首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several experiments were performed to investigate the physiology of seawater acclimation in the striped bass, Morone saxatilis. Transfer of fish from fresh water (FW) to seawater (SW; 31–32 ppt) induced only a minimal disturbance of osmotic homeostasis. Ambient salinity did not affect plasma thyroxine, but plasma cortisol remained elevated for 24h after SW transfer. Gill and opercular membrane chloride cell density and Na+,K+-ATPase activity were relatively high and unaffected by salinity. Average chloride cell size, however, was slightly increased (16%) in SW-acclimated fish. Gill succinate dehydrogenase activity was higher in SW-acclimated fish than in FW fish. Kidney Na+, K+-ATPase activity was slightly lower (16%) in SW fish than in FW fish. Posterior intestinal Na+,K+-ATPase activity and water transport capacity (Jv) did not change upon SW transfer, whereas middle intestinal Na+,K+-ATPase activity increased 35% after transfer and was correlated with an increase in Jv (110%). As salinity induced only minor changes in the osmoregulatory organs examined, it is proposed that the intrinsic euryhalinity of the striped bass may be related to a high degree of “preparedness” for hypoosmoregulation that is uncommon among teleosts studied to data.  相似文献   

2.
Branchial activities of Na+,K+-ATPase (ouabain sensitive), Mg2+ ATPase (ouabain insensitive) and kinetic analysis of high and low affinity Ca2+ ATPase were measured inAnguilla anguilla that had been acclimated to demineralized water (DW, Ca < 10 M), freshwater (FW, Ca = 2 mM), and Low calcium freshwater (L-Ca, Ca = 0.9 mM). Na+,K+-ATPase activity decreased while ouabain insensitive activity increased when ambient Ca2+ decreased. Two kinetic forms of Ca2+ ATPase could be resolved in each environmental condition. The stimulation coefficients of both sites or enzymes were not affected by ambient Ca2+ concentrations. The maximal velocity of both the high and the low affinity Ca2+ ATPase was increased when external Ca2+ was decreased during acclimation. The low affinity Ca2+ ATPase and the Mg2+ stimulated enzyme could be a non specific enzyme accepting either Ca2+ or Mg2+. Results are compared with previous results in the literature and in relation to the branchial morphology and ionic exchanges in fish.  相似文献   

3.
The purpose of this study was to examine regulatory volume decrease (RVD) in Atlantic salmon red blood cells (RBCs). Osmotic fragility was determined optically, mean cell volume was measured electronically, and changes in intracellular Ca2+ concentration were visualized using fluorescence microscopy and fluo-4-AM. Cells displayed an increase in osmotic fragility and an inhibition of volume recovery following hypotonic shock when they were exposed to a high taurine Ringer or when placed in a high K+ medium. Interestingly, RVD in cells from fish collected during the summer depended more on taurine efflux, whereas fall cells relied more on the loss of K+. In addition, RVD in fall cells was prevented with the K+ channel inhibitor quinine, whereas the ionophore gramicidin decreased osmotic fragility and potentiated volume recovery. Further, hypotonic shock (0.5X Ringer) for both summer and fall cells caused an increase in cytosolic Ca2+, which resulted from influx of this ion because it was not observed when extracellular Ca2+ was chelated with EGTA (10 nM free Ca2+). Cells exposed to a low Ca2+ hypotonic Ringer also had a greater osmotic fragility and failed to recover from hypotonic swelling. Finally, inhibition of phospholipase A2 with ONO-RS-082 blocked volume recovery. In conclusion, Atlantic salmon RBCs displayed volume decrease in response to hypotonic shock, which depended on a swelling-induced influx of Ca2+ and an increase in the efflux of K+ and taurine.  相似文献   

