首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 223 毫秒
1.
为了研究黑土区施加生物炭的施用模式,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期3年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm~2)、C25(25 t/hm~2)、C50(50 t/hm~2)、C75(75 t/hm~2)、C100(100 t/hm~2)5个处理,2016、2017分别连续施加等量的生物炭。分析了黑土区连续3年施加生物炭后土壤理化性质、水土保持效应、节水增产效应等指标的变化规律,并建立改进的TOPSIS模型对生物炭的施用模式进行综合评价。结果表明:土壤有机碳密度、p H值与施炭量均呈线性递增趋势,土壤容重与施炭量呈线性递减趋势,且使用年限越久,作用越明显;施用1年时田间持水量与施炭量呈线性递增趋势,C100处理田间持水量最大,为35.48%,连续施用2年、3年时田间持水量与施炭量呈先增后减的二次抛物线变化,均在C50处理达到最大,分别为36.20%、36.24%;3年的年径流量和年土壤侵蚀量与施炭量均呈先减后增的二次抛物线变化,连续施加2年50 t/hm~2的生物炭减流效果和抗土壤侵蚀效果最优;连续3年施加生物炭均提高了大豆产量和水分利用效率,各年份产量和水分利用效率提高最大的分别为C75(27.16%、25.3%)、C50(33.3%、27.6%)、C50(24.1%、19.8%);在不同施炭量和施用年限的条件下,改进的TOPSIS模型能客观、清晰地描述土地生产力变化过程,并总结出建议的生物炭施用模式,即连续施加2年50 t/hm~2的生物炭对土地生产能力的提升最优,其次是施加1年75 t/hm~2的生物炭。研究结果可为实际生产提供理论依据。~2  相似文献   

2.
黑土区坡耕地连年施加生物炭的最佳模式研究   总被引:1,自引:0,他引:1  
为探讨东北黑土区连续多年施加生物炭的应用效果及其综合影响,寻找最佳的施碳量以及施加年限,于2015年在位于黑龙江省北安市的红星农场开展了生物炭最佳施用模式的研究。按照生物炭的施加量设置Y0(0 t/hm~2)、Y25(25 t/hm~2)、Y50(50 t/hm~2)、Y75(75 t/hm~2)、Y100(100 t/hm~2) 5个处理,每个处理重复两次,连续施加4年(2015—2018年),对土壤理化性质、水土保持效应以及节水增产效应等指标进行观测,建立基于优化遗传算法的投影模型,对指标进行了综合评价。结果表明:随着生物炭施加量、施加年限的增加,土壤容重呈现降低趋势,土壤p H值、土壤碳氮比则呈现上升趋势,且生物炭的累积施加量越大,这种趋势就越明显。Y25、Y50处理下的田间持水率随着施加年限的增加呈现逐年升高趋势,Y75处理则呈现出先升高、后降低的趋势,Y100处理则呈现逐年下降趋势,其中2018年Y25处理下的田间持水率为37. 33%。径流系数与土壤侵蚀量均与施炭量呈现先降低、后升高的趋势,连续施加两年50 t/hm~2生物炭的径流减少效果与抗侵蚀效果最优。连续施加4年25 t/hm2生物炭的玉米产量在所有处理中最高,为10 350 kg/hm~2。水分利用效率(WUE)的最优处理为2015年的Y50,为32. 85 kg/(mm·hm~2)。通过综合评价模型得出,连续3年施加32. 63 t/hm~2生物炭为东北黑土区最佳生物炭施用模式。该研究结果可为生物炭对黑土区土壤改良提供理论依据。  相似文献   

