首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harriman  R.  Curtis  C.  Edwards  A.C. 《Water, air, and soil pollution》1998,105(1-2):193-203
Samples were collected from 13 upland sites (main inflow and loch outflow) in the UK along an N deposition gradient of 12-50 kg ha-1 yr-1 to determine the relationship between N deposition and NO3 - concentrations in surface waters. There was no direct correlation between NO3 - leaching and soluble inorganic N deposition at these sites, but a significant relationship with NO3 - was found using a deposition function incorporating dissolved organic carbon (DOC) flux from each catchment. A similar but less significant relationship was found between NO3 - concentration and DOC:DON ratio in runoff water. Catchments showed evidence of N saturation, i.e., when mean NO3 - concentration exceeded 5 µeq L-1, when the mean DOC:DON ratio fell below an approximate value of 25. Five other large loch sites (LLS) with multiple subcatchments were used to test these relationships and for four of these mostly heathland sites the predicted NO3 - concentrations closely matched measured values. At the fifth site, where most subcatchments were forested, the deposition function and DOC:DON ratios gave conflicting predictions and both methods generally underestimated measured NO3 - concentrations. If the capacity of these catchments to retain deposited N is determined by C supply then many upland catchments in the UK may experience increasing NO3 - concentrations in runoff in the future at current or increased levels of N deposition.  相似文献   

2.
To assess links between hydroclimatological factors and NO3 - concentrations in streamflow from boreal forests with shallow soils, data from two catchments were analyzed. TOPMODEL was used to calculate the surface runoff fraction, daily dynamics of soil moisture, groundwater levels, and extensions of saturated areas. The stable isotope 18O was used for isotopic hydrograph separation (IHS) during one snowmelt season. Air-temperature and flow increase were the dominating factors explaining annual NO3 -dynamics. Correlation also was found between NO3 - concentrations and the surface runoff fraction. Increased concentrations during times of shallow groundwater were found both during cold and warm periods in one catchment. In the other, shallow groundwater was correlated to decreasing concentrations during cold periods, and increasing concentrations during warm periods. A two component model of event and pre-event water fractions and corresponding NO3 - concentrations was set up for the snowmelt season. Model predictions mirrored NO3 - concentrations during the first five days of the snowmelt. After that, the model overestimated NO3 - concentrations, which indicates retention of NO3 - in the event water fraction, originating from the snowmelt. The highest concentrations occurred during the initiations of flow increase, which indicates flushing of surficial NO3 -.  相似文献   

3.
There is considerable interest in the recovery of surface waters from acidification by acidic deposition. The Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. The ALTM lakes exhibited relatively uniform concentrations of SO4 2?. Lake-to-lake variability in acid neutralizing capacity (ANC) was largely due to differences in the supply of basic cations (Ca2+, Mg2+, K+, Na+; CB) to drainage waters. Lakes in the western and southern Adirondacks showed elevated concentrations of NO3 ?, while lakes in the central and eastern Adirondacks had lower NO3 ? concentrations during both peak and base flow periods. The ALTM lakes exhibited seasonal variations in ANC. Lake ANC was maximum during the late summer or autumn, and lowest during spring snowmelt. In general Adirondack lakes with ANC near 100 Μeq L?1 during base flow periods may experience decreases in ANC to near or below 0 Μeq L?1 during high flow periods. The ALTM lakes have exhibited long-term temporal trends in water chemistry. Most lakes have demonstrated declining SO4 2?, consistent with decreases in SO2 emissions and SO4 2? in precipitation in the eastern U.S. Reductions in SO4 2? have not coincided with a recovery in ANC. Rather, ANC values have declined in some ALTM lakes. This pattern is most likely due to increasing concentrations of NO3 ? that occurred in most of the ALTM drainage lakes.  相似文献   