4.
The effects of the Na+/K+ and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+-ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae were investigated. The results indicate that the Na+-K+-ATPase activity, survival rate and weight gain of postlarvae were significantly affected by the Na+/K+ and Mg2+/Ca2+ ratios (P < 0.05). The Na+-K+-ATPase activity of postlarvae, in every treatment, changed corresponding to Na+/K+ and Mg2+/Ca2+ ratios, and came to a stable level after 24 h. There was a negative relation between Na+-K+-ATPase activity and Na+/K+ ratio, while there was a positive relation between Na+-K+-ATPase activity and Mg2+/Ca2+ ratio. Compared with seawater (the Na+/K+ and Mg2+/Ca2+ ratios are 27.8 and 4.64 respectively), the Na+-K+-ATPase activity of the Na+/K+ ratio 30 treatment showed no significant difference, while the Mg2+/Ca2+ ratio 4.5 treatment showed distinct difference. The survival rates and weight gain of postlarvae increased markedly when the suitable amount of K+ and Ca2+ was added to test water, and arrived at their maximum in the Na+/K+ ratio 20-30 or Mg2+/Ca2+ ratio 4.5 treatment, having no significant difference compared with normal seawater. Therefore, considering the Na+/K+, Mg2+/Ca2+ ratios and the absolute concentration of Mg2+, Ca2+ in the experimental saline groundwaters applied to Marsupenaeus japonicus farming, it should be modulated to around 30, 4.5 and 1312 mg/l, 291 mg/l, respectively.  相似文献   

5.
The osmoregulation capabilities of 7-month-old juvenile Chinese sturgeon (Acipenser sinensis Gray) (128.8 ± 15 g) transferred directly from fresh water (0‰, 46 mOsmol kg−1) to brackish water (10‰, 273 mOsmol kg−1) were studied over a 20-day period. Changes in serum osmolarity, chloride (Cl), sodium (Na+), potassium (K+) and calcium (Ca2+) ion concentrations, as well as gill and spiral valve Na+,K+-ATPase activities were measured at 3, 12, 24, 72, 216 and 480 h after transfer to BW. The serum osmolarity and ion concentrations (Na+, Cl and Ca2+) increased immediately after the transference to BW, reaching maximum at 24 h and returned to a new steady state at 216 h, while the FW control group maintained basal levels which showed lower (P < 0.05) than the BW group. Gill Na+,K+-ATPase activity of BW group exhibited an abrupt decrease in the first 3 h after transfer, but began to increase at 3 h, reaching a peak value at 24 h, and returned to a new steady state at 216 h. The differences between gill Na+,K+-ATPase activity of BW and FW fish were significant (P < 0.05) after 12 h. In contrast, Na+,K+-ATPase activity of the spiral valve showed transient increase after transference from FW to BW, and then decreased rapidly at 3 h, reaching the lowest at 24 h after transference. At 216 h after exposure to BW, Na+,K+-ATPase activities of the spiral valve increased slowly to the levels of FW control. The results of our study indicate the existence of hyposmoregulatory adaptive mechanisms in 7-month-old juvenile Chinese sturgeon which enable this fish to acclimate itself successfully to brackish water.  相似文献   