3.
黑土区坡耕地施加生物炭对土壤结构与大豆产量的影响   总被引:2,自引:0,他引:2  
为探明黑土区施加生物炭对土壤结构、土壤肥力和作物产量及其可持续性的影响,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期4年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)、C100(100 t/hm2) 5个处理,2016—2018年分别连续施加等量的生物炭。结果表明:连续4年随施炭量的增加土壤容重呈逐渐降低趋势、孔隙度呈逐渐升高趋势,且施用年限越长,作用越明显;连续4年广义土壤结构系数(GSSI)随施炭量的增加呈先增大后减小的变化趋势,土壤三相结构距离指数(STPSD)呈先减小后增大的变化趋势,均在第2年C50处理取得最大(小)值(98. 31、4. 87),同时土壤三相比最接近理想状态;连续4年大于0. 25 mm的土壤团聚体含量(R0. 25)、平均质量直径(MWD)、几何平均直径(GMD)随施炭量的增加均呈先增大后减小的变化趋势,均在第2年C50处理取得最大值;连续4年土壤速效钾、有机质含量随施炭量的增加逐渐升高,土壤碱解氮和有效磷含量先增加后减小,各年份土壤碱解氮和有效磷含量提高最多的分别为C50(46. 1%、76. 6%)、C50(46. 4%、85. 4%)、C25 (33%、100. 7%)、C25 (23. 9%、103. 2%);连续4年施加生物炭均可提高大豆产量、单株荚数、单株粒数和百粒质量,在第2年C50处理增产最大,增产率为33. 3%,同时产量可持续性最强,产量可持续性特征指数(SYI)为0. 871。  相似文献   

4.
黑土坡耕地连续施加生物炭的土壤改良和节水增产效应   总被引:3,自引:0,他引:3  
东北黑土区土壤肥沃、性状优良、适宜作物生长,然而大面积坡耕地的水土流失问题严重威胁着区域生态环境和国家粮食安全。为探明施加生物炭对该区域坡耕地的节水增产效应,以及最优施加量与施加年限,基于田间径流小区进行为期两年的观测试验。2015年,试验根据生物炭施加量设置为C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2)5个处理;2016年,各处理分别连续施加等量生物炭。试验结果表明:施加两年生物炭均降低了土壤容重、提高了孔隙度和有机碳密度,且随施加量的增加效果越显著;2015年实测田间持水量随生物炭施加量呈上升的趋势,2016年则呈先升后降的趋势,上升至C50处理达到最佳;2016年C50处理土壤三相比较合理,广义土壤结构指数(GSSI)高于其他处理;连续两年施加生物炭均减少了3°坡耕地的年径流量,各年份年径流系数降低最多的分别为C75(15.44%)和C50(17.27%)处理。适量生物炭也可增加单次降雨后雨水蓄积量和其随时间下降的速率和幅度;2015年和2016年大豆产量最高的处理分别是C75和C50,增产率分别为27.16%和28.17%。比较2015年和2016年试验结果,连续两年施加50 t/hm2生物炭时,大豆水分利用效率较对照处理增幅最高,为27.67%,节水增产效果最佳。  相似文献   

5.
为探究黑土区坡耕地不同生物炭应用模式(不同生物炭施用量和施用年限)的综合效益,以东北黑土区坡度为3°耕地径流小区为研究对象,于2015—2018年,设置不加生物炭的常规处理(C0)和生物炭施加量分别为25 t/hm2(C25)、50 t/hm2(C50)、75 t/hm2(C75)、100 t/hm2(C100)共5个处理,分析不同施炭量以及施炭年限的综合效益,结果表明:在生态效益方面,生物炭能够有效改善土壤结构、增强土壤肥力、提高土壤蓄水保土能力,在施炭量为50 t/hm2时,连续施用2年,土壤蓄水保土效果最佳;连续施用3年,土壤结构最为理想;施炭量为100 t/hm2时,连续施用4年,土壤肥力最佳。在经济效益方面,生物炭能够有效提高作物节水增产性能及其经济产值,施用1年、施炭量为75 t/hm2时,水分利用效率最大;连续施用2年、施炭量为25 t/hm2时,生物炭边际生产力最大,施炭量每增加1 t,产量增加1...  相似文献   

