首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The average endogenous GSH content of eight lines of inbred corn was almost twofold greater than ten varieties of hybrid corn. When inbred and hybrid corn lines were treated with R-25788, the average GSH content increased by 56 and 95%, respectively. R-25788 protected two special inbred corn lines, GT 112 (atrazine susceptible) and GT 112 RfRf (atrazine resistant) from EPTC injury by increasing the GSH content and GSH S-transferase activity in roots. Most of the radiolabel from [14C]R-25788-treated plants remained in the root tissues whereas the radiolabel in [14C]EPTC-treated plants was evenly distributed between foliar and root tissues. From radiolabel experiments, hybrid corn seedlings were found to absorb more R-25788 from soil than EPTC. There was no difference between inbred and hybrid corn in the amounts of R-25788 or EPTC taken up or in the enhancement of GSH S-transferase activity caused by R-25788.  相似文献   

2.
[2-14C]Mevalonic acid incorporation into gibberellic acid precursors was measured in cell-free extracts from sorghum [Sorghum bicolor (L.) Moench var. G-522 DR] coleoptiles. 14C incorporation into ent-kaur-16-ene was inhibited ca. 90% by 10?7 to 10?4M metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide]. [14C]Geranylgeraniol (GG) content increased. [14C]Farnesol content was not altered and [14C]geraniol content decreased. Total 14C incorporation was decreased by metolachlor. In the safener [α-(cyanomethoximino)benacetonitrile]-treated sorghum seed coleoptile cell-free system, total 14C incorporation increased, [14C]kaurene and relative kaurence content increased 4× up to 105M metolachlor, and [14C]farnesol, and [14C]GG contents increased while relative farnesol and relative GG contents were not influenced by metolachlor. Thus, the inhibition of kaurene synthesis by metolachlor was reversed by the safener. Since the biosynthetic processes are mevalonic acid → geraniol → farnesol → GG → copalylol → kaurene, these data corroborate a proposed gibberellic acid biosynthesis inhibition between GG and kaurene as well as a partial blockage between mevalonic acid and geraniol. Thus, a portion of metolachlor-induced growth inhibitions of sorghum could be explicable on the basis of gibberellic acid biosynthesis inhibitions.  相似文献   

3.
The rapid effects of the herbicide EPTC (S-ethyl dipropylthiocarbamate) and the protectant DDCA (N,N-diallyl-2,2-dichloroacetamide) on [2-14C]acetate incorporation into lipids of maize cell cultures were studied in order to determine whether they act at similar sites of lipid synthesis. DDCA, at 0.05 mM and 0.1 mM, increased the incorporation of [2-14C]acetate into neutral lipids of a total lipid extract within 2 h. It had very little effect on the major polar lipid constituents. DDCA altered neither the distribution of label within the major lipid classes, nor turnover of the major lipids within 2 h. EPTC (0.1 mM) inhibited overall uptake of [2-14C]acetate into both neutral and polar lipids by about 30% after a 2-h incubation. The major polar lipid affected was an unidentified glycolipid. In addition to reducing the quantity of lipids synthesized, EPTC changed the lipid profile, altering the distribution of label, mainly within the neutral lipid fraction. A crude membrane fraction from maize cells contained both polar lipids and some neutral lipids. DDCA stimulated [2-14C]acetate incorporation into different lipid species. EPTC inhibited incorporation of [2-14C]acetate into both neutral and polar membrane lipids but altered significantly only its distribution into neutral lipids. DDCA (0.1 mM) given together with EPTC (0.2 mM) partially counteracted the effect of EPTC within the neutral lipid fraction. It is suggested that DDCA has a rapid effect on lipid synthesis, but it is probably not sufficient to account for the entire mode of action of the protectant.  相似文献   

