首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to compare populations of antral and pre‐antral ovarian follicles in Bos indicus and Bos indicustaurus cows with high and low antral follicle counts. Nelore (Bos indicus, n = 20) and Nelore X Angus (1/2 Bos indicus‐taurus, n = 20) cows were subjected to follicular aspiration without regard to the stage of their oestrous cycle (day of aspiration = D0) to remove all follicles ≥3 mm and induce growth of a new follicular wave. Ovaries were examined by ultrasonography on D4, D19, D34, D49 and D64, and antral follicles ≥3 mm were counted. Thereafter, cows were assigned to one of two groups: high or low antral follicular count (AFC, ≥30 and ≤15 antral follicles, respectively). After D64, ovaries were collected after slaughter and processed for histological evaluation. There was high repeatability in the numbers of antral follicles for all groups (range 0.77–0.96). The mean (±SD) numbers of antral follicles were 35 ± 9 (Bos indicus) and 38 ± 6 (Bos indicustaurus) for the high AFC group and 10 ± 3 (Bos indicus) and 12 ± 2 (Bos indicus‐taurus) follicles for the low AFC. The mean number of preantral follicles in the ovaries of Bos indicustaurus cows with high AFC (116 226 ± 83 156 follicles) was greater (p < 0.05) than that of Bos indicus cows (63 032 ± 58 705 follicles) with high AFC. However, there was no significant correlation between numbers of antral and preantral follicles.  相似文献   

2.
The objectives of the study were to evaluate haemodynamic changes and their relationships among ipsilateral (IPS) and contralateral (CONT) uterine arteries (UA) during different stages of pregnancy in Bos indicus cows. Multiparous pregnant cows (n = 40) having a gestation length 30.47 ± 0.54 (mean ± SD) days were randomly enrolled and subjected to Doppler ultrasonography sequentially at 1st, 2nd, 4th, 6th and 8th months of gestation. Blood flow indices including diameter of UA (mm), blood flow volume (BFVo, ml/min), blood flow velocity (BFVe, cm/s), time-averaged maximum velocity (TAMV, cm/s), pulsatility index (PI) and resistance index (RI) were recorded. Data were analysed with mixed models using the PROC MIXED procedures, and Pearson correlation coefficients were calculated using the PROC CORR statement in SAS. The final statistical models included the fixed effects of side of UA, gestation month and the interaction between side of UA and gestation month. Results revealed that the mean diameter of the UA (12.13 ± 0.22 vs. 10.09 ± 0.22), BFVo (1236.33 ± 0.55 vs. 770.41 ± 0.55), BFVe (17.18 ± 0.42 vs. 15.58 ± 0.42) and TAMV (17.11 ± 0.44 vs. 15.77 ± 0.44) was higher (p < .05) in IPS as compared to CONT side of the UA in cows. However, PI and RI did not differ between IPS and CON arteries of uterus in cows. A very high and positive correlation (r = .89; p < .05) existed between the diameter of UA and BFVo starting from 1st to 8th months of gestation in IPS as well as CONT sides of UA. Moreover, TAMV was highly and positively correlated (r = .91; p < .05) with BFVe throughout the gestation. In conclusion, these haemodynamic changes in the UA could be used as a valuable validity tool to differentiate the compromised pregnancy in Bos indicus cows.  相似文献   

3.
Fifty-two multiparous Brahman type cows with reproductive tract scoring (RTS) ≥4 at 45 days post-partum were randomly assigned to two groups of 26 cows each separated into an ad libitum suckling group (C) and treatment group (T). Calves in the T group were separated for 12 h during the night from 45 days post-partum to the onset of the breeding season. Body condition score (BCS) and body weight (BW) were recorded 45 days post-partum, at the start of the breeding season, and at pregnancy diagnosis. Calves were weighed at calving and weaning. Weaning weights were corrected to 205 days. BW and BCS at the onset of the breeding season were similar (p > 0.05) between the experimental groups. Calving to breeding intervals were 93 ± 18 d and 99 ± 22 d for T and C groups, respectively. Calving to conception intervals differed significantly between the groups (111 ± 10 d for T and 133 ± 19 d for C) and a similar result was obtained for the breeding to conception intervals (18 ± 15 d for T and 31 ± 19 d for C). Conception rates were 80% for the T group and 59% for the C group, which correlated better with BW than BCS at the onset of the breeding season. Weaning weights differed (p < 0.05) between C and T groups. From 45 days post-partum to the onset of the breeding season, cows in the T group experienced a positive energy balance (3%) while those in the C group had a negative energy balance (-0.1%). It was concluded that 12 h calf separation at night increases the conception rates and improves the calf weaning weights of Bos indicus beef cattle under extensive production systems in sub-tropical conditions.  相似文献   