6.
为探究黑土区坡耕地不同生物炭施用模式的生态效益、经济效益以及二者的耦合协调度,以东北黑土区3°坡耕地径流小区为研究对象,设置不施加生物炭的常规处理(C0)和生物炭施加量分别为25t/hm2 (C25)、50t/hm2 (C50)、75t/hm2 (C75)、100t/hm2 (C100)5个处理,于2015—2018年开展试验研究,采用熵值法和耦合协调度模型测算不同生物炭施用模式的生态效益、经济效益以及二者的耦合协调度。结果表明:生物炭能够有效改善土壤结构、增强土壤肥力、提高土壤蓄水保土能力,连续施用2年、施炭量为50t/hm2时,生物炭的生态效益最佳。同时,生物炭能够有效提升作物节水增产性能,提高生物炭的收益和利用效率,施炭1年、施炭量为75t/hm2时,生物炭的经济效益最佳。耦合协调度测算结果表明,施用生物炭能有效改善生态效益与经济效益的阻抑程度,黑土区最佳的生物炭施用模式为连续施用3年、施炭量为50t/hm2,此时生物炭的生态效益指数与经济效益指数均较高且二者的协调度达到最佳,分别为0.6849、0.6345、0.5741。研究结果可为黑土资源的高效利用以及黑土区实际生产提供理论依据。  相似文献   

7.
连年施加生物炭对黑土区土壤改良与玉米产量的影响   总被引:1,自引:0,他引:1  
为研究连年施加生物炭对黑土区坡耕地的土壤结构、持水性能、玉米产量及可持续性的影响,从2015年开始,在黑土区3°坡耕地径流小区内,将玉米作为试验作物连续进行4年生物炭效应试验。共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2) 5种生物炭的施用量处理。结果表明:4年中土壤容重随生物炭的增加有减小的倾向,孔隙度有逐渐增加的倾向;适量生物炭可有效降低土壤固相比例,提高气相和液相比例,除2015年外,连续3年广义土壤结构指数(GSSI)随施炭量的增加先增大后减小,土壤三相结构距离指数(STPSD)随施炭量的增加先减小后增大,均在第3年C50处理达到最优(99.96、0.63),同时土壤三相比偏离值R最小(1.03),三相比最接近理想状态;连续4年大于0.25 mm团聚体含量R0.25、平均质量直径(MWD)和几何平均直径(GMD)随着生物炭的增加有先增加后减小的倾向;连...  相似文献   

8.
生物炭与化肥互作对土壤含水率与番茄产量的影响   总被引:7,自引:0,他引:7  
为探明生物炭与化肥互作对番茄土壤含水率与及产量的影响,试验设置5个生物炭水平0t/hm~2(B1)、10t/hm~2(B2)、20t/hm~2(B3)、40t/hm~2(B4)、60t/hm~2(B5)和2个化肥水平中肥(F1)和低肥(F2)。结果表明:0~20cm土层土壤含水率均随生物炭施用量增加呈现增大趋势。在番茄生长阶段,0~20cm低炭处理土壤含水率与对照相比增幅在10%以内,高炭处理增幅达40%。20~40cm土壤含水率与0~20cm变化规律恰好相反,与对照相比施炭处理土壤含水率均呈下降趋势。其中B4F1和B4F2含水率最小,为对照的70%。施加生物炭后土壤含水率变化幅度(Ka)和变异程度(Cv)减弱。同一深度土壤随着施炭量增加Ka和Cv均减小。与对照相比较高施炭处理(B4F1、B4F2、B5F1、B5F2)变异系数Cv相对较小。随着番茄生长土壤水分在垂直剖面影响表现为较高施炭量(B4F1、B4F2、B5F1、B5F2)能有效保持耕作层有效水分,与对照相比差异显著。随着施炭量增加番茄产量增幅出现先升高后降低趋势,且均高于对照。B4F1、B4F2、B5F1、B5F2分别增幅46.34%、58.61%、49.63%和39.18%,其中B4F2产量最高。同一施炭不同施肥处理间差异不显著。研究成果可为内蒙古半干旱地区农业生产提供依据。  相似文献   

