and then exposed to one of three concentrations of SO2 (1, 145 and 300 bl l ?1 for 5 h d?1), or vice versa. Each stress episode lasted 3 weeks. Both salinity and SO2 deecreased leaf area, root and shoot dry weight and the fresh weight of root nodules. SO2 induced an increase in the shoot: root ratio and leaf chlorophyll concentrations. Low salinity pretreatment protected plant growth from SO2 injury, probably by decreasing SO2 uptake by increasing stomatal resistance. However, high salinity-treated plants, despite also showing stomatal closure, were severely injured by subsequent SO2 exposure. Prior exposure to SO2 caused plants to become more vulnerable to salt injury. Plants pretreated with high SO2 were killed after 12 days of high salt stress. These data suggest that the compensatory mechanisms and predisposition characteristics of salinity and SO2 largely depend upon the stress levels used.  相似文献   

3.
Casuarina cunninghamiana and Eucalyptus camadulensis (Egyptian var.) plants were exposed to 0.20 and 0.40 μL L?1 O3, SO2 or NO2 for 6 hr daily for 10 days. Eucalyptus plants were very sensitive to SO2 and NO2 and less sensitive to O3. Casuarina plants were insensitive to the 3 gases. The rate of sorption of the 3 gases was estimated over a 10 day exposure to 0.20 μL L?1 pollutant concentration singly and in a 3-gas mixture. Casuarina plants removed air pollutants more efficiently than Eucalyptus plants. Leaves of both species generally sorbed about the same volume of a given gas from the mixture and from the same single gas. The sorption rate over the 10 day exposure was almost constant after a higher sorption rate during the first day for both species.  相似文献   

4.
To assess the impact of air pollutants on the population dynamics of herbivores, the effects of pollutants on their natural enemies including predators, parasites, and pathogens must be evaluated in addition to direct effects and indirect effects mediated via the host plant. Insect parasitoids are an important group of such natural enemies providing many examples of partial or complete biological control of pest species. This study examined the effects of air pollutants (ozone (O3), sulphur dioxide (SO2), and nitrogen dioxide (NO2)) on the searching behaviour of insect parasitoids. A series of experiments comprising short-term, closed chamber fumigations of O3, SO2, and NO2 (100 nl l?1) of the braconid parasitoid (Asobara tabida) and aggregated distributions of its host larvae (Drosophila subobscura) was set up. Analysis of chamber results showed that the proportion of hosts parasitised and the searching efficiency of the parasitoids were both significantly reduced with O3 fumigation, but not with NO2 or SO2 fumigations. O3 fumigation reduced percentage parasitism by approximately 10%. Parasitoids were able to avoid patches with no hosts, both in filtered air controls and when exposed to pollutants. However in the O3 and NO2 treatments they appeared less able to discriminate between different host densities, suggesting that pollutants may interfere with the olfactory responses of the parasitoids. These results indicate the potential for air pollutants, particularly O3, to negatively influence the searching behaviour of parasitoids, and hence reduce the efficiency of natural enemy control of many pest species.  相似文献   

5.
Photosynthesis decreases reversibly in plants exposed to SO2. Photosynthesis recovers when the exposure to SO2 is discontinued. Inactivation of a photosynthetic enzyme, ribulose-1,5-diphosphate carboxylase, by sulfonation of its SH groups was investigated as a cause of the reversible reduction of photosynthesis. The relationship between the sulfite ion concentration in the reaction mixture and 14CO2 fixation catalized by the enzyme which was prepared from alfalfa leaves was explored by using radioactive NaHCO3. About 50% and 85% inhibitions of 14CO2 fixation were observed at 3 × 10?3 M and 3 × 10?2 M concentration of sulfite ion in the reaction mixture, respectively. The accumulation of 3 × 10?4 M sulfite ion on the reaction site of the enzyme involved in the plants which were exposed to SO2 could considerably reduce the CO2 assimilation of the plant.  相似文献   