4.
Good‐quality semen is a prerequisite for successful and profitable artificial insemination (AI) of modern dairy cattle. Fertility of the bulls is evaluated with andrological examinations and semen analyses, such as morphology. However, little attention has been paid to the inheritance of bull fertility. In this study, we correlated sperm morphology, birth year and station of 695 AI bulls with calving rate (CR). Sperm morphology was clearly associated with CR underlining the usefulness of morphological examination in the assessment of fertility. The correlation between the proportion of normal spermatozoa and CR was significant (p < 0.001). No significant differences were detected between stations or birth years. We also compared the CR of 695 AI bulls with the CR of their 27 sires to study the inheritance of fertility. Sire's CR did not correlate with the CR of the sons (p = 0.218). This result indicates that at least when sires of acceptable CR are used to produce sons for use in AI the inheritance of CR is not significantly correlated.  相似文献   

5.
In Bos taurus cattle, antimullerian hormone (AMH) has been demonstrated to have a high degree of correlation with ovarian antral follicle count and the number of healthy follicles and oocytes. To document the correlation between the plasma concentration of AMH and follicular number in Bos indicus and Bos taurus heifers, Nelore (Bos indicus, n = 16) and Holstein heifers (Bos taurus, n = 16) had their ovarian follicular waves synchronized. After synchronization, ovarian antral follicular population (AFP) was evaluated three times at 60‐day (d) intervals (T‐120 d, 120 days before plasma AMH determination; T‐60 d, 60 days before; and T0, at the time of plasma AMH determination). The plasma AMH concentration was positively correlated with the number of ovarian follicles on the day of the follicular wave emergence in Bos indicus (Nelore) and Bos taurus (Holstein) heifers at each evaluation time (p < 0.05). The AFP was higher in Bos indicus (Nelore) than in Bos taurus (Holstein) heifers (p < 0.05). Similarly, the AMH concentration was higher in Bos indicus (Nelore) than in Bos taurus (Holstein) heifers (p < 0.0001). When heifers were classified as to present high or low AFP according to the mean of the AFP within each genetic group, high‐AFP heifers presented a greater (p < 0.0001) AMH concentration than low‐AFP heifers, regardless of the genetic group. In conclusion, the AFP is positively correlated with plasma AMH concentration in both Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Furthermore, Bos indicus (Nelore) heifers presented both greater plasma AMH concentrations and AFP than Bos taurus (Holstein) heifers.  相似文献   

6.

The objective of this work was to evaluate the effect of two synchronization methods with prostaglandins F2α (PGF2α) on heifers and multiparous cows. Fourty-three Bos indicus cows (white and Red Fulani) were divided into four groups in a two-by-two factorial structure, parity x method of synchronization. The synchronization methods consisted of a two-dose regime which involved injection of animals on day 0 with PGF2α (Lutalyse) at 5 ml per cow intramuscularly. On day 11, the injection was repeated at the same dosage. On day 14 (72 h after the second injection), a fixed-time artificial insemination (AI) was done. On day 15 (96 h after the second injection), a second insemination was done. The one-and-a-half-dose regime consisted of an injection similar to the first treatment mentioned above on day 0. Thereafter, cows were observed for heat, and anyone showing heat was inseminated. A second dose was given on day 11 to all animals not having shown any heat. A fixed-time AI was done on days 14 and 15. Blood samples were collected on the day 0 of insemination for each cow while day 11 and day 21 after insemination. Progesterone was analysed by means of standard ELISA progesterone kits to determine its profiles after insemination. Results show no evidence of the effect of treatments on conception rates (P?>?0.05). Similarly, heifers and multiparous cows had similar conception rates (P?>?0.05). Between 3 weeks and 3 months of pregnancy, there was a loss of embryos of 28 % in heifers and 20 % in multiparous cows, but the difference between the two groups was not significant (P?>?0.05). It recommended that farmers do not synchronize animals with poor body condition score (BCS). They should also monitor weight gains of heifers, remove them from the herd when they have been mixed with young growing bulls and put them in a breeding herd. The two-dose regime is better to be used in areas where the inseminator cannot easily be available.