9.
采用径流小区试验,选取不施用生物炭(CK)、生物炭施用量25 t/hm~2(T1)、50 t/hm~2(T2)、75 t/hm~2(T3)和100 t/hm~2(T4)5个处理,分析生物炭施用量对土壤理化性质、持水能力、水土保持效应、节水增产效应等能够反映土地生产能力的指标的影响,建立基于Gumbel Copula函数的不同生物炭施用量下黑土区坡耕地生产能力评价模型,结果表明:随着生物炭施用量的增加,土壤容重降低,孔隙度增大,养分分布更为均匀,土壤有效P、速效K、pH值和有机质含量呈线性递增趋势,土壤铵态N含量呈指数增长;土壤饱和含水率、田间持水量、凋萎系数和有效水最大含量均与生物炭施用量正相关,且高施炭量处理对于土壤水分的影响程度明显高于低施炭量处理;随着生物炭施用量的增加,年径流深和土壤侵蚀量均呈线性递减,减流率和减沙率均呈对数函数递增,而大豆产量和水分利用效率则先增后减,呈抛物线型变化。基于Gumbel Copula函数计算的土地生产能力评价结果较为理想,计算的土地生产能力指数随生物炭施用量的增加呈"S型"曲线递增,土壤理化性质、持水能力和水土保持效应指数均呈线性递增,而节水增产效应指数则呈抛物线型先增后减。  相似文献   

10.
生物炭对坡耕地土壤肥力和大豆产量的影响与预测   总被引:2,自引:0,他引:2  
为探究施用生物炭对东北黑土区不同坡度坡耕地土壤肥力和大豆产量影响的持续性,于2016—2018年在3种典型坡度的坡耕地上开展生物炭持续效应试验,分析施加生物炭对土壤团聚体及其稳定性、土壤养分指标、大豆产量及其构成要素影响的持续性,并采用改进的灰色理论预测模型对大豆产量进行预测,进而确定生物炭一次性施入后的增产作用年限。结果表明:施用生物炭使土壤团聚体直径d 0. 25 mm的土壤团聚体含量明显减少、d 0. 25 mm的土壤大团聚体含量显著增加;施用生物炭使大于0. 25 mm的水稳性团聚体含量比例R0. 25、平均质量直径(MWD)和几何平均直径(GMD)增加,使土壤不稳定团LT粒指数E_(LT)减小,即土壤团聚体稳定性提高,该稳定性增强幅度随坡度增大、施炭后时间延长而减小;施加生物炭使土壤pH值、铵态氮、速效钾、有机质含量这4个指标显著增加(P 0. 05),最大增长率分别为17. 88%、27. 23%、20. 31%、17. 51%,施炭后土壤养分等级有所上升,土壤肥力增强,增强效果与施炭后年限呈负相关,但生物炭对有效磷含量并无明显影响;施加生物炭后,大豆单株荚数、单株粒数、百粒质量、产量均显著提高(P 0. 05),增产率高达26. 29%,并且坡度越大、施炭年限越长,各指标增加幅度越小,各因素对大豆产量影响由大到小依次为施炭与否、坡度、施炭后年限;改进的多变量灰色预测模型精度较高,预测单次施用生物炭后大豆增产有效时间为5~6年。研究结果可为东北黑土区生物炭应用提供理论依据。  相似文献   

11.
生物炭对草甸黑土物理性质及雨后水分动态变化的影响   总被引:3,自引:0,他引:3  
为探明生物炭对草甸黑土物理性质及雨后水分动态变化的影响,在大豆全生育期生长条件下,研究了东北黑土区草甸黑土5种生物炭添加量(0、25、50、75、100 t/hm2)下土壤物理性质(包括:土壤水分特征曲线、土壤含水率常数、土壤水分扩散率)和单次降雨土壤含水率变化特征,分析了生物炭对黑土区草甸黑土耕层土壤持水能力及雨后水分动态变化的影响。结果表明,施用生物炭能降低土壤残余含水率,增加土壤饱和含水率和田间持水量,其中对残余含水率的影响最显著,100 t/hm~2生物炭处理使残余含水率最多降低27.6%;施用生物炭能明显降低土壤水分扩散率,随生物炭添加量的增加依次比对照组减少34.8%、37.5%、71.4%和58.9%;在单次降雨过程中,施用生物炭能减小土壤含水率的变化幅度,使土壤含水率在降雨之后更快地由迅速下降期进入缓慢下降期,并能明显提高缓慢下降期对应的土壤含水率;施用生物炭可以提高大豆产量,以75 t/hm~2生物炭处理最高。研究结果可为黑土区农业水土资源高效利用与保护提供理论依据。  相似文献   