4.
Vernolate (0, 8, 16, 31, 62, 125.0, or 250.0 ppbw) incorporated into sand inhibited the growth of wheat (Triticum aestivum L. cv Holley) at 125.0 ppbw. These growth inhibition and morphological responses were virtually identical to wheat response to EPTC at 125 ppbw. 14C from vernolate (carbonyl labeled) (125.0 ppbw) was absorbed into wheat seedlings at approximately 1.8 μM on the presumption that the 14C present was [14C]vernolate. Since the response of wheat to the thiocarbamate herbicides resembles a gibberellic acid (GA) deficiency and cell enlargement requires the presence of functional plasmalemmas and tonoplasts, the question of membrane disruption by excessive concentrations of thiocarbamate herbicides and potential reversal thereof by GA3 was studied by measuring the efflux of K+, Na+, and Mg2+. GA3 (0.003 μM) stimulated lettuce leaf disc growth in diameter and fresh weight. This GA-stimulated increase in size and weight was reversed by 1 mM EPTC. Betacyanin efflux from beet leaf tonoplasts was increased by 1 mM EPTC and this efflux was not reversed by exogenous GA3 (0.3 μM). This influence by supraoptimal EPTC concentrations was shown to be via membrane disruption, which obviated any possible GA influence by eliminating the functionality of the membranes requisite to the development of a GA response. It is concluded that viable mode-of-action studies must measure physiological responses consistent with the symptomology of herbicide responses normally observed with each herbicide at field concentrations.  相似文献   

5.
Diallate [S-(2,3-dichloroallyl)diisopropylthiocarbamate] incorporated into sand significantly inhibited sorghum (Sorghum bicolor (L.) Moench cv Funks G 522DR) growth of 14-day-old seed lings. Inhibition was competitively reversed by exogenous giberellic acid (GA3) (0.1 and 10 ppmw). Diallate inhibited gibberellin (GA) precursor biosynthesis in a cell-free enzyme preparation from unruptured, etiolated sorghum coleoptiles. Diallate (10 μM) inhibited kaurene oxidation 40% with a 2.7 × increase in kauren-ol and a 50% decrease in kaurenoic acid. The GA biosynthesis inhibition correlates with symptom phenology and field use application concentrations. Geranylgeranyl pyrophosphate accumulated 5 × at 0.1 μM diallate concentrations but concomitant kaurene concentration decreases did not occur. At 10 μM diallate, kaurene synthetase was inhibited 33%.  相似文献   

6.
Glutathione (GSH) content and GSH S-transferase activity are consistently increased in corn roots on 24-hr exposure of corn seedlings to part per million levels of N,N-diallyl-2,2-dichloroacetamide (R-25788) and related antidotes for thiocarbamate herbicide injury in susceptible corn varieties. This combined enhancement of enzyme activity and cofactor level leads to rapid detoxification of thiocarbamate sulfoxides, which are proposed to be the active herbicidal compounds formed on metabolic sulfoxidation. S-(N,N-Dipropylcarbamyl)-GSH is formed by this enzyme-catalyzed detoxification of EPTC sulfoxide. This hypothesis on antidote mode of action is supported by studies on 32 dichloroacetamides and related compounds and on the concentration- and time-dependent relationships of R-25788 action. The liver GSH content is normal in mice injected with high doses of R-25788, but the content is reduced when EPTC or EPTC sulfoxide is administered. EPTC sulfoxide also carbamoylates the thiol group of coenzyme A in neutral aqueous medium.  相似文献   

7.
The rapid effects of the thiocarbamate herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the herbicide protectant N,N-diallyl-2,2-dichloroacetamide (DDCA) on macromolecular syntheses and glutathione (GSH) levels in maize cell cultures were studied to determine whether stimulation of GSH could be the primary mechanism of action of DDCA. EPTC (0.5 and 1 mM) reduced incorporation of radioactive precursors within 1 hr after treatment, and affected incorporation of [3H]acetate into lipids more than incorporation of [3H]adenosine into acid-precipitable nucleic acids, or [14C]protein hydrolysate into protein. [14C]EPTC was rapidly biotransformed within 8 hr by maize cell suspensions. Measureable decreases in GSH levels following treatment with 1 mM EPTC occurred after 15 hr. DDCA stimulated incorporation of [3H]acetate into lipids within 4 hr but did not affect incorporation of [14C]protein hydrolysate into protein or [3H]adenosine incorporation into nucleic acids. Measureable increases in GSH following DDCA treatment began after 12 hr. Treatment with EPTC and DDCA in combination inhibited incorporation of [3H]acetate into lipids less than EPTC given alone. Increases in GSH levels could be observed following pretreatments with glutathione precursors, but no protectant activity could be detected, in contrast to treatments with DDCA. It is suggested that DDCA has an initial rapid effect on lipid metabolism followed by a slower effect involving increases in cellular GSH.  相似文献   

