首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Oidium neolycopersici causes severe powdery mildew on all aerial parts of tomato, excluding the fruit. The objective of the present work was to examine factors that influence the development of O. neolycopersici on tomato and to identify potential methods for managing tomato powdery mildew. Under controlled conditions, the highest rates of conidial germination were observed at 25 degrees C, 99% relative humidity (RH) and minimal light, and the lowest on leaves adjacent to fruits. Optimal conditions for appressoria formation were 25 degrees C, RH ranging from 33 to 99%, and 1,750 lux light intensity. More conidia were formed at 20 degrees C, 70 to 85% RH, and 5,150 lux light intensity than at 16 and 26 degrees C, 99% RH, and 480 to 1,750 lux, respectively. Conidia survived and remained capable of germination for over four months when initially incubated at lower temperatures and higher RH, as compared with their fast decline under more extreme summer shade conditions. In growth chamber experiments, disease did not develop at 28 degrees C. Within the range of 70 to 99% RH, disease was less severe under the higher RH than the drier conditions. Disease was also less severe at lower light intensities. Data collected in three commercial-like greenhouse experiments involving various climate regimes were used to draw correlations regarding the effects of temperature and RH on the development of epidemics. Severity of powdery mildew was positively correlated with the duration of the range 15 to 25 degrees C, 1 to 4 weeks before disease evaluation (BDE), RH levels of 60 to 90% at 2 to 4 weeks BDE, and RH of 50 to 60% during the week BDE. Conversely, disease was negatively correlated with the duration of temperatures in the low and high ranges (5 to 15 degrees C and 35 to 40 degrees C) at 1 to 4 weeks BDE, with the duration of RH levels of 40% and below at 1 to 4 weeks BDE, and with 50 to 60% RH during the third week BDE. High (90 to 100%) RH was also negatively correlated with disease severity. These results suggest that the combination of high temperatures and low RH may help reduce O. neolycopersici powdery mildew severity in greenhouse tomatoes.  相似文献   

2.
高温高湿对黄瓜黑星病菌孢子萌发及侵染的影响   总被引:3,自引:0,他引:3  
 采取温湿度相结合的方法来研究高温处理对黄瓜黑星病菌(Cladosporium cucumerinum Ell.and Arth.)侵染的影响,比较研究了35~50℃ 4个温度梯度、50%~90% 5个湿度梯度组合处理对病菌的致死作用。同一相对湿度下,随着温度的上升病菌的致死率增加,病菌致病力降低;在同一温度下随着湿度的不断升高,受处理的孢子萌发率和致病能力都逐渐下降。在RH 80%以上、温度40℃以上时,对孢子的致死率随着处理时间的延长而增高,此高温高湿处理病菌超过2 h,病菌孢子不萌发,也基本没有接种发病率。通过高温控制苗期黄瓜黑星病的研究,初步确定高温高湿防治苗期黄瓜黑星病的最佳温度区间为40℃ 2 h或45℃ 1h (RH 80%)。  相似文献   

3.
ABSTRACT The effects of temperature (5 to 25 degrees C), relative humidity (81 to 100%), wind speed (0 to 1.0 m s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P < 0.0001) by temperature, with an optimum at 15 degrees C, and by relative humidity (RH), with sporulation increasing markedly at RH >/= 90%. There was a significant effect of exposure time in relation to temperature (P = 0.0007) but not to RH. In separate experiments, both RH and wind speed significantly (P < 0.0001) affected the number of cotyledons with sporulation and the number of sporangia produced per cotyledon. No sporulation was observed at wind speeds of >0.5 m s(-1), regardless of RH. In still air, the number of sporangiophores produced per cotyledon increased linearly with RH from 81 to 100% (P = 0.0001, r = 0.98). Histological observations indicated that sporulation may be affected by stomatal aperture in response to RH, as more closed stomata and correspondingly fewer sporangiophores were present at lower RH. These results are important for understanding the mechanism of RH effects on sporulation and for predicting conditions conducive to downy mildew development.  相似文献   