12.
黑土区坡耕地施加生物炭对水土流失的影响   总被引:7,自引:0,他引:7  
为了探索生物炭对黑土区坡耕地的水土保持作用效果,于2015年在东北黑土区典型黑土带上的黑龙江省北安市红星农场3°坡耕地上的径流小区内,开展了不同生物炭施用量(0、25、50、75、100 t/hm~2)对土壤结构、持水性能、径流泥沙控制等影响的试验研究。结果表明:生物炭可有效改善黑土区土壤结构,随着生物炭添加量的增加,土壤容重随之减小,而土壤孔隙度则会明显提高;土壤饱和含水率、田间持水量和土壤储水能力均随生物炭施用量的增加而增加;适当施加生物炭对黑土区坡耕地降雨径流及水土流失具有较好的控制作用,75 t/hm~2处理具有最好的径流泥沙控制效果,其中径流控制效果好于泥沙控制;施加生物炭还可以不同程度地减少黑土区坡耕地土壤养分流失,并可以改善养分的空间分布,4种生物炭用量处理的养分含量不仅在数量上高于对照处理,而且在均匀程度上有较大的改善,减缓了坡度对土壤养分造成的坡上与坡下的差异。研究结果为东北黑土区秸秆资源的高效、绿色、循环利用提供了一条新的途径,可为黑土区坡耕地水土流失防治提供理论依据和技术支撑,对该区农业可持续发展具有重要意义。  相似文献   

13.
咸淡轮灌和生物炭对滨海盐渍土水盐运移特征的影响   总被引:1,自引:0,他引:1  
为利用滨海地区微咸水改良盐渍土,进行了不同咸淡水轮灌(淡淡、淡咸、咸淡、咸咸)和施用生物炭(0、15、30 t/hm^2)的室内入渗试验,探讨了咸淡轮灌和生物炭施用下滨海盐渍土水盐运移过程。结果表明:滨海盐渍土水分运动主要受初始入渗水质的影响,先咸后淡的轮灌方式更有利于土壤水分入渗,入渗速率增加了8.2%~46.9%,并小幅提高了土壤含水率;生物炭可促进咸淡轮灌下的水分运移,增加了相同时间内的湿润锋距离、累计入渗量、入渗速率及入渗后的土壤含水率,添加量为15 t/hm^2时入渗增益最佳,入渗速率提高了3.5%~22.0%;淡咸和咸淡处理的土壤含盐量均低于咸咸处理,脱盐率和脱盐区深度系数更高,咸淡处理可增加脱盐率,而淡咸处理可提高脱盐区深度系数;生物炭有利于咸淡轮灌下的土壤盐分淋洗,脱盐率和脱盐区深度系数分别提高了9.1%~15.0%和1.1%~7.5%,并增加了Ca^2+和Mg^2+含量,促进Na+淋洗,进而降低了微咸水利用风险,但在30 t/hm^2时盐分淋洗效果有所减弱。研究表明,添加15 t/hm^2生物炭配合微咸水-淡水轮灌能够改善滨海盐渍土的入渗特性、持水能力和盐分分布,可为该区盐渍土和微咸水开发利用提供参考。  相似文献   

14.
生物炭对黑土区坡耕地水土保持及大豆增产效应研究   总被引:1,自引:0,他引:1  
针对东北黑土区坡耕地水土流失严重,农业用水量不足的问题,研究生物炭对该地区的水土保持及作物增产效应,并寻求最优生物炭施用量。2015年,以黑龙江农垦北安分局红星农场3°坡耕地为研究对象,研究不同生物炭施用量对大豆生育期土壤水分动态、表径流、土壤侵蚀、产量和作物水分利用效率的影响。结果表明,生物炭对坡耕地水土保持及大豆节水增产有较好的效果,其中对于水土保持方面,生物炭施用量越高,水土保持效果越好;而对于大豆产量与水分利用效率方面,则生物炭施用量为75 t/hm~2的处理效果最为明显。  相似文献   