  相似文献   

7.
This field study investigated whether the administration of a single dose of gonadotropin‐releasing hormone (GnRH) to dairy cows without a corpus luteum (CL) 4 weeks after calving can improve reproductive performance. Holstein dairy cows underwent ultrasonography to assess the presence of ovarian structures at 29.2 ± 5.2 days post‐partum, and cows were divided into two main groups based on the presence (CL group, n = 230) or absence (non‐CL group, n = 460) of a CL. The non‐CL group was further randomly divided into two subgroups based on the administration of GnRH (non‐CL GnRH group, n = 230) or no GnRH (non‐CL control group, n = 230). Subsets of cows from non‐CL control (n = 166) and non‐CL GnRH (n = 175) groups received a second ultrasonography at 44.5 ± 5.4 days post‐partum to assess CL formation. The percentage of cows with CL at the second ultrasonography was greater in the non‐CL GnRH group (70.9%) than in the non‐CL control group (53.0%, p = 0.0006). The hazard of the first post‐partum insemination by 150 days in milk (DIM) was higher in the CL group than in the non‐CL control group (hazard ratio [HR]: 1.36, p = 0.001). The probability of a pregnancy to the first insemination was higher in non‐CL GnRH (odds ratio [OR]: 1.50, p = 0.04) and CL groups (OR: 1.55, p = 0.03) compared to the non‐CL control group. Furthermore, the hazard of pregnancy by 210 DIM was higher in non‐CL GnRH (HR: 1.30, p = 0.01) and CL (HR: 1.51, p = 0.0001) groups than in the non‐CL control group. In conclusion, administration of GnRH to dairy cows without a CL 4 weeks after calving was associated with an increase in ovulation and improved reproductive performance.  相似文献   

8.
The aim of this study was to compare pregnancy per artificial insemination (P/AI) after timed AI with sex‐sorted sperm (SS) or conventional semen (CS) in lactating dairy cows. Cyclic cows (n = 302) were synchronized by Ovsynch and randomly assigned into two groups at the time of AI. Cows with a follicle size between 12 and 18 mm and clear vaginal discharge at the time of AI were inseminated with either frozen‐thawed SS (n = 148) or CS (n = 154) of the same bull. A shallow uterine insemination was performed into the uterine horn ipsilateral to the side of probable impending ovulation. Pregnancy per AI on Day 31 tended (p = 0.09) to be less for SS (31.8%) than CS (40.9%). Similarly, P/AI on Day 62 was less (p = 0.01) for cows inseminated with SS (25.7%) compared with CS (39.0%). The increased difference in fertility between treatments from Days 31 to 62 was caused by the greater (p = 0.02) pregnancy loss for cows receiving SS (19.2%) than CS (4.8%). Cow parity (p = 0.02) and season (p < 0.01) when AI was performed were additional factors affecting fertility. Primiparous cows had greater P/AI than multiparous cows both on Day 31 (41.7% vs 25.0% in SS and 53.0% vs 31.8% in CS groups) and on Day 62 (33.3% vs 20.5% in SS and 48.5% vs 31.8% in CS groups). During the hot season of the year, P/AI on Day 31 was reduced (p = 0.01) in the SS group (19.6%) when compared with the rates during the cool season (38.1%). In conclusion, sex‐sorted sperm produced lower fertility results compared to conventional semen even after using some selection criteria to select most fertile cows.  相似文献   