8.
The purpose of this study was to examine the differential activities of proso millet (Panicum miliaceum L.) and corn (Zea mays L.) with respect to atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-S-triazine] and EPTC (S-ethyldipropyl thiocarbamate) metabolism. GSH-S-transferase was isolated from proso millet shoots and roots. When assayed spectrophotometrically using CDNB (1-chloro 2,4-dinitrobenzene) as a substrate, the shoot enzyme had only 10% of the activity of corn shoot enzyme while the root enzyme had 33% the activity of corn root enzyme. However, when proso millet shoot GSH-S-transferase was assayed in vitro using 14C-ring-labeled atrazine, it degraded the atrazine to water-soluble products at the same rate as the corn shoot enzyme. Incubation of excised proso millet and corn roots with [14C]EPTC indicated that uptake of EPTC was similar in both plants. However, proso millet metabolized the EPTC to water-soluble products at only half the rate of corn. Glutathione levels of proso millet roots were 35.9 μg GSH/g fresh wt, compared with 65.4 μg GSH/g fresh wt for corn. However, a 2.5-day pretreatment with R-25788 (N,N-diallyl-2-2-dichloroacetamide) elevated proso millet GSH levels to 62.7 μg GSH/g fresh wt. R-25788 did not elevate the activity of proso millet GSH-S-transferase, in contrast to its effects on corn. We conclude that differences in response to atrazine and EPTC in proso millet and corn are a result of their differential metabolism.  相似文献   

9.
Growth (14 days) of sorghum (Sorghum bicolor L. cv G522 DR) from seed planted in sand into which alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was uniformly incorporated (0, 0.07, 0.14, 0.28, 0.56, 1.12, 2.24, or 4.48 kg/ha) was reduced by 0.14 kg/ha and severely inhibited (88%) by 0.56 kg/ha while cellular water cotent was not greatly influenced by 0.56 kg/ha. When added into the nutrient solution bathing the roots of 96-hr sorghum seedlings, alachlor (0, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, or 128 ppmw) was not lethal to 14-day-old sorghum at rates up to 32 ppmw (92% survival); however, shoot and root lengths were reduced 43 and 58%, respectively. Alachlor inhibition of sorghum growth appears to be closely associated with inhibition of cell enlargement; the coleoptile is the most susceptible stage of sorghum growth to alachlor. This situation closely resembles growth where gibberellic acid (GA) synthesis is inhibited. [2-14C]Mevalonic acid ([2-14C]MVA) incorporation into terpenoid GA precursors was evaluated using a cell-free enzyme system from etiolated sorghum coleoptiles. Alachlor did not inhibit total 14C incorporation but incorporation of 14C into kaurenol and sterols was decreased ca 80 and 75%, respectively, by 10?6M alachlor. Analyses for [14C]geranylgeraniol (GG), [14C]farnesol, and [14C]geraniol contents showed accumulation of [14C]farnesol and [14C]GG, and decreased [14C]geraniol. When seeds to which CGA-43089 [α-(cyanomethoximino)-benzacetonitrile] was applied 8 weeks prior to planting were substituted for untreated seeds, incorporation of [2-14C]MVA into [14C]kaurenol was increased by alachlor while [14C]GG and [14C]farnesol accumulated and [14C]geraniol was absent at 10?6M alachlor. Additionally, sterol content increased in “safened” systems but was still decreased by alachlor. These data demonstrate multiple sites of alachlor activity in the GA and terpenoid biosynthetic pathway.  相似文献   