4.
Temporal changes in major solute concentrations in six Czech Republic lakes were monitored during the period 1984–1995. Four chronically-acidic lakes had decreasing concentrations of strong-acid anions (CSA = SO4 2- + NO3 - + Cl-), at rates of 3.0 to 9.0 μeq L-1 yr-1. Decreases in SO4 2-, NO3 -, and Cl- (at rates up to 5.1 μeq L-1 yr-1, 3.2 μeq L-1 yr-1, and 0.6 μeq L-1 yr-1, respectively) occurred. The response to the decrease in deposition of S was rapid and annual decline of SO4 2- in lake water was directly proportional to SO4 2- concentrations in the acidified lakes. Changes in NO3 - concentrations were modified by biological consumption within the lakes. The decline in CSA was accompanied in the four most acidic lakes by decreases in AlT, increases in pH at rates of 0.011 to 0.016 pH yr- 1, and decreases of Ca2+ and Mg2+ (but not Na+) in three lakes. The acid neutralizing capacity (ANC) increased significantly in all six lakes. Increases in base cation concentrations (CB = Ca2+ + Na+ + Mg2+ + K+) were the principal contributing factor to ANC increases in the two lakes with positive ANC, whereas decrease in CSA was the major factor in ANC increases in the four chronically-acidic lakes. The continued chemical recovery of these lakes depends on the uncertain trends in N deposition, the cycling of N in the lakes and their catchments, and the magnitude of the future decrease in S deposition.  相似文献   

5.
The recovery potential of stream acidification from years of acidic deposition is dependent on biogeochemical processes and varies among different acid-sensitive regions. Studies that investigate long-term trends and seasonal variability of stream chemistry in the context of atmospheric deposition and watershed setting provide crucial assessments on governing biogeochemical processes. In this study, water chemistries were investigated in Noland Divide watershed (NDW), a high-elevation watershed in the Great Smoky Mountains National Park (GRSM) of the southern Appalachian region. Monitoring data from 1991 to 2007 for deposition and stream water chemistries were statistically analyzed for long-term trends and seasonal patterns by using Seasonal Kendall Tau tests. Precipitation declined over this study period, where throughfall (TF) declined significantly by 5.76?cm?year?1. Precipitation patterns play a key role in the fate and transport of acid pollutants. On a monthly volume-weighted basis, pH of TF and wet deposition, and stream water did not significantly change over time remaining around 4.3, 4.7, and 5.8, respectively. Per NDW area, TF SO4 2- flux declined 356.16?eq?year?1 and SO4 2- concentrations did not change significantly over time. Stream SO4 2- remained about 30???eq L?1 exhibiting no long-term trends or seasonal patterns. SO4 2- retention was generally greater during drier months. TF monthly volume-weighted NH4 + and NO3 - concentrations significantly increased by 0.80???eq L?1?year?1 and 1.24???eq L?1?year?1, respectively. TF NH4 + fluxes increased by 95.76?eq?year?1. Most of NH4 + was retained in the watershed, and NO3 - retention was much lower than NH4 +. Stream monthly volume-weighted NO3 - concentrations and fluxes significantly declined by 0.56???eq L?1?year?1 and 139.56?eq?year?1, respectively. Overall, in NDW, inorganic nitrogen was exported before 1999 and retained since then, presumably from forest regrowth after Frazer fir die-off in the 1970s from balsam wooly adelgid infestation. Stream export of NO3 - was greater during winter than summer months. During the period from 1999 to 2007, stream base cations did not exhibit significant changes, apparently regulated by soil supply. Statistical models predicting stream pH, ANC, SO4 2-, and NO3 - concentrations were largely correlated with stream discharge and number of dry days between precipitation events and SO4 2- deposition. Dependent on precipitation, governing biogeochemical processes in NDW appear to be SO4 2- adsorption, nitrification, and NO3 - forest uptake. This study provided essential information to aid the GRSM management for developing predictive models of the future water quality and potential impacts from climate change.  相似文献   

6.
A study was undertaken to examine whether ‘acid pulses’ from snowmelt created permanent changes in a pond's chemistry. Water samples were collected from clearwater acidic Cone Pond in the White Mountain National Forest, New Hampshire. The pond, inlet, and outlet were intensively sampled throughout winter and early spring 1983–84. Thaws brought more H+ into upper waters of the pond, but most was gone within a week. In contrast, SO4 2? and Al showed dilution with increased streamflow into the pond, and NO3 ? was only detected in ice, slush, and surface waters. Bottom waters were anoxic throughout the winter and had pH 6.0 compared to 4.7 for most of the water column. Alkalinity at the bottom rose from 0 in November 1983 to 190 μeq L?1 in April 1984. Between November and April the pond gained Al but lost SO4 2? and H+. Most of the Al gain came after ice-out when loading through the inlet increased, but during the final snowmelt a temporary increase in Al concentration was also seen throughout the water column.  相似文献   