9.
The objective of this study was to determine the association of metabolic parameters and cow associated factors with the conception rate at first insemination (FCR) in Thai dairy cows. The investigation was performed with 529 lactations from 32 smallholder dairy farms. At 3–6 weeks after parturition, blood samples and ruminal fluid were collected. Body condition scores (BCS) of cows were scored 1 week before expected calving date and at blood sampling date. Ruminal pH was measured at 2–4 h after morning feeding in ruminal fluid collected by ruminocentesis. Serum beta-hydroxybutyrate and serum urea nitrogen were measured by kinetic enzyme method. Cows with first insemination (AI) between 41 and 114 days postpartum were identified after pregnancy diagnosis for FCR. Breed, parity, interval from calving to first AI, BCS before calving, BCS after calving, loss in BCS after calving, SBHB, SUN, ruminal pH, and postpartum problems were selected as independent variables for a model with FCR as a dependent variable. A multivariable logistic regression model was used with farm as a random effect. Overall FCR was 27.2 %. The FCR depended on interval from calving to first AI, BCS before calving, and ruminal pH. The FCR between 69 and 91 days postpartum was significantly highest (45 %). Before calving, a cow with high BCS (≥3.5) had significantly greater FCR than a cow with low BCS (≤3.25; P?<?0.01). An increased ruminal pH raised significantly FCR (OR?=?2.53; P?=?0.03).  相似文献   

10.
Profitability of a beef operation is determined by the proportion of cows attaining pregnancy early in the breeding season and those that are pregnant at the end of breeding season. Many factors, including temperament, contribute to those reproductive parameters. The objective of this study was to evaluate effects of temperament on reproductive performance of beef cows. In Experiment 1, Angus and Angus‐cross beef cows (n = 1546) from eight locations were assigned a body condition score (BCS; 1 = emaciated; 9 = obese) and chute exit and gait score (1 = slow exit, walk; calm temperament; 2 = jump, trot or run; excitable temperament). Cows were grouped with bulls (1 : 25 to 1 : 30; with satisfactory breeding potential and free of venereal disease) for an 85‐day breeding season. Pregnancy status and stage of gestation were determined (transrectal palpation) 35 days after the end of the breeding season. Controlling for BCS (p < 0.01) and handling facility (p < 0.0001) and handling facility by temperament score interaction (p < 0.001), breeding season pregnancy rate was lower in excited versus calm cows [88.6% (798/901) vs 94.1% (607/645); p < 0.001]. Cows with an excitable temperament took 24 more days to become pregnant compared to calm cows (median days to pregnancy, 35 vs 59 days; p < 0.0001). In Experiment 2, Angus and Angus‐cross beef cows (n = 1407) from 8 locations were assigned scores for body condition and chute exit and gait (as described in Experiment 1) and assigned to bulls (breeding sound and free of venereal disease; 1 : 25 to 1 : 30) for 85 days. Pregnancy status was determined by transrectal palpation at 2 and 6 months after the onset of the breeding season. Controlling for BCS (p < 0.05), pregnancy loss was higher in excited versus calm cows [5.5% (36/651) vs 3.2% (20/623), p < 0.0001]. In conclusion, beef cows with an excitable temperament had significantly lower reproductive performance than calmer cows. The modified two‐point chute exit–gait scoring method was repeatable and identified cattle with an excitable temperament.  相似文献   

11.
This work aims to study the relationship between variations of the Temperature-Humidity Index (THI) and the parameters of reproduction especially the first conception rate (FCR) and to determine the threshold THI value where cows’ fertility rate dropped in 12 Holstein dairy herds raised in the arid climatic conditions of Tunisia. THI values were calculated over 22 years (1996–2018), and the mean monthly temperature and relative humidity data were obtained from the Meteorological Institute of Tunisia. A total of 20,396 individual records (Insemination and calving dates) were extracted from the Livestock and Pasturing Office (OEP, Tunisia) with regard to the highest THI before breeding, on the breeding day, and after breeding. Statistical analysis was performed using the GLM procedure of SAS software. Results point to the fact that a summer heat stress exists in southeast Tunisia and lasts for 4 months starting from June until September with THI values fluctuating between 73 ± 2.38 and 79 ± 3.01 exceeding, therefore, THI threshold of 72. Increased THI from ≤70 to ≥80 units was associated with drops in conception rate (CR) and fertility rate (FR) of 49% and 45% giving a correlation with the THI of (r = −.72, p < .05) and (r = −.74, p < .05), respectively. When cows were inseminated on extremely hot days (THI ≥ 80) preceded by cooler temperatures, pregnancy by service (P/AI) was 7% points higher than for other cows that were exposed to high temperatures before breeding. The average number of insemination was higher (p < .05) from THI ≤ 70 (2.01) compared to THI ≥ 80 (3.41). Cows calving during an absence of heat stress (THI ≤ 70) have the shortest average calving intervals (CI: 420 ± 15.1 days). Contrastly, calving in the condition of heat stress (THI ≥ 80) has the longest CI (487 ± 12.8 days). For each point increase in the THI value above 67, there is a decrease in the first conception rate by 1.39%. In this particular arid environment, high-yielding Holstein cows’ breeding success is strongly affected by heat stress that takes place just before or after breeding.  相似文献   