10.
l-[U-14C]sucrose accumulation by phloem sieve tube members (PSTM) of wheat (Triticum aestivum L. ‘Holley’) and sorghum (Sorghum bicolor L. ‘G522 DR’) was inhibited by the nonpermeant sulfhydryl inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), and this inhibition was reversed by the permeant sulfhydryl protectants dithiothreitol (DTT) and dithioerythritol (DTE). S-Ethyl dipropylthiocarbamate (EPTC) (≤0.1 mM) did not inhibit [14C]sucrose accumulation by wheat or sorghum PSTM. N-N-Diallyl-2-chloroacetamide (CDAA) (1 mM) inhibited [14C]sucrose accumulation by sorghum but not by wheat PSTM. The inhibition of [14C]sucrose accumulation in sorghum PSTM by the membrane permeant CDAA was reversed by DTT. Sorghum growth was inhibited by <1 μM CDAA. Membrane permeant 2-chloroallyl diethyldithiocarbamate (CDEC) (0.1 mM) inhibited [14C]sucrose accumulation by PSTM of sorghum but not wheat. The inhibition of sucrose accumulation in sorghum PSTM by 0.1 mM CDEC was reversed by DDT.  相似文献   

11.
N,N-Diallyl-2-chloroacetamide (CDAA) (0.25 ppmw; I μM) inhibited growth of 14-day-old sorghum (Sorghum bicolor (L) Moench. cv Funks G 522DR) when the herbicide was incorporated into sand. Kaurene oxidation was inhibited in a cell-free enzyme preparation from 4-day-old unruptured, etiolated coleoptiles. CDAA (1 μM) inhibited incorporation of [14C]mevalonic acid into kauren-19-oic acid (50%), with resultant increases in concentration of precursors. Thus, inhibition of gibberellin precursor biosynthesis was demonstrated, and this activity would explain many of the morphogenic and biochemical responses of grasses to CDAA.  相似文献   

12.
Various physiological processes were measured in corn after treatment with AC 243,997. Neutral sugar levels in leaves increased 39% over the control 24 hr after application of AC 243,997. Protein synthesis, measured by [14C]leucine and [14C]cystine incorporation, and lipid synthesis were not inhibited 24 hr after application of 150 μM of AC 243,997, while respiration and RNA synthesis were inhibited 32 and 15%, respectively. DNA synthesis was severely inhibited (70–90%) by 150 μM of the herbicide 24 hr after application. The inhibition of DNA synthesis by AC 243,997 did not begin until 5 to 7 hr after application. Although protein synthesis rates were apparently unaffected by AC 243,997, the level of the soluble proteins decreased 40% while free amino acid levels increased 32% 24 hr after application of the herbicide. An exogenous supply of valine, leucine, and isoleucine to corn prevented the inhibition of growth and reversed the inhibition of DNA synthesis caused by AC 243,997. All three amino acids at a concentration of 1 mM were needed to provide maximum protection. The results support the hypothesis that AC 243,997 kills plants by interfering with the biosynthesis of valine, leucine, and isoleucine.  相似文献   

13.
The influence of EPTC (S-ethyl dipropylthiocarbamate) on the hydrogenation of geranylgeranylchlorophyll (GG-Chl) to phytol-Chl was studied during the greening (6-, 12-, 18-, 24-, and 48-hr incandescent light exposure) of etiolated wheat [Triticum aestivum (L.) cv “Stacy”] and sorghum [Sorghum bicolor (L.) Moench cv “G 522DR”] seedlings grown in nutrient solution containing 14C-labeled sodium acetate. Chloroplast pigment synthesis occurred and small quantities of GG-Chl were found in both Chl?a and Chl?b. When wheat seedlings were greened for 48 hr in an EPTC concentration series (1 nM to 100 μM), geranylgeraniol (GG) content increased from 11% (control) to 60% (100 μM EPTC) of the isoprenoid alcohol esterified to chlorophyllide a, but Chl-b contained ≤1% GG-Chl at all concentrations of EPTC. Sorghum seedlings greened for 48 hr in the same EPTC concentration series contained about 3% GG (control) while 100 and 40% GG esterified to chlorophyllide a and chlorophyllide b, respectively, after 48 hr exposure to 100 μM EPTC. Thus, EPTC prevented hydrogenation of GG-Chl to phytol-Chl on the Chl molecule more in sorghum than in wheat.  相似文献   