7.
Temporal trends in sulfate, base cation (Ca2+ + Mg2+ + K+), and H+ ion concentrations in bulk precipitation and throughfall samples collected over a seven year period (1989-95) in four forested catchments in Finland are presented. The catchments are in remote locations and span the boreal zone (61-69 °N). The stands represent old, undisturbed forests, and are composed of varying proportions of Scots pine, Norway spruce and deciduous species (mainly Betula spp.). Monthly SO4 2- and H+ ion concentrations in bulk precipitation averaged over the study period and catchments were: 18.7 µmol L-1 and 32.3 µmol L-1. The corresponding values for throughfall were: 37.4 µmol L-1 and 32.4 µmol L-1. Sulfate and H+ ion concentrations in bulk precipitation and throughfall both showed negative linear trends, which were significant (p < 0.05) for the three southernmost catchments. Concentrations and trend slope decreased northwards (e.g., bulk precipitation SO4 2- slope estimates: -1.6 to -1.0 µmol L-1 yr-1). The decline was greater for throughfall than for bulk precipitation, indicating a proportionally greater reduction in dry deposition than wet. The sum of base cation concentrations averaged 12.1 µmol(+) L-1 in bulk precipitation and 83.1 µmol(+) L-1 in throughfall. There were no significant trends in the sum of base cations (p > 0.05). It is concluded that the reported reduction in S emissions over the study period has resulted in a significant reduction in the acidity and SO4 2- concentration of bulk precipitation, and this reduction has has been reflected in throughfall concentrations. The greatest reduction has taken place in the southern part of the country.  相似文献   

8.
Atmospheric loads to dilute lakes in the Sierra Nevada mountains of California are very low, and fall almost entirely as snow. When acidic anions preferentially elute from melting snow, these low loads may nontheless be enough to acidify low ANC lakes. Two of the ten lakes included in the Sierra Episodes Study are discussed here: High Lake, the only lake in the study to become acidic during snowmelt; and Treasure Lake, typical of the remainder of the lakes. All lakes exhibited increases in NO3 ? concentrations during early snowmelt; these were accompanied by increases in base cations, primarily Ca2+. In the first few days of snowmelt, NO3 ? concentrations at High Lake increased more rapidly than concentrations of base cations, resulting in ANC values below zero. Export of both NO3 ? and SO4 2? from the watersheds exceeded the inputs from the snowpack, suggesting that other sources (e.g., watershed minerals, stored inputs from the previous summer, transformations of other inputs) of these anions are important.  相似文献   

9.
Curtis  C.J.  Allott  T.E.H.  Reynolds  B.  Harriman  R. 《Water, air, and soil pollution》1998,105(1-2):205-215
The relative contribution of N deposition to the acidification of freshwaters in Great Britain has increased over the last few years as S deposition has fallen in line with reduced emissions. In certain high deposition areas of Great Britain, NO3 --based acidity can equal or exceed the contribution of SO4 2--based acidity in some upland waters. Here we apply the first-order acidity balance model (FAB) to predict the maximum N leaching from 13 study catchments at future steady state. Using mean water chemistry and catchment soils data, along with long-term default values for N sink processes, we predict NO3-N leaching at much higher rates than currently are being measured in surface waters, with a mean increase of 10.5 kg ha-1 yr-1. As a result, mean acid neutralizing capacity would decline to less than 0 meq L-1 at 4 sites. While there are uncertainties associated with model parameterization relating to the short-term storage of N within catchment soils and vegetation, model outputs do indicate much greater leaching of N at some time in the future as steady-state is achieved.  相似文献   