12.
This study compared artificial insemination pregnancy rate (AI‐PR) between 14‐day CIDR‐GnRH‐PGF2α‐GnRH and CIDR‐PGF2α‐GnRH synchronization protocol with two fixed AI times (56 or 72 hr after PGF2α). On day 0, heifers (= 1311) from nine locations assigned body condition score (BCS: 1, emaciated; 9, obese), reproductive tract score (RTS: 1, immature, acyclic; 5, mature, cyclic) and temperament score (0, calm; and 1, excited) and fitted with a controlled internal drug release (CIDR, 1.38 g of progesterone) insert for 14 days. Within herd, heifers were randomly assigned either to no‐GnRH group (= 635) or to GnRH group (= 676), and heifers in GnRH group received 100 μg of GnRH (gonadorelin hydrochloride, IM) on day 23. All heifers received 25 mg of PGF2α (dinoprost, IM) on day 30 and oestrous detection aids at the same time. Heifers were observed for oestrus thrice daily until AI. Within GnRH groups, heifers were randomly assigned to either AI‐56 or AI‐72 groups. Heifers in AI‐56 group (= 667) were inseminated at 56 hr (day 32 PM), and heifers in AI‐72 group (= 644) were inseminated at 72 hr (day 33 AM) after PGF2α administration. All heifers were given 100 μg of GnRH concurrently at the time AI. Controlling for BCS (< .05), RTS (< .05), oestrous expression (< .001), temperament (< .001) and GnRH treatment by time of insemination (< .001), the AI‐PR differed between GnRH treatment [GnRH (Yes – 60.9% (412/676) vs. No – 55.1% (350/635); < .05)] and insemination time [AI‐56 – 54.6% (364/667) vs. AI‐72 – 61.8% (398/644); (< .01)] groups. The GnRH treatment by AI time interaction influenced AI‐PR (GnRH56 – 61.0% (208/341); GnRH72 – 60.9% (204/335); No‐GnRH56 – 47.9% (156/326); No‐GnRH72 – 62.8% (194/309); < .001). In conclusion, 14‐day CIDR synchronization protocol for FTAI required inclusion of GnRH on day 23 if inseminations were to be performed at 56 hr after PGF2α in order to achieve greater AI‐PR.  相似文献   

13.
This short communication reports the impact of endometrial biopsies, uterine flushings and follicular fluid aspiration procedures at day 6 post artificial insemination (AI) on pregnancy rates. In Experiment 1, cows were timed AI (TAI) and assigned to the following treatment groups: control (n = 37), uterine flushing (n = 35) and endometrial biopsy (n = 38). On day 30 post AI, pregnancy rates were 40.5%, 33% and 28.5%, respectively (p > 0.1). Pregnancy rate on day 60 was lower (p < 0.004) in flushed cows than in the controls. In Experiment 2, oestrus was detected and cows were assigned to flushing (n = 32) or biopsy (n = 33) treatments 6 days after AI, which resulted in pregnancy rates of 31% and 36%, respectively (p > 0.1). In Experiment 3, cows were, 6 days after TAI, randomly assigned to the following treatments: control (n = 84) or aspiration of the largest follicle (n = 73). Pregnancy rates on day 30 post AI were 63.5% for the control group and 53% for the aspirated group (p > 0.1). In conclusion, uterine flushing and endometrial biopsy negatively affect pregnancy rates, but neither procedure can be considered to be incompatible with pregnancy maintenance. Follicular aspiration during pregnancy does not interact with pregnancy success. The amount and quality of samples obtained are compatible with the use of cellular and molecular analysis of uterine variables from cows that failed or succeeded on maintaining pregnancy.  相似文献   