6.
Kentucky bluegrass (Poa pratensis L.) plants, cultivars Cheri, Merion and Touchdown were grown at complete nutrition or with low S or low N. Plants were exposed to 10 ppm (v/v) O3 for 6 h d?i, 15 pphm SO2 continuously, 15 pphm NO2 continuously, or their mixture at these concentrations for 10 days. The severity of injury was much increased by misting with deionized water for 5 min twice daily, especially with SO2 and NO2 single gas exposures. The misting did not have consistent effects on total S, total N, leaf area or fresh weight. Exposure to O3 decreased leaf area without affecting S or N content, while SO2 usually increased total S and, in some cases, increased total N. Exposure to NO2 increased total N without affecting total S, and the mixture increased both total S and total N. Low S or low N usually enhanced the effect of SO2 or NO2, respectively. Leaf area and fresh weight were not as responsive to the treatments as total S and total N. Rainfall outdoors may be a major meteorological factor affecting plant injury response to gaseous pollutants.  相似文献   

7.
Atmospheric gases and particulates were collected using four-stage filter-pack in Chunchon from January through December in 1999. Particulate SO4 2? and NO3 ?, and gaseous HNO3, SO2 and NH3 were analyzed. Annual average concentration of SO4 2?(S), NO3 ?(S), HNO3 (g), SO2(g) and NH3(g) were 5.75µg/m3, 4.98µg/m3, 0.33ppb, 1.52ppb and 7.25ppb, respectively. Annual dry deposition fluxes were estimated using the measured concentration and dry deposition velocity published by other research group. Annual dry deposition of S was 287kg · (km)?2·y?1, which accounted for about 30% of total S deposition. For N deposition, dry deposition is predominant; about 70% of total N deposition was through dry process mostly as forms of NH3 and HNO3.  相似文献   

8.
The investigation of SO2, NO2, soot and benzo(a)pyrene (BP) has been performed at the background station on the eastern coast of the Baltic Sea since 1980. A significant decreasing trend has been observed for SO2 and NO2, while soot and BP concentrations were changing insignificantly. The decreasing SO2 and NO2 high concentrations (>10µg·m?3) have been determined in the air masses coming from the Western and Central Europe to Lithuania since 1900. The concentration of SO2 in a range of 0–5µg·m?3 and the concentration of NO2 in a range of 0–10µg·m?3 are characteric of the background atmospheric air.  相似文献   

9.
The purpose of this research was to analyze the responses of Norway spruce Picea abies (L.) Karsten to SO2, at a subnecrotic concentration (230 μg SO2 m?3 ), and to water stress using seedlings and 5 yr-old plants. In a first period, the plants were exposed to SO2 for 6 weeks; then they were simultaneously exposed to SO2 and to water stress for 1 week for the case of seedlings and 2 weeks for the 5 yr-old plants. The plants were then rewatered, but maintained under exposure to SO2. Their morphological and physiological characteristics were analyzed and compared to non-SO2 exposed plants. It was shown that there were no differences between SO2 exposed and non-exposed irrigated plants, specifically water content and water potential were not altered. After water stress the non-SO2 exposed seedlings and plants showed good revival upon rewatering. In contrast, the two simultaneous stresses were very damaging to the plants. Despite a better initial recovery upon rewatering, 50% of the continuously SO2 exposed plants died and, after 5 weeks of rewatering, the remainder showed altered water content and water potential. These results are discussed.  相似文献   

10.
The long range transport of mineral dust such as Yellow Sand (YS) is not restricted to the springtime periods in Northeast Asia. A YS phenomenon was observed during 25~27 January 1999, which was a remarkably distinctive episode in the occurrence time and intensity that had ever been observed in the wintertime in Korea. This YS event had a bi-modal temporal structure with the daily average concentrations of 210~349 µg m?3. The long-lasted second one followed the first arriving short and strong dust pulse. The dominant ion components were SO4 2?, NO3 ?, Ca2+ and Na+ with the concentration of 11.3, 7.6, 6.1 and 4.2 µg m?3, respectively during the passage of YS, compared to the corresponding concentrations of 4.1, 4.6, 0.4, and 1.2 µg m?3 after the passage of YS (AYS) over Korea. The mode diameter of these compounds of YS was around 4 µm, compared to 0.4~0.9 µm of AYS. Concentrations of SO4 2? and NO3 ? were found to be highly correlated with that of Ca2+ in the coarse mode during the YS event, whereas they were well correlated with NH4 + during the non-YS period.  相似文献   