10.
The Integrated Lake Watershed Acidification Study (ILWAS) model was used to simulate soil discharge chemistry at two neighboring experimental catchments. One catchment underwent deacidification because of the artificial application of deacidified precipitation whereas the other catchment received unaltered acidic precipitation. Simulated results reproduce the observed seasonal dynamics in the concentrations of base cations, NO 3 ? , Al, and H4SiO 4 0 in soil discharges for both catchments. Simulated results also indicate that the export flux of base cations was decreased by 30% at the deacidification catchment in response to the decrease in acid deposition. However, simulated SO 4 2? concentrations show decreases that are about 40% more rapid than were observed. Simulated organic acid concentrations were also substantially lower than those observed at the deacidification catchment, indicating that organic matter decomposition processes were not correctly simulated. Acid-base budgets for both 5 and 50-yr simulations indicate that acid displacement by base cations through ion exchange is the principal process delaying recovery of runoff alkalinity, whereas SO 4 2? desorption has a minor role. Silicate weathering is the dominant acid-consuming process at both catchments. Criteria proposed here for assessing forecast reliability include reproducing seasonal dynamics in discharge chemistry, providing numerically accurate chemical concentrations when compared to monitoring data, and correctly predicting deacidification rate and extent. The ILWAS model generally meets these criteria, indicating that the model can produce a reliable forecast of the effects of acid deposition on the acid-base chemistry of surface waters given sufficient temporal data for confident optimization of the calibrated variables in the model.  相似文献   

11.
Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3 -) concentrations. Large contributions from deep groundwater with high NO3 -concentrations have been invoked to explain high NO3 -concentrations in stream water during the growing season. To determine whether variable contributions of groundwater couldexplain among-catchment differences in streamwater, we measuredNO3 - concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and beddingplanes and had consistently lower temperatures than adjacentstreamwaters. Nitrate concentrations in seeps ranged from neardetection limits (0.005 mg NO3 --N/L) to 0.75 mg NO3 --N/L. Within individual catchments, groundwaterresidence time does not seem to strongly affect NO3 -concentrations because in three out of four catchments therewere non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, andseep NO3 - concentrations. Across catchments, therewas a significant but weak negative relationship betweenNO3 - and SiO2 concentrations. The large rangein NO3 - concentrations of seeps across catchmentssuggests: 1) the principal process generating among-catchmentdifferences in streamwater NO3 - concentrations mustinfluence water before it enters the groundwater flow system and 2) this process must act at large spatial scales becauseamong-catchment variability is much greater than intra-catchmentvariability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3 - concentrationsamong catchments in the Catskill Mountains.  相似文献   

12.
Project Rain (Reversing Acidification In Norway) is a 5-yr international research project aimed at investigating the effect on water and soil chemistry of changing acid deposition to whole catchments. The project comprises 2 parallel large-scale experimental manipulations -- artificial acidification at Sogndal and exclusion of acid rain at Risdalsheia. Treatment at Sogndal commenced April 1984 with the acidification of the snowpack by addition of H2SO4 (SOG2) and a 1:1 mixture of H2SO4 and HNO3 (SOG4). Preliminary results indicate rapid and significant response in runoff chemistry to the acid treatment; pH decreased (to as low as 4.1 during snowmelt in 1984); SO4, NO3, and labile Al increased. Response during snowmelt 1985 was modest relative to 1984. At Risdalsheia treatment began in June 1984 with the mounting of the transparent panels on the roofs at KIM catchment (treatment by deacidified rain) and EGIL catchment (control with ambient acid rain). Preliminary data for the first year indicate that most runoff samples from KIM contain much lower NO3 concentrations, about 20 to 30% lower SO4 levels and pH 0.1 to 0.3 units higher than runoff from EGIL catchment. The treatments continue in 1985–87. Project RAIN provides experimental evidence bearing on target loading, reversibility of acidification, and the processes linking acid deposition, soil acidification and freshwater acidification.  相似文献   