6.
The Australian freshwater fish, silver and golden perch, are increasingly being used for aquaculture. Addition of salt to water is commonly used in commercial aquaculture to reduce stress attributed to high ammonia concentrations. The activities in gill homogenates of ouabain-sensitive Na+/K+-ATPase and NEM-sensitive ATPases (as a measure of H+-ATPases) of silver and golden perch were measured after maintaining the fish in water containing different salt and ammonia concentrations. Six treatments were applied in a 2 × 3 factorial design: two salt treatments, low salt (LS) of 2.5 g l− 1 and high salt (HS) 5 g l− 1, and three ammonia treatments, no added ammonia (NA), low ammonia (LA), 3 mg total ammonia nitrogen (TAN) l− 1 and high ammonia (HA), 5 mg TAN l− 1. In both species, activity of Na+/K+-ATPase was lowest in fish kept in the LSNA treatment (7.4 ± 0.4 μmol Pi mg protein− 1 h− 1 for silver perch and 3.1 ± 0.6 for golden perch) and highest in the HSHA treatment (15.2 ± 1.0 μmol Pi mg− 1 protein h− 1 for silver and 8.4 ± 1.2 for golden perch). In both species there was a significant increase (P < 0.001) in Na+/K+-ATPase activity with increase in salt concentration and with an increase in ammonia concentrations. A significant interaction (P < 0.036) between salt and ammonia on Na+/K+-ATPase activity was observed in silver but not in golden perch. In contrast, the lowest activity for NEM-sensitive ATPase was observed in the HSNA treatment (1.0 ± 0.2 μmol Pi mg− 1 protein h− 1 for silver and 1.5 ± 0.4 for golden perch) and highest in LSHA treatment (2.9 ± 0.4 μmol Pi mg− 1 protein h− 1 for silver and 3.6 ± 1.2 for golden perch). In both species there was a significant decrease in NEM-sensitive ATPase activity with increase in salt concentration and an increase in activity with increase in ammonia (P < 0.003). In silver perch, a significant interaction between the treatments was observed (P < 0.02). The results suggest that in these species of freshwater fish the Na+/K+-ATPase has a role in salt and ammonia homeostasis and that the NEM-sensitive ATPases are more active in fish kept in water with a lower salt content. It is possible that the increase in ammonia resistance when salt is added to the environmental water in commercial aquaculture systems may be due to the effects of salt on gill Na+/K+-ATPase activity rather than the NEM-sensitive ATPases.  相似文献   

7.
We investigated the effect of exposure to low salinity water on plasma ion regulation and survival rates in artificially wounded devil stinger Inimicus japonicus. All fishes survived in 33% seawater (SW), while survival rate in 100% SW was 5.1% at 24 h. In 100% SW, plasma Na+, K+, Mg2+, and Ca2+ concentrations significantly increased to 238?±?49.9, 9.6?±?2.4, 15.1?±?3.5 and 5.0?±?0.7 mmol/l at 6 h, respectively; the gill Na+/K+–ATPase (NKA) activity was almost stable, although only one fish survived to 24 h. In 33% SW, plasma Na+ and K+ concentrations remained at the same level, and plasma Mg2+ and Ca2+ concentrations gradually increased to 16.2?±?0.7 and 4.5?±?0.2 mmol/l until 24 h, respectively. The NKA activity significantly increased to 5.1?±?1.1 µmol ADP/mg protein per h at 6 h. A positive correlation was observed between the wound surface area against body weight and the plasma ion concentrations, although no difference was observed in the restoration rate of the wounded area between 100 and 33% SW. These results indicate that exposure of wounded fish to low salinity water improves survivability by favoring plasma ion regulation without influencing the restoration rate.  相似文献   

8.
《Fisheries Research》1987,6(1):5-16
We have conducted an analysis of tissue and blood samples from moribund striped bass (Morone saxatilis) collected during the course of the summer 1985 die-off in the Carquinez Strait. Despite the small number of specimens that were available for this study, the differences between moribund fish and controls were striking and were consistent enough to establish the basis for this preliminary report. After comparing the results of serum and tissue analyses from three moribund samples with those of four relatively healthy controls, it became apparent that liver dysfunction is an important aspect of the pathology of fish in this die-off. This conclusion was based on data of several sorts: histological indications of hepatic lesions and inflammation, hormone imbalances and accumulations of uric acid, bilirubin and alkaline phosphatase in the plasma. Abnormal variation in plasma glucose levels, at both high and low extremes, may reflect severe disruption of carbohydrate metabolism in the moribund fish. The cause or causes of this liver damage have not yet been identified. Plasma proteins, ions (Na+, K+, Ca2+, and Cl−1) and osmolality were at virtually identical levels in the two groups, suggesting that osmoregulatory mechanisms still permitted responses to the salinity changes encountered by these fish in and around the Carquinez Strait. Although salinity changes may contribute to the problems of fish migrating through this region, simple osmoregulatory failure is not indicated.  相似文献   