11.
Three year old spruce trees (Picea omorika) were exposed to 100 and 225 nl l-1 SO2 and H2S for three weeks. The number of chromosomal aberrations and the mitotic index in the root tip meristems, and glutathione and cysteine contents in fine roots were determined twice weekly. An increase in glutathione content in fine roots of H2S exposed plants was only detectable after 13 days of fumigation. The number of chromosomal aberrations increased significantly after 9 days of exposure to 225 nl l-1 H2S and after 13 days of exposure to 225 nl l-1 SO2 or 100 nl l-1 H2S. This increase in chromosomal damage persisted up to the end of the 3 week treatment. Neither SO2 nor H2S exposure affected the cysteine content or the redox state of glutathione in fine roots. These results suggest that the development of chromosomal aberrations during SO2 and H2S exposures does not directly reflect changes in thiol/glutathione content or redox state in the fine roots.  相似文献   

12.
Atmospheric air pollution levels and long-term effects on the environment caused by simultaneous presence of SO2 and oil shale alkaline fly ash during the last five decades (since 1950) were investigated. The annual critical value of SO2 for forest (20 µg m?3) was surpassed in 1% (~35 km2) of the study area where the load was 30–40 µg m?3. No effect of long-term SO2 concentrations of up to 10–11 µg m?3 (0.5-h max up to 270 µg m?3) and simultaneous fly ash loads of up to 95 µg m?3 (1000 µg m?3) on the growth and needle longevity of Pinus sylvestris was established. The yearly deposition (average load up to 20–100 kg S ha?1) was alkaline rather than acidic due to an elevated base cation deposition in 1960–1989. Since 1990, the proportion of SO2 in the balance of components increased: about 70–85% of the total area was affected while the ratio of annual average concentrations of SO2 to fly ash was over 1. The limit values of fly ash for Sphagnum mosses and conifers in the presence of SO2 are recommended.  相似文献   

13.
There is growing concern that air pollution may have adverse impacts on crops in developing countries, yet this has been little studied. This paper addresses this issue, for a major leguminous crop of the Indian sub continent, examining the effect of air pollution in and around an Indian city. A field study was conducted using a gradient approach to elucidate the impact of air pollutants on selected production characteristics of Vigna radiata L. cv. Malviya Jyoti (mung bean) plants grown from germination to maturity at locations with differing concentrations of air pollutants around peri-urban and rural areas of Varanasi. The 6 -h daily mean SO2, NO2 and O3 concentrations varied from 8.05 to 32.2 ppb, 11.7 to 80.1 ppb and 9.7 to 58.5 ppb, respectively, between the sites. Microclimatic conditions did not vary significantly between the sites. Changes in plant performance at different sites were evaluated with reference to ambient air quality status. Reductions in biomass accumulation and seed yields were highest at the site experiencing highest concentrations of all three gaseous pollutants. The magnitude of response indicated that at peri-urban sites SO2, NO2 and O3 were all contributing to these effects, whereas at rural sites NO2 and O3 combinations appeared to have more influence. The quality of seed was also found to be negatively influenced by the ambient levels of pollutants. It is concluded that the air pollution regime of Varanasi City causes a major threat to mung bean plants, both in terms of yield and crop quality, with serious implications for the nutrition of the urban poor.  相似文献   

14.
The effects of ozone (O3) and soil water stress, singly and in combination, on the growth and photosynthesis of Fagus crenata seedlings were investigated. Four-year-old seedlings were exposed to charcoal-filtered air (< 5 nmol mol?1 O3) or 60 nmol mol?1 O3, 7 hours per day (11:00–18:00), for 156 days from 10 May to 11 October 1999 in naturally-lit growth chambers at 20/15 °C (6:00–18:00/18:00–6:00). During the same period, half of the seedlings in each gas treatment received 250 mL of water at the 3-day intervals (well-watered treatment), while the rest received 175 mL of water at the 3-day intervals (water-stressed treatment). The exposure of the seedlings to O3 caused reductions in the leaf, stem, root and whole-plant dry weights. The net photosynthetic rate at 350 µmol mol?1 CO2, the maximum net photosynthetic rate at saturated CO2-concentration, carboxylation efficiency of photosynthesis and Rubisco content were significantly reduced by the exposure to O3. The soil water stress induced reductions in the stem, bud and whole-plant dry weights, transpiration rate and leaf water potential during the midday. The additive effects of O3 and soil water stress were observed on the dry matter production, leaf gas exchange rates and leaf water potential. As a result, the whole-plant dry weight of the seedlings exposed to both stresses was markedly reduced compared with that of the seedlings exposed to charcoal-filtered air and grown in the well-watered treatment.  相似文献   