13.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

14.
Schwikowski  M.  Novo  A.  Baltensperger  U.  Delmas  R.  Gäggeler  H. W.  Kasper  A.  Kuhn  M.  Maupetit  F.  Nickus  U.  Preunkert  S.  Puxbaum  H.  Rossi  G. C.  Schöner  W.  Wagenbach  D. 《Water, air, and soil pollution》1997,93(1-4):67-91
In order to investigate the seasonal and geographical distribution of snow concentrations anddeposition fluxes of environmentally relevant ionic species in the Alps, the international programSNOSP was initiated. In the framework of this program, intercomparisons of snow samplingtechniques and analytical methods to determine the ionic species C1-, NO 3 - ,SO 4 2- , K+, Na+, NH4 +, Mg2+, and Ca2+, as well as the pH and the specificconductivity were performed. The concentrations of these species in the snow samples collectedin the SNOSP program varied by orders of magnitude with, e.g., concentrations of NO 3 - , SO 4 2- , and NH4 + ranging from 0.2-60, 0.2-90, and 0.1-60 µeq L-1,respectively. The intercomparisons revealed a reasonable agreement of the determinations of thespecies Cl-, NO 3 - , SO 4 2- , Na+, and NH4 + in snow. Results were less satisfactory for K+, Mg2+, Ca2+,and H+, mainly due to the very low concentrations. In conclusion, recommendations areformulated for the reliable derivation of chemical inventories from snow packs.  相似文献   

15.
Assessments of the aquatic effects of acidic deposition have focused on sulfur, as have recent efforts to control the emissions of acidifying compounds. Nitrogen dynamics were excluded from most acidic deposition modeling studies because it was believed that terrestrial ecosystems strongly retain N and because modeling N is a more formidable task than modeling S due to the influence of complex biological processes on N cycling. Re-examination of available data for the Adirondack Mountains of New York suggests that N deposition may be contributing to both chronic and episodic acidification of freshwaters to a greater extent than is generally believed. Previous research concluded that N has played a limited role in acidification processes in these lakes, based on regional averages of chronic chemistry. However, it is now known that historic acidification responses have been spatially variable within the Adirondack Mountains and that the declines in lakewater pH have been less than previously believed. Lakewater NO3 - concentrations are commonly in the range of 5 to 25 μeq L-1 on a chronic basis in portions of the Adirondack region that have experienced significant chronic acidification. These NO3 - concentrations correspond in magnitude to inferred historical acidification. Furthermore, the relative importance of NO3 - as an agent of acidification increases dramatically during snowmelt when conditions are most toxic to fish. The consequence of not addressing N in formulating acidification recovery strategies for the Adirondacks includes the likelihood that we will overestimate the response of surface water to the mandated sulfur emissions reductions.  相似文献   

16.
Kang  H.  Freeman  C.  Lock  M.A. 《Water, air, and soil pollution》1998,105(1-2):107-116
Fluxes of methane and nitrous oxide from a wetland were compared to hydrochemistry (NO3 - and SO4 2-) and soil enzyme activities (β-glucosidase) in an attempt to predict gas fluxes using chemical and enzymatic activities in north Wales, UK. In a one-year survey, the enzyme activities ranged from 0.028 to 0.065 µmol g-1 min-1, while NO3 - and SO4 2- concentrations ranged between 0-0.78 and 5-200 mg L-1, respectively. Methane and nitrous oxide emissions varied between 0.32-240 and 0.28-5.48 mg m-1 da-1, respectively. The field survey was followed by laboratory-based manipulation experiments, from which pilot mathematical models were constructed, and related to the field data. The variation of methane emission was attributed to changes in SO4 2- concentration and temperature at the site. In contrast, NO3 - concentration, water table height, and β-glucosidase activity were major controlling factors for nitrous oxide emission. The models explained more than 80 % of the variation observed in the field study.  相似文献   

17.
Longitudinal and temporal variations in water chemistry were measured in several low-order, high-elevation streams in the Great Smoky Mountains to evaluate the processes responsible for the acid-base chemistry. The streams ranged in average base flow ANC from ?30 to 28 μeq L?1 and in pH from 4.54 to 6.40. Low-ANC streams had lower base cation concentrations and higher acid anion concentrations than did the high-ANC streams. NO3 ? and SO4 2? were the dominant acid anions. NO3 ? was derived from a combination of high leaching of nitrogen from old-growth forests and from high rates of atmospheric deposition. Streamwater SO4 2? was attributed to atmospheric deposition and an internal bedrock source of sulfur (pyrite). Although dissolved Al concentrations increased with decreasing pH in the study streams, the concentrations of inorganic monomeric Al did not follow the pattern expected from equilibrium with aluminum trihydroxide or aluminum silicate phases. During storm events, pH and ANC declined by as much as 0.5 units and 15 μeq L?1, respectively, at the downstream sites. The causes of the episodic acidification were increases in SO4 2? and DOC.  相似文献   