14.
The effects of standard uterine body and hysteroscopic insemination on endometrial health were investigated. For this purpose, 33 mares were assigned to five different protocols: control (no insemination; n = 7), sham AI (sham uterine body insemination; n = 6), sham HysAI (sham hysteroscopic insemination; n = 7), standard AI (standard uterine body insemination, 300 × 106 progressively motile sperms (PMS); n = 7) and HysAI (hysteroscopic insemination, 100 × 106 PMS; n = 6). Sampling included uterine swabbing for microbiological examination, cytology for determination of polymorphonuclear neutrophils (PMNs) in the uterus, and endometrial biopsy collection for histology and characterization of endometrial immune cells on day 18 after ovulation (B1) as well as 8–10 hours (B2, day 20) and 72 hours after insemination (B3, day 23). Microbial contamination increased throughout the experiment in the sham insemination groups. Significant effects (P < .05) over time were detected for PMNs (cytology: sham HysAI, standard AI, and HysAI; histology: standard AI and HysAI), macrophages (immunohistochemistry: standard AI and HysAI) and T cells (immunohistochemistry: standard AI), showing an increase at B2 and a subsequent decrease toward baseline levels at B3. At B2, significant differences (P < .05) existed for PMNs (mean ± SEM) between control (1.3 ± 1.9%) and sham AI (2.2 ± 2.7%) versus standard AI (12.2 ± 4.7%) and for macrophages between control (4.1 ± 3.5%) and sham AI (2.5 ± 1.3%) versus standard AI (25.4 ± 15.8%). Thus, the cellular immune response of the endometrium depends on sperm deposition in the uterus and does not differ between hysteroscopic and standard uterine body insemination.  相似文献   

15.
The objective was to compare pregnancy per artificial insemination (P/AI) with conventional (CS) or sex‐sorted semen (SS) in dairy cows subjected to one of the three timed AI protocols. Cows (n = 356) were randomly assigned to synchronization with Ovsynch (OVS), Presynch–Ovsynch (PO) or Double‐Ovsynch (DO) and inseminated on Day 77 ± 3 postpartum with either frozen‐thawed SS (n = 182) or CS (n = 184) of the same bull. More cows were cyclic at the beginning of breeding Ovsynch increased (p < 0.01) with presynchronization and it was greater for DO than PO (OVS = 78.5%, PO = 85.1%, DO = 95.6%). Overall, P/AI for SS and CS increased with presynchronization (p < 0.05) on Days 31 (OVS = 35.5%, PO = 47.1%, DO = 48.3%) and 62 (OVS = 30.1%, PO = 43.8%, DO = 43.9%). Regardless of synchronization treatments, insemination with SS reduced P/AI (p < 0.02) on Days 31 (38.1% vs. 50.6%) and 62 (34.5% vs. 45.6%) compared with CS. No interaction was observed between synchronization treatment and type of semen for P/AI, although in cows receiving CS, P/AI was numerically greatest for PO (OVS = 42.0%, PO = 59.3%, DO = 49.0%), and in cows receiving SS, it was numerically greatest for those inseminated following DO (OVS = 27.9%, PO = 35.5%, DO = 47.6%). Thus, presynchronization improved P/AI in cows inseminated with sex‐sorted or conventional semen.  相似文献   

16.
AIMS: To determine some of the risk factors for cows not observed in oestrus within 35–42 days of an unsuccessful artificial insemination (AI; phantom cows), and the reproductive outcomes and effect of treatment of phantom cows.

MATERIALS AND METHODS: Over 2 years, in dairy herds from the Waikato (n=10) and Canterbury (n=4) regions of New Zealand, pregnancy diagnosis was carried out 35–42 days after AI on cows that had been inseminated in the first 3 weeks after the start of mating (PSM) but had not been seen returning to oestrus. Risk factors for phantom cows were analysed using a generalised linear mixed effect model.

In Year 1, all phantom cows were left untreated. In Year 2, phantom cows were categorised as having a corpus luteum (CL) (CL+ n=120), or having ovarian follicles ≥10 (n=101) or <10 (n=40)?mm in diameter. Cows with a CL were treated with cloprostenol or untreated and placed with bulls. Cows with no CL received intravaginal progesterone (P4) for 7 days, with injection of gonadotrophin-releasing hormone (GnRH) on Days 0 and 9, and cloprostenol on Day 7 followed by AI. Pregnancy diagnosis of all cows took place 100–120 days after PSM and interval to conception and final pregnancy rate determined.