15.
Tropospheric ozone (O3) has long been documented to cause an injury to plants, but a plants’ protectant, widely applicable in agronomical practice, does not exist. We evaluated the potential antiozonate efficacy of the antitranspirant di-1-p-menthene (Vapor Gard) compared with ethylenediurea (EDU) on Bel-W3 tobacco plants. Plants were treated either with water, or by EDU (10, 100, and 500 mg dm?3), or by vapor (1, 5, 10, and 50 ml dm?3) and were exposed either to O3-enriched (90 ppb) or O3-free air, for 12 days and 8 h day?1. EDU when applied at 10 mg dm?3 did not protect the plants against O3, but when applied at 100 and 500 mg dm?3 offered a significant protection to the plants. Vapor, when applied at 1 ml dm?3 did not protect the plants against O3, neither by terms of foliar visible injury nor by terms of aboveground biomass. In addition, when applied at 10 and 50 ml dm?3 caused phytotoxicity to all the plants, which it was expressed as necrotic spots on the leaves’ surface, misshaping of the leaves, or short plants' height. It is obvious that vapor does not protect Bel-W3 tobacco plants against O3. The antiozonate role of di-1-p-menthene is species-specific and probably occurs only under short-term exposures.  相似文献   

16.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese used as an additive in unleaded gasoline in Canada since 1977. Moreover, Canada is the only country in the world to have authorized the replacement of lead alkyls by MMT in gasoline. The purpose of the present study is to assess the importance of air contamination by Mn in relation to other air pollutants (gaseous and particulates), meteorological variables and traffic density. The concentration of both the gaseous (O3, CO, NO, NO2, SO2) and the particulate pollutants (Mn, Pb, NO? 3, SO?? 4, TSP) had been measured by the Montreal Urban Community in 1990 at seven sampling stations located in high traffic and low traffic density areas. Data on the meteorological conditions during that same period were also used. Non-parametric correlation, ANOVA and discriminant analyses were used to compare gaseous and particulate pollutants found between both levels of traffic density. In almost 50% of the daily air samples measured in 1990, the Mn concentrations are higher than the urban background level estimated at 0.04 μg m?3 and the variations of Mn concentrations are significantly correlated in time with traffic density. Moreover, Mn and TSP discriminate the best high and low traffic density areas. No significant differences have been observed between Pb, O3 and SO2 concentrations in both areas. These results should not be interpreted in terms of potential health effects since it is presently impossible to determine the fate of the Mn in the environment and its importance in terms of human exposure.  相似文献   

17.
Dissolved organic carbon (DOC) in acid‐sensitive upland waters is dominated by allochthonous inputs from organic‐rich soils, yet inter‐site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH‐related retention of DOC in O horizon soils was influenced by acid‐base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 µeq l?1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH‐DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 µeq l?1), with the greatest decreases occurring in soils with very small % base saturation (BS, < 3%) and/or large capacity for sulphate (SO42?) retention (up to 35% of added SO42?). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid‐base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However, superimposed on this is the capacity of mineral soils to sorb DOC and SO42?, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42?.  相似文献   