4.
BACKGROUND: The psocid Liposcelis bostrychophila Badonnel, is a widespread, significant pest of stored commodities, has developed strong resistance to phosphine, the major grain disinfestant. The aim was to develop effective fumigation protocols to control this resistant pest. RESULTS: Time to population extinction of all life stages (TPE) in days was evaluated at a series of phosphine concentrations and temperatures at two relative humidities. Regression analysis showed that temperature, concentration and relative humidity all contributed significantly to describing TPE (P<0.001, R(2)=0.95), with temperature being the dominant variable, accounting for 74.4% of the variation. Irrespective of phosphine concentration, TPE was longer at lower temperatures and high humidity (70% RH) and shorter at higher temperatures and low humidity (55% RH). At any concentration of phosphine, a combination of higher temperature and lower humidity provides the shortest fumigation period to control resistant L. bostrychophila. For example, 19 and 11 days of fumigation are required at 15 degrees C and 70% RH at 0.1 and 1.0 mg L(-1) of phosphine respectively, whereas only 4 and 2 days are required at 35 degrees C and 55% RH for the same respective concentrations. CONCLUSIONS: The developed fumigation protocols will provide industry with flexibility in application of phosphine.  相似文献   

5.
The present paper deals with developmental duration, emergence, longevity and fecundity ofAleurotuberculatus takabashi David & Subramaniam at different temperatures and humidity levels. The developmental time from egg to adult was 81.8, 56.9, 39.6, 29.9, 20.6 days at 15±1, 20±1, 25±1, 30±1, 35±1°C under constant relative humidity (RH) of 70±5%, respectively. At 25±1°C, the total developmental time was slightly affected by humidity, ranging from 46.4 days at 40±5% RH to 39.2 days at 90±5% RH. The developmental threshold and the thermal constant for the stage from egg to adult were 10.1°C and 542.8 day-degrees. It was estimated that the whitefly has about 10 generations a year in Fuzhou region in southeastern China. Lowest mortality rates of 12.4% for the egg, 6.8% for the nymph and 3.1% for the puparium were obtained at 15±1°C, while they were highest with 92.1% for the egg, 48.2% for the nymph and 36.3% for the puparium at 35±1°C. The mortality rates were slightly affected by humidity, ranging from 17.6% at 40±5% RH to 27.9% at 90±5% RH for the egg, 11.2% at 40±5% RH to 19.6% at 90±5% RH for the nymph, and 6.4% at 40±5% RH to 11.6% at 90±5% RH for the puparium. The emergence rate of adults decreased as temperature increased, ranging from 89.1% at 15±1°C to 21.5% at 35±1°C, so did the longevity of adults, ranging from 9.6 days at 15±1°C to 2.9 days at 35±1°C. The number of eggs per female was significantly affected by temperature (P.01), valuing 29.4 eggs per female at 15±1°C, 36.7 at 20±1°C, 52.4 at 25±1°C, 42.9 at 30±1°C, and 6.1 at 35±1°C. The optimal temperature for reproduction was about 25°C.  相似文献   

6.
Fusarium head blight (FHB) is one of the most important cereal diseases in the world and has caused major losses to the grain industry. The principal pathogen causing FHB in North America is Gibberella zeae (anamorph Fusarium graminearum). Information on survival and the conditions under which ascospores remain viable once released from perithecia may assist in refining disease forecasting models. This study measured germination of ascospores after exposure to different temperatures, 15, 20, and 30 degrees C, and levels of relative humidity (RH), 30, 60, and 90% for 4, 24, or 48 h periods. Viability was tested by germination on water agar. Germination rates fell with increasing temperatures at all observation times and at all humidity levels. At 15 and 20 degrees C after 48 h, germination ranged from 74 to 85%, and 52 to 72%, respectively. At 30 degrees C, germination ranged from 36 to 59% after 24 h and from 13 to 47% after 48 h. Germination was highest at 90% RH, except at 30 degrees C after 48 h, and lowest at 60% RH. Successful germination, even under extreme conditions, suggests that ascospores are sufficiently robust to constitute a source of inoculum under most environmental conditions encountered during the growing season.  相似文献   