15.
水炭运筹对寒地黑土区稻田土壤肥料氮素残留的影响   总被引:1,自引:0,他引:1  
为揭示水炭运筹下肥料氮素在稻田土壤中的残留情况,采用田间小区试验与微区试验相结合的方法,应用15N示踪技术,以传统淹水灌溉作为对比,研究水分管理模式和生物炭施用量二因素全面试验构成的不同水炭运筹模式下水稻收获后基肥、蘖肥、穗肥和肥料整体在稻田土壤中的残留情况,以及各阶段施用的肥料氮素残留在不同深度土层的分布规律。试验结果表明,稻作浅湿干灌溉模式不同生物炭施用水平下施用的氮肥在稻田土壤中的总残留率为28.16%~34.42%,其中基肥、蘖肥和穗肥氮素的残留率分别为27.53%~41.35%、34.32%~43.50%和11.58%~25.67%。当生物炭施加量在0~12.5 t/hm^2时,水稻收获后两种灌溉模式下基肥和蘖肥氮素在土壤中的残留量均随着生物炭施入量的增加而增大,而穗肥氮素在土壤中的残留量随生物炭施入量的增加而减小,相同生物炭施用水平下稻作浅湿干灌溉模式各阶段肥料氮素在土壤中的残留率显著高于传统淹水灌溉(P<0.05),且两种灌溉模式肥料氮素在相同土层深度中的残留量差异显著(P<0.05),不同生物炭施用水平下稻作浅湿干灌溉模式各阶段施用的氮肥在稻田0~20 cm土层中的残留量均高于传统淹水灌溉,而在40~60 cm土层的残留量均低于传统淹水灌溉;施加25 t/hm^2生物炭时,对稻作浅湿干灌溉模式的基肥、蘖肥和穗肥氮素在稻田土壤中的残留产生负效应。合理的水炭运筹模式能够增加耕层土壤(0~20 cm)肥料氮素残留量,减少肥料氮素损失,抑制肥料氮素向深层土壤运移,降低残留在土壤中的肥料氮素对稻田生态环境造成污染的风险。  相似文献   

16.
为揭示寒地黑土稻田痕量温室气体的排放规律,以及稻田痕量温室气体排放与水分利用效率(WUE)及氮肥吸收利用率(NUE)间的关系,设置干湿交替灌溉和传统淹水灌溉2种水分管理模式,以及4个生物质炭施用量水平(0、2.5、12.5、25t/hm2),以传统淹水灌溉作为对比,应用15N示踪技术,研究水炭运筹下寒地黑土稻田甲烷和氧化亚氮排放的季节变化规律,明确稻作水氮利用与甲烷和氧化亚氮排放的关系,并计算温室气体的全球增温潜势(GWP)和排放强度(GHGI)。结果表明:生物质炭施用量相同时,传统淹水灌溉模式的甲烷排放通量显著高于干湿交替灌溉模式(P<0.05),而氧化亚氮排放通量均低于干湿交替灌溉模式。干湿交替灌溉模式的甲烷总排放量显著低于传统淹水灌溉模式(P<0.05),而氧化亚氮总排放量高于传统淹水灌溉模式,施加生物质炭对稻田甲烷、氧化亚氮减排效果显著;干湿交替灌溉模式下稻田痕量温室气体的GWP、GHGI显著低于传统淹水灌溉模式(P<0.05),施加生物质炭可以降低稻田痕量温室气体的GWP、GHGI。干湿交替灌溉模式的WUE显著高于传统淹水灌溉模式(P<0.05),适量施入生物质炭可以增加WUE和氮肥整体、基肥、蘖肥、穗肥的NUE。两种灌溉模式稻田痕量温室气体的GWP和GHGI与WUE均呈显著负相关(P<0.05);两种灌溉模式稻田痕量温室气体的GWP、GHGI与氮肥整体、基肥、蘖肥、穗肥的NUE均呈显著或极显著负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号