18.
Discharge to concentration relationships for eight streams studied by the U.S. Geological Survey (USGS) as part of the U.S. Environmental Protection Agency's (U.S. EPA) Long-Term Monitoring Project (1983–89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitation were similar to those reported at other sites in the northeastern United States. Average concentrations of SO4 2? and NO3 ? were similar among streams, but base cation concentrations differed widely, and these differences paralleled the differences in acid neutralizing capacity (ANC). Baseflow ANC is not a reliable predictor of stream acidity at high flow; some streams with high baseflow ANC (>150 Μeq L?1) declined to near zero ANC at high flow, and one stream with low baseflow ANC (<50 Μeq L?1) did not approach zero ANC as flow increased. Episodic decreases in ANC and pH during peak flows were associated with increased concentrations of NO3 ? and dissolved organic carbon (DOC). Aluminum concentrations exceeding 300 Μg L?1 were observed during peak flows in headwater streams of the Neversink River and Rondout Creek. Seasonal Kendall Tau tests for temporal trends indicate that SO4 2? concentrations in streamwater generally decreased and NO3 ? concentrations increased during the period 1983–1989. Combined acid anion concentrations (SO4 2? + NO3 ?) were generally unchanged throughout the period of record, indicating both that the status of these streams with respect to acidic deposition is unchanged, and that NO3 ? is gradually replacing SO4 2? as the dominant acid anion in the Catskill streams.  相似文献   

19.
Variations in sulphate (SO4 2-) concentration of porewater and net SO4 2- mobilization were related to differences in water level fluctuations during wet and dry summers in two conifer swamps located in catchments which differed in till depth and seasonality of groundwater flow. Sulphate depletion at the surface and in 20 cm porewater coincided with anoxia and occurred mainly during the summer when water levels were near the peat surface and water flow rates were low in both catchments. There was an inverse relationship between net SO4 2- mobilization and water level elevation relative to the peat surface, explaining variation in SO4 2- dynamics between the swamps during summer drought periods. Aeration of peat to 40 cm and a large net SO4 2- mobilization (10–70 mg SO4 2- m-2 d-1) occurred during a dry summer in which the water level dropped to 60 cm below the surface in the swamp receiving ephemeral groundwater inputs from shallow tills within the catchment. This resulted in high SO4 2- concentrations in the surface water and porewater (30–50 mg L-1), and elevated SO4 2- concentrations remained through the fall and winter. In contrast, within the swamp located in the catchment with greater till depth (> 1 m), continuous groundwater inputs maintained surface saturation during the dry summer, and SO4 2- mobilization and concentrations of SO4 2- in the pore water during the following fall did not increase. Susceptibility to large water table drawdown and mobilization of accumulated SO4 2- is influenced by the occurrence of ephemeral vs. continuous groundwater inputs to valley swamps during dry summer periods in the Canadian Shield landscape. This study reveals that extrapolation of results of SO4 2- cycling from one wetland to another requires knowledge of the hydrogeology of the catchment in which the wetlands are located.  相似文献   

20.
Steam chemistry was investigated from May 1991 through April 1992 for 13 Japanese forested watersheds and from May 1990 through August 1994 for two of these watersheds. Nine watersheds were treated over different periods (1983–1991) with different amounts of N (nitrogen) fertilizer as urea and ammonium salts. Total N additions ranged from 20 to 375 kg ha-1. There were no distinct seasonal differences in stream NO3 - concentrations in either the treated or untreated watersheds, but concentrations tended to be somewhat higher during periods of high discharge. The annual average NO3 - concentrations in streams had a significant, positive (p < 0.001, r = 0.84) relationship to the total amount of N applied from 1985–1991. The application of 330 kg N ha-1 raised annual average stream NO3 - concentration to about 300 μeq L-1 compared to less than 160 μeq L-1 in untreated watersheds. The concentrations of K+, Ca2+, and Mg2+ in stream water also increased in those watersheds with high rates of N fertilizer as a result of nitrification that increased the generation of the mobile nitrate anion. The lack of seasonality in stream NO3 - concentrations and the large rates of N loss with N addition both suggest that these watersheds were ‘nitrogen saturated’  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号