7.
A series of experiments was carried out over four years in a glasshouse with computer control of humidity and temperature to investigate the effect of humidity on the development of tomato powdery mildew. Four relative humidities (RHs) (80%, 87%, 90% and 95%) at constant 19°C were maintained over an eight-week experimental period during the Autumn. Disease was greatest at 80% RH and was progressively less with increasing RH to a minimum level at 95% RH on both inoculated plants, introduced to act as initial infection sources, and on adjacent uninoculated plants. The results indicate that high humidities may decrease severity of this disease in the glasshouse and may help management of this disease in the future.  相似文献   

8.
ABSTRACT When detached sour cherry (Prunus cerasus) blossoms were inoculated with conidia of Monilinia fructicola and subjected to a standard 8-h wetting treatment at 20 degrees C, blossom blight incidence was proportional to relative humidity (RH) when RH was held constant during the subsequent 6-day incubation period (frequency = 1.0 at the maximum RH of 92%; frequency = 0.38 at the minimum RH of 57%). Similarly, when a primary incubation period at 87% RH was followed by a secondary incubation period at 54% RH, blossom blight incidence was proportional to the number of hours at the higher level (frequencies of 0.94, 0.80, and 0.38 with primary incubation periods of 6 days, 36 h, and 12 h, respectively). When intact blossoms on potted trees were exposed to common inoculation and wetting treatments, disease incidence was consistently high on trees that subsequently were incubated in a controlled environment chamber (20 degrees C, 90 to 95% RH) but was extremely variable when trees were incubated under variable ambient conditions. Ambient incubation temperature had little effect on disease incidence 9 days after inoculation, whereas ambient RH had a pronounced effect: the frequency of blighted blossoms was 0.53 to 0.61 when the number of hours at RH >90% was approximately two to six times that at RH <60%, whereas this frequency was only 0.02 to 0.07 when the number of hours at RH >90% was approximately one-third the number at RH <60%. After 48 h at a constant RH of 89 or 57%, the water potential of excised uninoculated blossoms was -1.15 and -1.93 MPa, respectively; however, growth of M. fructicola on osmotically adjusted potato dextrose agar was unaffected by changes in water potential within this range. Thus, although RH during incubation has an important influence on blossom blight development, the causal mechanism remains uncertain.  相似文献   

9.
Liu Q  Xiao CL 《Phytopathology》2005,95(5):572-580
ABSTRACT Potebniamyces pyri is the causal agent of Phacidiopycnis rot, a postharvest disease of pears. Infection of fruit occurs in the orchard, and symptoms develop during storage. Conidial germination of P. pyri in response to nutrient, temperature, wetness duration, relative humidity (RH), and pH was determined in vitro. Conidia germinated by either budding or developing germ tubes in various concentrations of pear juice solutions. The mode of conidial germination was nutrient-dependent. Low nutrient levels favored budding, whereas high nutrient levels favored germ tube development. Conidia germinated at 0 to 30 degrees C but not at 35 degrees C, with optimum temperature between 20 and 25 degrees C. Wetness durations of 4 to 5 h and 6 to 8 h at optimum temperature were required for budding and developing germ tubes, respectively, and 20 to 24 h of wetness was required to reach germination peaks. Regardless of temperature, conidia germinated primarily by budding in 10% pear juice. Secondary conidia, produced by budding of conidia, initially increased their dimensions and later germinated at 0 to 25 degrees C in the same manner as mother conidia. No germination of secondary conidia occurred at 30 degrees C. Germ tubes from conidia elongated at 0 to 25 degrees C but not at 30 degrees C. No germination occurred at 相似文献   