18.
If soil solution phosphorus (P) optimum levels for plant growth (external P) are known, P adsorption isotherms or their equations could further be used to assess how much fertilizer P may be needed for optimum plants yield (QFPN) by adjusting this known external solution P requirement in the soil (ESPR). Surface soil samples were collected from a farmer's field area and research area. An adsorption study was conducted on Ustic Endoaquerts (S1 soil), Typic Calciargids (S2 soil), and Typic Torripsamments (S3 soil) to develop the two-surface Langmuir-type equations. Phosphorus adsorption data were obtained by equilibrating 10-g soil samples in 100 mL of 0.01 M calcium chloride (CaCl2) containing various amounts of monopotassium phosphate (KH2PO4). Thereafter, 11 P fertilizer rates were calculated by two-surface Langmuir-type equations to adjust different estimated soil solution P levels (EPAS) that were designated as treatments (0.05 to 0.90 mg L?1). Then field experiments on lentil (cv. Niab Masoor 2002) were conducted according to a randomized complete block design (RCBD) on these soils to determine internal (plant tissue), external (soil solution), and fertilizer P requirements. Maximum lentil seed yield (Mg ha?1) was 0.87 with T4 (0.17 mg P L?1) in S1 soil, 1.8 with T3 (0.20 mg P L?1) in S2 soil, and 0.73 with T7 (0.28 mg P L?1) in S3 soil, obtained by applying 170 kg P2O5 ha?1 in S1 soil, 110 kg P2O5 ha?1 in S2 soil, and 78 kg P2O5 ha?1 in S3 soil. Internal P concentrations (%) of the whole plant associated with 95% of maximum lentil seed yield at flowering stage were 0.245, 0.210, and 0.315 in S1, S2, and S3 soils, respectively. Internal P requirements of lentil seed were 0.290 in S1, 0.245% in S2, and 0.380% in S3 soil. The ESPRs for 95% of maximum yield of lentil were 0.16 mg L?1, in S1 soil, 0.23 mg L?1 in S2 soil, and 0.27 mg L?1 in S3 soil. The QFPN estimated from graphs corresponding to these ESPR values were 160 kg P2O5 ha?1 in S1 soil, 125 kg P2O5 ha?1 in S2 soil, and 74 kg P2O5 ha?1 in S3 soil. The QFPNs estimated from corresponding two-surface Langmuir-type equation by using respective ESPR values were 164, 127, and 75 kg P2O5 ha?1 in S1, S2, and S3 soil, respectively. Field-applied P2O5 amounts to adjust soil solution P levels (mg L?1) at 0.166 (T4), 0.229 (T4), and 0.281 (T7) were 170, 126, and 78 kg ha?1 in S1, S2, and S3 soil, respectively. Based on the results of these studies, we propose that QFPNs estimated by graphs against identified ESPR values or calculated by the use of corresponding two-surface Langmuir-type equations are in close proximity to the field-applied P to adjust desired EPAS value. Therefore, either of the two techniques may be used to estimate QFPN for optimum lentil yield. Close  相似文献   

19.
Daphnia magna, initially exposed when less than 48 h old, were maintained at reduced dissolved oxygen (DO) concentrations for 26 days. Exposure was accomplished in a continuous flow recirculating water system. Number of days to first brood, number of young in the first brood, total number of young produced, and dry weight were parameters measured. Statistical analyses show the Daphnia exposed to the lowest DO concentration tested (1.8 mg l?1) had significantly reduced responses for all parameters measured. In addition, the organisms exposed to 2.7 mg l?1 O2 gained less weight than did the controls.  相似文献   

20.

Purpose

Treated and processed sewage sludges (biosolids) generated during the treatment of wastewater usually contain substantial concentrations of nutrients, especially phosphorus, which is essential for plant growth. Sewage sludge therefore can be used as an alternative fertiliser in agriculture. But since sewage sludge could also contain pollutants, analysis and ecotoxicological tests on affected soil and stream water organisms are necessary in order to guarantee its harmless use.

Materials and methods

Three test species were chosen to cover the environmental compartments, water, sediment and soil. The following test species and parameters were applied to evaluate the acute effects of three sewage sludge samples: Lemna minor (growth inhibition, discolouration and colony breakup), Gammarus fossarum (mortality, behaviour) and Eisenia fetida (avoidance behaviour). Chemical assessment included nutrients, organic pollutants and heavy metals.

Results and discussion

The assessment of a non-dewatered sludge (S1) sample resulted in an inhibition of growth of L. minor starting from 0.6 g total solid (TS)?l?1 after 7 days (EC50 1.2 g TS l?1). G. fossarum displayed significantly decreased movement activity at 0.5 and 1.2 g TS l?1 sludge concentration during an exposure time of 2 days, leading to decreased survival after 4 days of exposure in 0.5 g TS l?1 (LC50 0.5 g TS l?1). After 2 days, E. fetida exhibited an increased avoidance behaviour of contaminated soil from 0.2 g TS kg?1 sewage sludge (EC50 0.4 g TS kg?1). The dewatered sludge samples (S2 and S3) had a lower toxic effect on the test organisms. G. fossarum was the most sensitive test species in the applied test setups. The realistic application amounts of the tested sewage sludge samples of approximately 6.0 g TS kg?1 (maximum allowed application amount of sewage sludge) and approximately 3 g TS kg?1 (maximum agronomical relevant application amount) in worst case studies are higher than the analysed EC50/LC50 values of S1 and of the LC50 (G. fossarum) of S2 and S3.

Conclusions

All three tested sewage sludge samples have to be classified as toxic at high concentration levels under laboratory conditions. Realistic output quantities of S1 will negatively influence soil invertebrates and freshwater organisms (plants and crustacean), whereas the dewatered sludge samples will most likely not have any acute toxic effect on the test organisms in the field. Test with environmental samples should be conducted in order to support this hypothesis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号