9.
Biochemical procedures developed to isolate plasma membranes from the branchial epithelium of rainbow trout (Oncorhynchus mykiss) yield membrane fractions that are specifically enriched in the plasma membrane marker enzyme Na+/K+-ATPase. As the bulk of the branchial Na+/K+-ATPase is assumed to be confined to the mitochondria-rich chloride cells, such membrane preparations must contain the essence of the enzymatic machinery of the chloride cells. Basal Na+ activity in branchial (chloride) cells is around 10 millimolar and, accordingly, we find a Km for Na+ of the Na+/K+-ATPase of 13 millimolar, indicating that the enzyme may be regulated by changes in cytosolic sodium. The Na+-gradient across the serosal plasma membrane created by this pump provides energy for 3Na+/Ca2+-exchange and bumetanide-sensitive Na+/K+/2Cl--cotransport. Here we further postulate the presence of a Na+/Cl--cotransporter, indicated by thiazide-sensitive, bumetanide-insensitive transport of Na+ and Cl-; this cotransporter activity awaits the characterization of its kinetics. The Na+/Ca2+-exchanger has kinetic characteristics compatible with a regulatory role of cytosolic Na+ in the activity of this carrier. Both Na+/Ca2+-exchange and Ca2+-ATPase activity may contribute to transport of Ca2+, the former having lower affinity for calcium but a higher capacity than the latter carrier. The Na+/K+/2Cl--cotransporter has kinetics that favor a regulatory role for plasma K+ in the activity of this carrier. Seawater adaptation leads to increased activity of cotransporter molecules in the plasma membrane fractions (the activity increases relative to that of the Na+/K+-ATPase) and this may reflect a function in Cl--extrusion performed by the chloride cells in a seawater environment. A function for the cotransporter in the gills of freshwater fish may be the regulation of cell volume.  相似文献   

10.
The response to cold of gill and kidney membrane lipid composition and microsomal (Na++K+)-ATPase, Na+-ATPase and Mg2+-ATPase activities in reared sea bass (Dicentrarchus labrax L.) was investigated. Fish acclimation was carried out according to the seasonal cycle from August to March. No cold-promoted increase in fatty acid unsaturation was shown in gill and kidney polar lipids and in total lipids of mitochondria and microsomes. In both tissues the (Na++K+)-ATPase exhibited positive compensation for cold acclimation whereas the Na+-ATPase displayed negative compensation. The Mg2+-ATPase showed no compensation in the gills and positive compensation in the kidneys. During cold acclimation the break in the Arrhenius plot of the (Na++K+)-ATPase decreased, whereas breaks of both the Na+-ATPase and the Mg2+-ATPase activities remained unchanged. The results indicate that the sea bass does not adopt membrane unsaturation as a cold-facing strategy. The cold-promoted enhancement of (Na++K+)-ATPase activity in osmoregulatory tissues may be advantageous to maintain efficient osmoregulation under thermodynamically unfavourable conditions.  相似文献   

11.
This study investigated the effect of 0.25–5 mM K+, Ca2+, and Mg2+ on sperm motility in the perch, Perca fluviatilis. In 75 mM NaCl, the used motility-activating solution, motility rate, and swimming velocity decreased within the first 4 min after activation, and the rate of locally motile sperm increased. Thereafter, the motility parameters remained constant for periods >20 min. Based on the decrease in sperm motility, two types of semen samples could be distinguished. Semen samples of type I retained a high motility rate of >65 % after 20 min, and the rate of locally motile sperm was <20 %. In semen samples of type II, the motility rate decreased to values <30 % after 20 min, and the rate of locally motile sperm exceeded >50 %. Ca2+ and Mg2+ concentrations of 0.25–0.5 mM had no effect on the sperm motility parameters 10 s after activation, while 0.25 mM K+ increased the swimming velocity. K+, Ca2+, and Mg2+ concentrations ≥1.5 mM had suppressive effects on the sperm motility 10 s after activation. No differences were found between the two semen types. Twenty minutes after activation, type I semen was not affected by the tested cations. On the contrary, 0.25–2.5 mM K+, 0.25 mM Mg2+, and 0.25–2.5 mM Ca2+ significantly increased the sperm motility rate and/or sperm velocity of type II semen. Therefore, supplementation of saline solution with cations might stabilize the motility of perch sperm, which can be a benefit for experimental purposes and for specific handling procedures in aquaculture.  相似文献   