10.
Didymella rabiei grew saprophytically on pieces of artificially and naturally infected chickpea stem debris under artificial incubation conditions, and formed pseudothecia and pycnidia. The extent of growth was not significantly affected by temperature of incubation within the range 5–25°C, but was significantly reduced as relative humidity (RH) decreased from 100% to 86%, when no growth occurred. Pseudothecia matured at 10°C and constant 100% RH, or at 5 and 10°C and alternating 100%/34% RH. Under these conditions, pseudothecial maturation, assessed by a pseudothecia maturity index, increased over time according to the logistic model. For temperatures higher than 10°C or RH lower than 100%, pseudothecia either did not form ascospores, or ascopores did not mature and their content degenerated. When pseudothecia that initially developed to a given developmental stage were further incubated at a constant 100% RH, temperature became less limiting for complete pseudothecial development as the developmental stage was more advanced. Pycnidia of the fungus developed and formed viable conidia in all environmental conditions studied, except at 86% RH. However, the density of pycnidia formed and the number of viable conidia per pycnidium were significantly influenced by temperature, RH and the type of debris (artificially or naturally infected) used.  相似文献   

11.
益蝽是一种重要的捕食性天敌,能捕食多种害虫。为探究不同湿度对益蝽生长发育的影响,本研究于室内测定了相对湿度10%、30%、50%、70%和90%条件下,益蝽卵发育历期、孵化率,各龄若虫发育历期、体质量及存活率,雌成虫寿命等指标。结果表明,与对照组相对湿度70%相比,相对湿度10%对低龄若虫的发育历期有显著影响,而相对湿度90%影响相对较小。相对湿度10%下卵发育历期显著延长、孵化率显著降低;若虫发育历期显著延长、存活率显著降低、体质量有显著变化;雌成虫寿命显著缩短。相对湿度10%对益蝽的影响随龄期增加逐渐减小,相对湿度90%只对成虫体质量有显著影响。  相似文献   

12.
Effects of humidity on the development of grapevine powdery mildew   总被引:1,自引:0,他引:1  
Carroll JE  Wilcox WF 《Phytopathology》2003,93(9):1137-1144
ABSTRACT The effects of humidity on powdery mildew development on grape seedlings and the germination of Uncinula necator conidia in vitro were examined. Studies were conducted at an optimum temperature of 25 +/- 2 degrees C. Disease on foliage was markedly affected by humidity levels in the test range of 39 to 98% relative humidity (RH), corresponding to vapor pressure deficits (VPD) of 1,914 to 61 Pa. Incidence and severity increased with increasing humidity to an optimum near 85% RH, and then appeared to plateau or decrease marginally at higher values. Conidial density and chain length also were proportional to humidity, but were influenced less strongly. There was a strong, positive linear relationship between humidity level and frequency of conidium germination with RH treatments of 相似文献   

13.
ABSTRACT Growth characteristics of the fungus Trichoderma stromaticum, a mycoparasite on the mycelium and fruiting bodies of Crinipellis perniciosa, the causal agent of witches'-broom disease of cacao, were evaluated under controlled environmental conditions. The ability of T. stromaticum to produce conidia and germinate on dry brooms was evaluated at three constant temperatures (20, 25, and 30 degrees C) and two constant relative humidities (75 and 100%). T. stromaticum produced abundant conidia on brooms at 100% relative humidity and incubation temperatures of 20 and 25 degrees C, but none at 30 degrees C. Sporulation of T. stromaticum was not observed at 75% relative humidity at any temperature. At 100% relative humidity and either at 20 or 25 degrees C, treatment of brooms with T. stromaticum suppressed C. perniciosa within 7 days. In contrast, at 30 degrees C, treatment with T. stromaticum had no effect on the pathogen in brooms maintained at either 75 or 100% relative humidity. Mycelium of C. perniciosa grew from brooms at all temperatures at 100% relative humidity. Conidial germination on broom tissue approximated 80% at temperatures from 20 to 30 degrees C. Results suggest that applying T. stromaticum under high-moisture conditions when the air temperature is below 30 degrees C may enhance the establishment of this mycoparasite in cacao plantations.  相似文献   