RESULTS: Overall, of cows inseminated in the first 3 weeks after PSM that did not return to oestrus, 610/6,734 (9.1%) were phantom cows. From the final multivariable analysis, treatment for anoestrus, BCS ≤4.0 at mating, being 2 or >6 years of age, and pure-bred, and decreasing interval between calving and mating, until 98 days post calving, were associated with increased odds of being a phantom cow. Compared to all other groups of cows, phantom cows had a longer interval to conception (p<0.001) and a lower final pregnancy rate (p<0.001).

Treatment of CL+ cows or cows with follicles ≥10?mm did not affect reproductive outcomes (p>0.3). For cows with follicles <10?mm treatment decreased the final percentage not pregnant (3/27; 11%; p=0.01) and interval to conception (21 days; p=0.02) compared with controls (7/13; 54% and 37 days, respectively).

CONCLUSIONS AND CLINICAL RELEVANCE: Risk factors for phantom cows were identified that could be manipulated to reduce the number of phantom cows in a herd, in particular increasing BCS. Treatment of the majority of phantom cows did not improve reproductive performance.  相似文献   

17.
The objective was to examine the effect of lactation on uterine involution in post‐partum dairy cows. Holstein primiparous cows were used (n = 19, mean age: 3.9 ± 0.1 years). At calving, cows were randomly assigned to one of two treatment groups, lactating (n = 11) or non‐lactating (i.e. dried off at calving, n = 8). Examination of the reproductive tract was carried out by ultrasonography twice weekly until week 7 post‐partum. Blood samples were collected twice weekly for the analysis of progesterone to indicate the resumption of cyclicity and metabolites indicative of energy status. Uterine involution was assessed in terms of size of the uterine horns, uterine body diameter and uterine fluid volume as assessed by the amount of non‐echogenic material measured by ultrasound and position of the uterus. Vaginal mucous score was taken on day 28 post‐partum for the assessment of uterine inflammation. Resumption of cyclicity (serum progesterone > 1 ng/ml) had occurred in both groups on average by day 21 post‐partum. Concentrations of non‐esterified fatty acids and beta‐hydroxybutyrate were higher, whereas concentrations of glucose, insulin and IGF‐1 were lower (p < 0.05) in lactating compared to non‐lactating cows. Lactating cows had a smaller mean uterine body diameter (p < 0.05) than non‐lactating cows from days 28 to 42 post‐partum (day 28: 20.2 ± 1.3 vs 24.9 ± 1.5 mm, respectively) and had a lower mean uterine fluid volume up to day 49 (p < 0.05). By day 49, there was no difference in uterine diameter (15.2 ± 1.8 vs 15.2 ± 1.6 mm) or uterine fluid volume (0.11 ± 0.38 vs 0.18 ± 0.46) between lactating and non‐lactating cows, respectively. Vaginal mucous score revealed no evidence of uterine inflammation in either group. In conclusion, while lactation induced significant alterations in metabolic status, it did not have a major effect on the rate of uterine involution as defined in this study.  相似文献   

18.
The objective of this retrospective study was to assess the effect of receiving a single (n = 50,285) or double (n = 4392) artificial insemination (AI), 12 h apart, within a timed artificial insemination protocol on pregnancy per AI (P/AI) in nulliparous heifers (inseminated with either sex-sorted or conventional semen) and pluriparous Holstein cows in a commercial dairy herd. Also, this study aimed to investigate the relationship between temperature-humidity index (THI) and time of the first AI and fertility. Fertility of cows receiving two AI with normothermia (THI <68) was higher (p < .05) than cows receiving a single AI (42.9% vs. 36.4%). P/AI of cows receiving two AI with severe heat stress (THI >85) was higher (p < .05) than cows receiving a single AI (21.0% vs. 12.6%). Regardless of heat stress conditions, applying the first AI in the morning increased (p < .05) P/AI in cows with double AI than in cows whose first AI occurred in the afternoon (38.4 vs. 33.3%). With moderate heat stress, and sexed-sorted semen, P/AI to timed AI was higher (65.0 vs. 51.9%; p < .05) in heifers receiving double AI than those serviced once. It was concluded that double AI, 12 h apart, enhanced fertility at timed AI than herd mates with a single AI, particularly with heat stress at breeding.  相似文献   