14.
The effect of five substituted pyridazinones (pyrazon, San 133-410H, San 9774, norflurazon, and San 6706) on lipid metabolism in groundnut (Arachis hypogaea) leaves was investigated under nonphotosynthetic conditions. In experiments with leaf disks, the uptake of [1-14C]acetate, [32P]orthophosphate, and [35S]sulfate was significantly inhibited by these herbicides and the magnitude of inhibition varied, depending on the substituents. When the incorporation of these precursors into lipids was measured and expressed as percentage of total uptake, no effect was observed in the case of [1-14C]acetate but there was significant inhibition in the incorporation of the other two precursors, suggesting that pyridazinones interfere with the metabolism of the phospholipids and the sulfolipid. None of these compounds affected the uptake of [methyl-14C]choline but all inhibited its incorporation into phosphatidylcholine indicating that phosphatidylcholine metabolism is vulnerable to pyridazinones. The fatty acid synthetase of isolated chloroplasts assayed in the absence of light was inhibited 20–50% by the pyridazinones at 0.1–0.5 mM concentrations. San 9774 showed the most potent inhibition. In addition, the pyridazinone herbicides significantly inhibited sn-glycerol-3-phosphate acyltransferase(s) in both chloroplast and microsomal fractions but showed no effect on phosphatidic acid phosphatase. The magnitude of inhibition of fatty acid synthetase and acyltransferase(s) is related to the nature of the substituent groups on the herbicide. Trifluorophenyl substitution at position 2 or amino substitution at position 5 of the pyridazinone molecule caused the maximum inhibitory effect.  相似文献   

15.
Wheat (Triticum aestivum L. cv Holley) was grown for 15 days in sand into which S-ethyl dipropylthiocarbamate (EPTC) (0, 15.6, 31.25, 62.5, or 125.0 μg/kg) had been incorporated. Growth was decreased more by EPTC under high light intensity (270 μein/m2/sec) than under low light (20 μein/m2/sec) intensity. Wheat grown in the dark did not respond to EPTC at these concentrations. In high light intensity, plastoquinone-9, plastohydroquinone-9, α-tocopheroquinone, and α-tocopherol contents (nanomoles per gram fresh weight) increased as EPTC concentration increased. Similar but less marked results occurred at the low light intensity. Plastohydroquinone-9/plastoquinone and α-tocopherol/α-tocopheroquinone ratios increased at both light intensities as EPTC concentration increased. This indicated an EPTC-induced inhibition of plastohydroquinone and α-tocopherol epoxidation. Chlorophyll a and b and total carotenoid contents increased as EPTC concentration increased in plants grown at high light intensities. Changes in the membrane electron carriers contents per unit of chlorophyll or carotenoid (micrograms per milligram of pigment) occurred. As a tentative hypothesis, it is suggested that transmembrane electron transport systems were inhibited, but growth in size (fresh weight per pot) was inhibited more than was synthesis of the various pigments and quinones. Thus, a separation of growth and metabolic response to EPTC was demonstrated.  相似文献   

16.
The rapid interactions between the herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the structurally similar herbicide protectant N,N-diallyl 2,2-dichloroacetamide (DDCA) at the level of herbicide uptake were examined in maize cell cultures. When the two compounds were given simultaneously, DDCA inhibited uptake of [14C]EPTC into maize cells measured for 30 min. A Lineweaver-Burk plot indicated this inhibition to be competitive. N,N-Diallyl 2-chloroacetamide (CDAA), a compound similar in structure to DDCA, inhibited uptake to a lesser extent. Other protectants having no similarity in structure to either DDCA or EPTC had no inhibitory effect on the uptake of EPTC. The data suggest that competition between DDCA and EPTC for a site of uptake may be related to their similarity in chemical structure. Experiments with metabolic inhibitors suggested that uptake of EPTC is not via an active transport mechanism. We suggest that competition for uptake between EPTC and DDCA may represent the first step in a complex series of interactions between the herbicide and its protectant that contributes to the protection of maize from herbicide injury.  相似文献   