14.
本文研究了温湿度对枯草芽胞杆菌B36菌株可湿性粉剂防治番茄灰霉病效果的影响。结果表明:枯草芽胞杆菌B36菌株可湿性粉剂在相对湿度90%时,对番茄灰霉病保护和治疗效果最高,分别达82.9%和61.63%;在相对湿度100%时,对番茄灰霉病保护和治疗效果最差,分别达32.87%和31.63%。当相对湿度为90%,温度在30 ℃∥20 ℃条件下,对番茄灰霉病的保护和治疗效果分别为82.48%和63.01%;温度在25 ℃∥15 ℃条件下,对番茄灰霉病的保护和治疗效果分别为45.06%和23.85%。表明湿度及温度对枯草芽胞杆菌B36菌株可湿性粉剂防治番茄灰霉病的效果具有较大影响。  相似文献   

15.
西方盲走螨区域适应性初探   总被引:1,自引:0,他引:1       下载免费PDF全文
1981—1985年分别于气温较高、前期干旱、后期雨季明显和气候凉爽、干旱的苹果栽培区设置了20多个释放点,进行了西方盲走螨区域适应性试验。结果表明,释放西方盲走螨凡是取得控制叶螨成功的地区,均具有相对湿度较低、年降雨量少的共同特点。如我国西北部的甘肃兰州、宁夏银川、新疆石河子、阿克苏等,此带年降雨量在400毫米以下,6、7、8三个月平均相对湿度在70%以下。而降雨量超过600毫米,6、7、8三个月平均相对湿度高于80%的地区,如江苏徐州、山东青岛、辽宁兴城、河北昌黎和北京等地,则不适宜西方盲走螨生存、发展。  相似文献   

16.
ABSTRACT Sweet pepper-Leveillula taurica microclimate relations were studied under controlled conditions and in commercial greenhouses. Conidial germination occurred at 10 to 37 degrees C and was optimal at 20 degrees C. Conidial viability declined as temperatures increased to 40 degrees C for 6 h. Leaf colonization was optimal at 15 to 25 degrees C. Severe leaf infections occurred at 15 to 20 degrees C and conidiation was suppressed at 20 to 25 degrees C. Highest germination rates were observed at 75 to 85% relative humidity (RH). Severity of leaf coverage by symptoms was high for plants which were subjected to longer periods of temperatures between 10 to 15 degrees C and daytime RH between 85 to 95%, and positively correlated with nighttime RH. Disease severity was negatively correlated with lengthy periods of temperatures >25 degrees C, day and night average temperatures, and average daytime RH. Conversely, leaf shedding was relatively high under conditions characterized by long periods of temperatures >20 degrees C and <13 degrees C, and positively correlated with average daytime temperatures and periods of RH <75%. Increasing nighttime temperatures by heating and daytime temperatures by closing the greenhouse side walls reduced disease in two commercial greenhouse experiments. A midseason shift from a cooler greenhouse climate to warm daytime climate halted epidemic development. Flower number and yield were reduced in infected crops.  相似文献   

17.
小麦光腥黑粉菌热力杀菌的研究   总被引:1,自引:1,他引:0  
本试验对小麦光腥黑粉菌冬孢子粉在90℃,100℃,110℃,120℃,125℃,130℃,135℃和140℃进行了干热杀菌试验,在70℃,相对湿度70%,75%,80%,85%,90%,75℃,相对湿度65%,70%,75%,80%,85%,80℃,相对湿度55%,65%,70%,75%,85%;85℃,相对湿度60%,65%,70%,80%,90%进行了湿热杀菌试验,并通过焓增量值同杀菌时间TD  相似文献   