12.
The effect of sulfide on K+ influx pathways was measured in red blood cells (RBCs) of sulfide-sensitive rainbow trout (Oncorhynchus mykiss) and sulfide-tolerant crucian carp (Carassius carassius). In trout RBCs, maximal inhibition of Na+, K+-ATPase was attained at 10 mol l–1 sulfide and amounted to 32% without being influenced by pH between 6.7 and 8.3. Ouabain-resistant K+ influx in the absence and presence of sulfide was insignificant at pH values between 6.7 and 7.7. At higher pH values ouabain-resistant K+ influx increased, but was inhibited to about 15% by 30 mol l–1 sulfide. In RBCs of crucian carp neither Na+, K+-ATPase nor ouabain-resistant K+ influx were affected by sulfide concentrations up to 850 mol l–1. Differences in sulfide-sensitivity of K+ influx between both species can be based upon different properties of the membrane transporter themselves. The reduced Na+, K+-ATPase activity in trout RBCs may also result from a slightly reduced (by 9%) ATP level after sulfide exposure. In addition, intracellular sulfide concentrations were higher in trout RBCs as compared to crucian carp. In trout, intracellular sulfide concentrations reached extracellular levels within 5 min of incubation whereas sulfide concentrations in crucian carp RBCs remained about 2-fold lower than extracellular concentrations. Although the physiological basis of sulfide-insensitive K+ influx in crucian carp RBCs is currently unknown it may contribute to the extremely high sulfide-tolerance of this species.  相似文献   

13.
Soft water acclimated (Ca2+ 0.02 mM; Na+ 0.03 mM; K+ 0.01 mM; pH 7.0), cannulated brown trout (Salmo trutta) were exposed to various pH and aluminium (Al) regimes (pH 7.0, pH 5.0, pH 5.0 plus Al: 50, 25, and 12.5 g l–1) for up to 5 days in order to determine (i) the sublethal concentration of Al at pH 5.0 for this species (ii) their ionoregulatory and respiratory status. No mortality or physiological disturbances were evident at pH 7.0 or pH 5.0. All trout died within 48 h at pH 5.0 in the presence of Al at 50 g l–1 and 67% died over the 5 day period at pH 5.0 in the presence of Al at 25 g l–1. Fish at these lethal Al concentrations showed significant decreases in arterial blood oxygen content (CaO2) but no changes in plasma osmolarity or the concentrations of plasma Na+, K+ and Cl. Physiological disturbance was more marked at the 50 g l–1 Al concentration. The surviving fish at 25 g l–1 showed few signs of physiological recovery while continually exposed to this regime. No fish died during the exposure to water of pH 5.0 containing 12.5 g l–1 Al, but physiological disturbance was still apparent. These sublethally-stressed trout showed a transient decline in the plasma concentrations of Na+ and Cl–1. Although CaO2 decreased, recovery was evident. The data suggest that in the brown trout, environmental Al concentration is as important as pH and calcium concentration in determining the physiological status of the fish.  相似文献   

14.
The motility and fertilizing ability of the Persian sturgeon, Acipenser persicus, spermatozoa were investigated. Optimum ionic content (Na+, K+, Ca2+ and Mg2+) and pH of activation solution as well as the optimum dilution rate were determined. The results show optimum motility characteristics of spermatozoa in buffered solutions containing 25, 0.2, 3 and 10 mM L?1 Na+, K+, Ca2+ and Mg2+, respectively, at dilution rate 1:50 and pH 8.0. To test the fertilizing ability of sperm, two buffered saline solutions were used as activation solution of sperm motility. The present study indicated (1) spermatozoa motility is one of key factors that influence on fertilizing ability of sperm, (2) a high fertilizing ability of sperm is obtained after dilution in saline solutions rather than in freshwater and (3) a maximum fertilization rate occurs in buffered saline solution containing 0.2 mM L?1 K+. There is also a good correlation between biochemical characteristics of seminal plasma and fertilizing ability of sperm.  相似文献   