17.
Enzymatically isolated leaf cells from navy beans (Phaseolus vulgaris L., cv. “Tuscola”) were used to study the effect of buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) on photosynthesis, protein, ribonucleic acid (RNA), and lipid synthesis. The incorporation of NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetic acid as substrates for the respective metabolic process was measured. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was very sensitive to both buthidazole and tebuthiuron and was inhibited in 30 min by 0.1 μM concentrations. RNA and lipid syntheses were inhibited 50 and 87%, respectively, by buthidazole and 42 and 64%, respectively, by tebuthiuron after 120 min at 100 μM concentration. Protein synthesis was not affected by any herbicide at any concentration or any exposure time period. The inhibitory effects of buthidazole and tebuthiuron on RNA and lipid syntheses may be involved in the ultimate herbicidal action of these herbicidal chemicals.  相似文献   

18.
The effect of asulam (methyl (4-aminobenzenesulphonyl) carbamate) on the synthesis of RNA and protein was investigated in bracken sporeling plants and excised rhizome bud tissue. Foliage application of asulam (4.4 kg/ha) reduced the RNA levels in frond buds and young fronds within 3 days, while protein levels were significantly reduced after 14 days. A significant reduction in respiratory activity of buds was observed after 2 weeks, the level of inhibition being 54% after 8 weeks. During a 3-h incubation period, O2 uptake by excised bud issue was stimulated by 5 and 10 ppm asulam and inhibited by higher concentrations; 32P uptake was inhibited at all concentrations. Asulam (5 ppm and above) inhibited bud growth and reduced RNA and protein levels in incubated buds (20 h at 30°C), and the incorporation of [14C]orotic acid into RNA and [14C]leucine into protein. Reduction of RNA levels and inhibition of [14C]ladenine incorporation into RNA in buds occurred entirely in the ribosomal and supernatant fractions of the cellular extract. Inhibition of RNA synthesis by asulam (50 ppm) as measured by [14C] orotic acid incorporation into RNA was completely antagonized by CEPA (3-chloroethylphosphonic acid) (50 ppm) and partially by 2,4-D (2,4-dichlorophenoxyacetic acid) (50 ppm) and GA (Gibberellic acid) (50 ppm). These results suggest that the interference of asulam with RNA and protein synthesis at the metabolically active sinks (rhizome buds) could be one of its major mechanisms of action in bracken.  相似文献   