18.
Wolf PF  Verreet JA 《Phytopathology》2005,95(3):269-274
ABSTRACT Severe Cercospora leaf spots epidemics in sugar beet during the late 1980s and early 1990s in southern Germany prompted us to initiate investigations on the epidemiology of the causal agent, Cercospora beticola. The data set involved 69 field trials (1993 to 2003) focusing on factors affecting the epidemic onset of this disease. Observations were made at weekly intervals, recording the calendar week when canopy closure occurred (growth stage according to BBCH scale = 39) and symptom development by assessing the percentage of infected leaf area on a single-leaf basis (n = 40 plants). These monitoring trials revealed that epidemic onset varied between early July and mid-September. Hence, the target was to identify the reasons for this variation in order to deduct the most suitable approach for predicting epidemic onset. Differences in cultivar resistance explained part of epidemic onset variability, as did different timings of canopy closure, presumably due to associated microclimate changes. Moreover, meteorological variables were considered as potential reasons for variation in epidemic onset. The weather-dependent infection probability was assessed by daily infection values (DIV) in the range from 0 to 1 using hourly weather data. For calculating DIVs, the temperature effect was quantified by the proportions of the latent period (LP) relative to the optimum at 20 to 25 degrees C, established by artificial inoculation of sugar beet plants in growth cabinets. Artificial infection experiments further established that air relative humidity (RH) >95% or leaf wetness was required for infection and subsequent lesion development. Under field conditions, the probability of leaf wetness was 75% at RH >90%. Therefore, DIVs were set to 0 for RH 相似文献   

19.
ABSTRACT Experiments to identify the factors affecting survival of Bremia lactucae sporangia after deposition on lettuce leaves were conducted in growth chambers and outdoors under ambient conditions. Lettuce seedlings at the four-leaf stage were inoculated with B. lactucae sporangia under dry conditions. Sporangia deposited on lettuce seedlings were incubated at different temperature and relative humidity (RH) combinations, exposed to 100, 50, 25, and 0% sunlight in the second experiment, and exposed to different artificial lights in wavelength ranges of UVA (315 to 400 nm), UVB (280 to 315 nm), or fluorescent light in the third experiment. After exposure for 0 to 48 h in the first experiment and 0 to 12 h in the second and third experiments, seedlings in two pots were sampled for each treatment, and sporangia were washed from 15 leaves excised from the sampled seedlings. Germination of sporangia was determined in water after incubation in the dark at 15 degrees C for 24 h. The sampled seedlings with remaining leaves were first transferred to optimal conditions for infection (24 h), for the development of downy mildew, and then assessed for disease after 9 days. Sporangia survived much longer at 23 degrees C (>12 h) than at 31 degrees C (2 to 5 h), regardless of RH (33 to 76%). Germination percentage was significantly reduced after exposure to 50 and 100% sunlight. UVB significantly reduced sporangium viability, while fluorescent light and UVA had no effect relative to incubation in the dark. Infection of seedlings followed a pattern similar to germination of sporangia. Solar radiation is the dominant factor determining survival of B. lactucae sporangia, while temperature and RH have small, insignificant effects in coastal areas of California. This suggests that infections by sporangia that survived a day are probable only on cloudy days or on leaves that are highly shaded.  相似文献   

20.
Abstract

Studies were conducted to determine the influence of plant growth stage, inoculum density, temperature, and relative humidity (RH) on development of rust (Puccinia pupurea) in sorghum (Sorghum bicolor). Rust development was maximum (>80% severity), when plants of a susceptible sorghum genotype (IS 18420) were inoculated at the four‐ to five‐leaf stage with an inoculum concentration of 4 × 106 urediniospores per ml and incubated at 20–25°C under high RH (>90%) for 24 h. Disease severity (percentage leaf area covered with rust pustules) scores were taken 2 weeks after inoculation. Using this technique, 29 sorghum genotypes were screened for rust resistance in a greenhouse. This technique proved effective In discerning resistant and susceptible genotypes, and IS 3979, ICSH 110, ICSH 86647 and ICSH 871035 were identified resistant (<20% rust severity) compared with a susceptible control IS 18420 (90% rust severity). This technique is simple and rapid, and can be used effectively and economically to screen, on a large scale, germplasm lines and breeding populations in the greenhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号