15.
An increase in salinity of freshwater can affect the physiology and metal uptake in fish. In the present study, Nile tilapia Oreochromis niloticus were exposed to copper (1.0 mg/l) in increased salinities (2, 4, and 8 ppt) for 0, 1, 3, 7, and 14 days. Following the exposures, the activities of Na+/K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase were measured in the gill, kidney, and intestine to evaluate the changes in osmoregulation of fish. Results showed that increases in salinity and Cu exposure of fish significantly altered the ATPase activities depending on the tissue type, salinity increase, and exposure durations. Salinity-alone exposures increased Na+/K+-ATPase activity and decreased Ca2+-ATPase activity. Na+/K+-ATPase activity decreased following Cu exposure in 2 and 4 ppt salinities, though the activity increased in 8 ppt salinity. Ca2+-ATPase activity decreased in the gill and intestine in all salinities, while the activity mostly increased in the kidney. However, there were great variations in Mg2+-ATPase activity following exposure to salinity alone and salinity+Cu combination. Cu accumulated in the gill and intestine following 14 days exposure and accumulation was negatively correlated with salinity increase. Data indicated that ATPases were highly sensitive to increases in salinity and Cu and might be a useful biomarker in ecotoxicological studies. However, data from salinity increased freshwaters should carefully be handled to see a clear picture on the effects of metals, as salinity affects both metal speciation and fish osmoregulation.  相似文献   

16.
The ability of carp to recover from nitrite-induced methaemoglobinaemia and disturbances in potassium balance and cell volume was studiedin vivo andin vitro. Nitrite accumulated to a plasma concentration of 3 mM during 2 days of nitrite exposure was eliminated from the plasma within 2–3 days in clean water. The nitrite-induced methaemoglobinaemia disappeared after 3 days of recovery. During nitrite exposure, K+ was lost from the red blood cells (RBCs) and from skeletal muscle tissue, which led to reduced cell volume and an extracellular hyperkalaemia. Extracellular [K+] rose less than predicted if lost K+ had remained in the extracellular space, suggesting further transport of K+ to the environment. The intracellular K+ and water content were restored after few days of recovery in clean water, but this was paralleled by development of an extracellular hypokalaemia. This shows that intracellular K+ balance was reestablished at the expense of the extracellular compartment, and supports that an overall K+ deficit resulted from K+ loss to the environment during nitrite exposure. Ventricle tissue differed from skeletal muscle and RBCs by not loosing K+ and by having increased sodium and water contents during nitrite exposure. These changes were corrected by recovery in nitrite-free water. In vitro addition of nitrite to blood with low O2 saturation induced metHb formation and RBC K+ efflux. Subsequent reduction of metHb to functional Hb was similar in blood with low and high O2 tension. A net re-uptake of K+ was observed only in RBCs with low O2 saturation and when metHb reached low values.  相似文献   

17.
This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and α-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 ± 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33°C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na+ level in the C group on the 4th day at 6 ppt. Na+ and Ca2+ concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca2+ level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and E groups was lower than the other treatments on the 1st day at 12 ppt and the 2nd day at 33°C. Regardless of Artemia enrichment, plasma ions (Na+, K+, Ca2+, and Mg2+) and glucose concentrations in fish exposed to salinity stress tests were higher than fish in fresh water. Glucose concentration in plasma also increased after 2 days at 33°C. Although most of our results were not significantly different, the use of vitamins C, E, and HUFA in Artemia enrichment can improve Juveniles tolerance under stress conditions, and regardless of enrichment, these data show that beluga juveniles are partly sensitive to high salinity and temperature.  相似文献   