19.
The effects on cow and calf performance of replacing grass silage with brewers grains in diets based on barley straw and fed to pregnant beef cows are reported. Using a 2 × 2 factorial arrangement of breed and diet, cows pregnant by artificial insemination (n = 34) of two breeds (cross‐bred Limousin, n = 19 and pure‐bred Luing, n = 15) were fed diets ad libitum which consisted of either (g/kg dry matter) barley straw (664) and grass silage (325; GS) or barley straw (783) and brewers grains (206, BG) and offered as total mixed rations. From gestation day (GD) 168 until 266, individual daily feed intakes were recorded and cow body weight (BW) and body condition score (BCS) measured weekly. Calving date, calf sex, birth and weaning BW, and calf age at weaning were also recorded. Between GD 168 and 266, cross‐bred Limousin cows gained more weight than Luing cows (p < 0.05) and cows offered BG gained more weight than cows offered GS (p < 0.001). Luing cows lost more BCS than cross‐bred Limousin cows (p < 0.05), but diet did not affect BCS. There were no differences in dry matter intake as a result of breed or diet. Calf birth BW, however, was greater for cows fed BG than GS (44 vs. 38 kg, SEM 1.0, p < 0.001) with no difference between breeds. At weaning, calves born to BG‐fed cows were heavier than those born to GS‐fed cows (330 vs. 286 kg, SEM 9.3, p < 0.01). In conclusion, replacement of grass silage with brewers grains improved the performance of beef cows and increased calf birth and weaning BW. Further analysis indicated that the superior performance of cows offered the BG diet was most likely due to increases in protein supply which may have improved both energy and protein supply to the foetus.  相似文献   

20.
Seventy multiparous healthy lactating Holstein cows (fat-corrected milk yield = 7,561.8 kg) were monitored from 14 days before to 70 days after calving. Transrectal ultrasound scanning was performed twice weekly from 7 to 65 days postpartum. Blood samples were also collected twice weekly to measure serum P4 and biweekly to detect serum β-hydroxybutyrate (βHB) and nonesterified fatty acid (NEFA) concentrations. Body condition score (BCS) was taken biweekly after calving. Based on the serum P4 profile of 59 cows (11 cows were excluded due to the occurrence of postpartum diseases) studied, 27 (45.8%) had normal ovarian activity, while 21 (35.6%), six (10.1%), three (5.1%), and two (3.4%) had delayed ovulation (DOV), prolonged luteal phase (PLP), short luteal phase (SLP), and cessation of ovarian activity, respectively. Cows with PLP had an earlier ovulation compared to that of cows with normal ovarian activity (23.16 ± 4.02 vs 31.9 ± 8.35 days; P < 0.05). PLP cows also had a greater mean ± standard deviation peak milk yield (44.2 ± 5.8 vs 37.2 ± 5.7 kg/day, 75 days postpartum; P < 0.05) than cows with normal postpartum ovarian activity. The PLP group also had greater milk production in the previous lactation period. Logistic regression analysis indicated that cows with P4 concentration ≥1 ng/ml on day 24 after calving were more at risk for PLP by 1.1 for each 1 kg increase in mean peak milk yield during 75 days after calving. BCS was lower in cows with DOV compared to that of cows with normal ovarian activity at any time after calving (P < 0.05). Serum βHB concentrations in DOV cows were significantly higher than that of normal cows on day 42 after calving (0.69 ± 0.29 vs 0.54 ± 0.12 mmol/L, P < 0.05). No significant difference was found in the mean concentrations of NEFA between cows in different groups at any time after calving (P > 0.05). The concentrations of P4 on days 28 and 31 were negatively correlated with βHB concentration on day 42 after calving in cows with normal ovarian activity (R = −0.44, P = 0.02). In conclusion, these findings suggest that early ovulation and hence early postpartum P4 rise in addition to the high milk production could partly be responsible for the occurrence of PLP in dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号