19.
R-25788 (2,2-Dichloro-N,N-diallylacetamide) was the most effective of six potential antidotes evaluated to counter corn (Zea mays L.) injury from the acetanilide herbicides alachlor, metolachlor, acetochlor, H-22234 (N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester), and H-26910 (N-chloroacetyl-N-(2-methyl-6-cthylphenyl)glycine isopropyl ester). The other potential antidotes in order of decreasing effectiveness were: R-29148 (2,2-dimethyl-5-methyl-dichloroacetyloxazolidine), NA (1,8-naphthalic anhydride), CDAA (2-chloro-N,N-diallylacetamide), Carboxin (2,3-dihydro-5-carboxanilido-6-methyl-l,4-oxathiin), and gibberellin (GA3). GA3 only partly relieved the stunting of corn caused by EPTC and metolachlor and did not prevent other herbicide injury symptoms, suggesting that the mode of action of EPTC and metolachlor is not to simply block GA3 synthesis. R-25788 protected corn equally well from acetanilide or EPTC injury. Produits protecteurs du maïs (Zea mays) contre les dommages provoqués par les acétanilides herbicides Le R-25788 (2,2-dichloro-N.N-diallylacétamide) s'est révéléêtre le plus efficace de six produits protecteurs essayés pour préserver le maïs (Zeas mays L.) des dégâts provoqués par des acétanilides herbicides: alachlore, métolachlore, acétochlore, H-22234 (ester éthylique de la N-chloracétyl-N-(2,6-diéthylphényl) glycine) et H-26910 (ester isopropylique de la N-chloroacétyl-N-(2-méthyl-6-éthylphényl) glycine. Les autres produits protecteurs potentiels ont été, dans l'ordre d'efficacité décroissante: le R-29148 (2,2-diméthyl-5-méthyl-dichloroacéthyloxazolidine), l'AN (anhydride 1.8-naphtalique), le CDAA (2-chloro-N-N-diallylacétamide), la carboxyne (2,3-dihydro-5-carboxanilido-6-méthyl-l,4-oxathiine) et la gibbérelline (A3 G). Cette dernière a seulement atténué le rabou-grissement provoqué par l.EPTC et le métolachlore chez le maïs. Elle n'a pas supprimé les symptômes de dommages provoqués par les autres herbicides, ce qui suggère que le mode d'action de I'EPTC et du métolachlore ne consiste pas seulement en un blocage de la synthèse de la gibbérelline. Le R-25788 a protégé le maïs des dommages provoqués par l'acétanilide ainsi que par I'EPTC. Potentielle Antidots zur Vermeidung von Acetanilid-Herbizid-schäden an Mais (Zea mays) Von sechs potentiellen Antidots, die geprüft wurden, um Schäden an Mais (Zea mays L.) durch Acetanilid-Herbizide zu vermeiden, war R-25788 (2,2-Dichlor-N,N-diallylacetamid) am wirksamsten. Die verwendeten Herbizide waren: Alachlor, Metolachlor, Acetochlor, H-22234 [N-Chloracetyl-N-(2,6- diäthylphenyl) glycin Älhylester] und H-26910 [N-Chloracelyl-N-(2-méthyl-6-äthylphenyl)glycin lsopropylester]. Die weiteren möglichen Antidots, in der Reihenfolge abnehmender Wirksamkeit, waren: R-29148 (2,2-Dimethyl-5-methyldichlorace-toxazolidin), NA (1,8-Naphthalsäureanhydrid), CDAA (2-Chlor-N,N-diallylacetamid), Carboxin (2,3-Dihydro-5-car- boxanilido-6-methyl-l,4-oxathiin) und Gibberellin (GA3). durch GA3 wurde die dureh EPTC und Metolachlor verursachte Stauchung des Mais nur teilweise vermieden. Die durch andere Herbizide verusachten Symptome liessen sich durch GA3 nicht vermeiden, was darauf schliessen lässt, dass die Wirkungsweise von EPTC und Metolachlor nicht einfach mit einer Blockierung der GA3 -Synthese zu erklären ist. R-25788 schützte Mais gleichermassen vor Acetanilid-, wie vor EPTC-Schäden.  相似文献   

20.
Wheat (Triticum aestivum L. cv Holley) seedlings were exposed to [N-14CH3]norflurazon in nutrient solution studies. The 14CH3 group was incorporated into a compound eluting on GLC at a relative retention temperature Rf equivalent to n-C21 H36 and mass spectrometry validated a 295 MW. The concentration of [N-14CH3]norflurazon and/or Rl[14C]norflurazon which resulted in carotenogenesis inhibition was 0.07 μM in the water contained in the leaves. The concentration of norflurazon required for phytoene accumulation as a mode-of-action was ca. 140 × the concentration of norflurazon required for geranylgeraniol accumulation. Geranylgeraniol accumulated at 1 ppbw (3.2 nM) norflurazon and phytofluene accumulated throughout the norflurazon concentration series (1 to 1000 ppbw). Carotene content was increased by 1 to 16 ppbw norflurazon but was decreased by 64 ppbw norflurazon. Thus, two modes-of-activity for norflurazon are documented that depend upon concentration of the toxicant in the tissue. Norflurazon demethylation in prephytoenepyrophosphate synthesis resulted in a C21 conjugate and increased concentrations of GGPP and phytoene in the tissue. At approximately 31 ppbw norflurazon, an inhibition of phytoene dehydrogenation occurred and phytoene accumulated. At 62 ppbw norflurazon, phytofluene hydrogenation inhibition occurred and phytofluene accumulated while β-carotene synthesis was inhibited. These inhibitions may possibly be reversible when substrate concentrations are in excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号