18.
During capture and storage of tuna, a small but significant number of fish display a characteristic muscle degeneration termed tuna burn. Based on detailed amino acid analyses and on previous studies of metabolite changes during online swimming of tuna, a new model of the etiology of burnt muscle is developed. According to this model oxygen-lack to white muscle (developing initially during capture) leads to a metabolic collapse, to a drop in ATP concentration, to a consequent opening of ATP-dependent K+ channels, with an efflux of K+, and thus to a collapse of membrane potential. When the membrane potential falls far enough to open voltage-dependent Ca++ channels, Ca++ influx occurs leading to elevated Ca++ concentrations in the cytosol. This process is augmented by simultaneous movement of Ca++ from sarcoplasmic reticulum (SR) and from mitochondria into the cytosol. At high intracellular concentrations Ca++ can be devastating. One of its more notable effects involves the activation of Ca++-dependent proteases, which preferentially target key components of the contractile machinery (troponins, tropomyosin, C-protein, M-protein, Z-discs, -actinin) and thus cause disassembly of myofilaments prior to any significant hydrolysis of myosin or actin. This process is autocatalytic in the sense that Ca++-activated proteases may act upon SR, thus increasing Na+ /Ca++ exchange, and ultimately adding more Ca++ to the cytosolic pool. According to this model, the difference between burnt and unburnt regions of the myotome is simply due to how far each region has moved along this self-destructive, autocatalytic pathway. The model is helpful in explaining previously perplexing data and in making useful (i.e. measurable) predictions for further studies of this important problem.  相似文献   

19.
While numerous studies have evaluated intestinal phytase activity in terrestrial monogastric species, little work has been conducted investigating the enzyme's activity in finfish. This experiment was conducted to determine if hybrid striped bass Morone saxatilis × M. chrysops possess intestinal phytase activity, and to perform a preliminary characterization of this activity in terms of pH, metal ion dependence and substrate kinetics. Hybrid bass do exhibit low levels of intestinal phytase activity. The activity has an acidic pH optimum between 3.5 and 4.5. Low concentrations of Mn2+ slightly enhance this activity. The divalent cations Mg2+ and Zn2+ were shown to either have no effect on the enzyme activity or to be inhibitory, particularly at high concentrations. The present results indicate that intestinal phytase activity in hybrid bass does follow Michaelis-Menten kinetics, with estimated Km and Vmax values of 2.5 mM phytate and 4.8 units mg−1 protein, respectively. The physiologic significance of the enzyme's presence in hybrid striped bass is questionable due to the low activity as compared to terrestrial monogastrics, the acidic pH optimum and the low affinity the enzyme appears to have for phytate. These observations also raise the question of whether the intestinal phytase activity detected in hybrid bass is merely a manifestation of non-specific acid phosphatase activity. Further investigation is needed to determine the practical significance of phytase activity in hybrid bass in terms of phytate phosphorus utilization. Additional experiments should also be conducted which evaluate intestinal phytase activity in other important aquacultured finfish species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Lake Yuriria, located in the heavily populated and polluted Mexican Central Plateau, receives domestic sewage, industrial effluents, and municipal wastewaters that are still directly discharged without treatment into the tributaries and the lake. Pollutants in water and sediments include heavy metals, aromatic hydrocarbons, and organochlorine pesticides. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), as well as Na+/K+-adenosine triphosphatase (Na+/K+-ATPase) activity, and lipid peroxidation (LPO) were evaluated in the livers of the fish Goodea atripinnis after 96 h of exposure to water collected in March and June 2005 from three sites: Y (limnetic zone), L (Lerma tributary), and C (la Cinta tributary). Physical and chemical parameters of the lake water were also analyzed. Increases in CAT activity and LPO levels at all three sites were detected compared with control fish (P < 0.05), while GPx and SOD activities decreased significantly (P < 0.05). Na+/K+-ATPase activities were similar to the control in fish exposed to limnetic water from both March and June but were higher than control at the two tributary sites in March (P < 0.05); fish exposed to water from the Lerma tributary in June exhibited lower Na+/K+-ATPase than the control (P < 0.05). During March, CAT and Na+/K+-ATPase activities were increasing more than in June in Y and L, respectively, while in June, SOD and GPx were depleted more than March in L and Y and L, respectively. Despite the antioxidant defenses of the fish liver, exposure to all water samples from Lake Yuriria exerted alterations in hepatic LPO levels, antioxidant enzymes, and Na+/K+-ATPase activities that could substantially impair the mechanisms of fish defenses against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号