首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrast‐enhanced ultrasonography is useful in differentiating adrenal gland adenomas from nonadenomatous lesions in human patients. The purposes of this study were to evaluate the feasibility and to describe contrast‐enhanced ultrasonography of the normal canine adrenal gland. Six healthy female Beagles were injected with an intravenous bolus of a lipid‐shelled contrast agent (SonoVue®). The aorta enhanced immediately followed by the renal artery and then the adrenal gland. Adrenal gland enhancement was uniform, centrifugal, and rapid from the medulla to the cortex. When maximum enhancement was reached, a gradual homogeneous decrease in echogenicity of the adrenal gland began and simultaneously enhancement of the phrenicoabdominal vessels was observed. While enhancement kept decreasing in the adrenal parenchyma, the renal vein, caudal vena cava, and phrenicoabdominal vein were characterized by persistent enhancement until the end of the study. A second contrast enhancement was observed, corresponding to the refilling time. Objective measurements were performed storing the images for off‐line image analysis using Image J (ImageJ©). The shape of the time–intensity curve reflecting adrenal perfusion was similar in all dogs. Ratios of the values of the cortex and the medulla to the values of the renal artery were characterized by significant differences from initial upslope to the peak allowing differentiation between the cortex and the medulla for both adrenal glands only in this time period. Contrast‐enhanced ultrasonography of the adrenal glands is feasible in dogs and the optimal time for adrenal imaging is between 5 and 90 s after injection.  相似文献   

2.
Pancreatitis is the most frequent disease affecting the exocrine pancreas in dogs and reliable diagnostic techniques for predicting fatal complications are lacking. Contrast‐enhanced ultrasound (CEUS) improves detection of tissue perfusion as well as organ lesion vascular pattern. Objectives of this prospective case control study were to compare perfusion characteristics and enhancement patterns of the pancreas in healthy dogs and dogs with pancreatitis using CEUS. Ten healthy dogs and eight dogs with pancreatitis were selected based on physical examination, abdominal ultrasound, and blood analysis findings. A CEUS study of the pancreas was performed for each dog and two observers who were aware of clinical status used advanced ultrasound quantification software to analyze time‐intensity curves. Perfusion patterns were compared between healthy and affected dogs. In dogs with acute pancreatitis, mean pixel and peak intensity of the pancreatic parenchyma was significantly higher than that of normal dogs (P = 0.05) in between 6 and 60 s (P = <0.0001–0.046). This corresponds to a 311% increase in mean pixel intensity in dogs with acute pancreatitis compared to healthy dogs. Wash‐in rates were greater and had a consistently steeper slope to peak in dogs with pancreatitis as opposed to healthy dogs. All dogs with pancreatitis showed a decrease in pixel intensity 10–15 days after the initial examination (P = 0.011) and their times to peak values were prolonged compared to the initial exam. Findings from the current study supported the use of CEUS for diagnosing pancreatitis, pancreatic necrosis, and disease monitoring following therapy in dogs.  相似文献   

3.

Background

Contrast‐enhanced ultrasound examination (CEUS) is a functional imaging technique allowing noninvasive assessment of tissue perfusion. Studies in humans show that the technique holds great potential to be used in the diagnosis of chronic kidney disease (CKD). However, data in veterinary medicine are currently lacking.

Objectives

To evaluate renal perfusion using CEUS in cats with CKD.

Animals

Fourteen client‐owned cats with CKD and 43 healthy control cats.

Methods

Prospective case‐controlled clinical trial using CEUS to evaluate renal perfusion in cats with CKD compared to healthy control cats. Time‐intensity curves were created, and perfusion parameters were calculated using off‐line software. A linear mixed model was used to examine differences between perfusion parameters of cats with CKD and healthy cats.

Results

In cats with CKD, longer time to peak and shorter mean transit times were observed for the renal cortex. In contrast, a shorter time to peak and rise time were seen for the renal medulla. The findings for the renal cortex indicate decreased blood velocity and shorter total duration of enhancement, likely caused by increased vascular resistance in CKD. Increased blood velocity in the renal medulla has not been described before and may be because of a different response to regulatory factors in cortex and medulla.

Conclusions and Clinical Importance

Contrast‐enhanced ultrasound examination was capable of detecting perfusion changes in cats with CKD. Further research is warranted to assess the diagnostic capabilities of CEUS in early stage of the disease process.  相似文献   

4.
Ultrasonographic evaluation of the adrenal glands was performed in 10 dogs with pituitary-dependent hyperadrenocorticism (PDH) and in 10 age- and weight-matched healthy control dogs. Thickness, shape, and echogenicity were determined for each adrenal gland. Adrenal thickness in dogs with PDH (median, 10 mm-left; 8.5 mm-right) was significantly greater than thickness in control dogs (median, 6 mm-left; 6 mm-right). Other ultrasonographic characteristics associated with PDH included bilaterally symmetrical adrenomegaly and maintenance of normal adrenal shape. Adrenal echogenicity was homogeneous and less than that of the adjacent renal cortex in 8 of 10 dogs with PDH and in 10 of 10 control dogs. Heterogenous echogenicity was present in 2 of 10 dogs with PDH, and was associated with nodular cortical hyperplasia in one of those dogs. Results of this study confirm the difference in sonographic appearance between PDH-induced bilateral cortical hyperplasia and functional adrenocortical neoplasia, and show a difference in so-nographically determined adrenal size between healthy dogs and dogs with PDH. J Vet Intern Med 1996; 10:110–115. Copyright © 1996 by the American College of Veterinary Internal Medicine .  相似文献   

5.
Contrast enhanced ultrasound (CEUS) is useful to evaluate tissue perfusion in the kidney. In veterinary medicine, sedation or anesthesia may be required in uncooperative or panting patients. The aim of this study was to evaluate and compare the normal kidney perfusion patterns in conscious and anesthetized dogs using CEUS. Eight healthy beagles were used in this study. Scanning was performed in conscious dogs using manual restraint (conscious group), or under general anesthesia using tiletamine-zolazepam and medetomidine (TZM group) or medetomidine (M group). The contrast agent (Sonovue®) was administered as an IV bolus. The peak intensity (PI), time to peak enhancement from injection (TTP0) and the time to peak enhancement from the initial rise (TTPup), upslope, downslope and area under the curve (AUC) were analyzed. Compared to the cortical values in the conscious group, TTP0 was significantly delayed in the TZM group, and upslope, TTP0 and TTPup were significantly different in the M group. The AUCs in the TZM and M groups were not different from those in the conscious group. The upslope of renal medullary perfusion was significantly decreased in the TZM and M groups. TTP0 and TTPup were also significantly delayed in these groups. The AUC of the medulla was significantly decreased in the M group. Therefore, TZM is useful as an anesthetic protocol when performing CEUS, and the obtained data may serve as reference values in the evaluation of renal perfusion using CEUS in dogs under anesthesia.  相似文献   

6.
Extrahepatic‐congenital portosystemic shunt is a vascular anomaly that connects the portal vein to the systemic circulation and leads to a change in hepatic microvascular perfusion. However, an assessment of hepatic microvascular perfusion is limited by conventional diagnostic modalities. The aim of this prospective, exploratory study was to assess hepatic microvascular perfusion in dogs with extrahepatic‐congenital portosystemic shunt using contrast‐enhanced ultrasonography (CEUS) using perfluorobutane (Sonazoid®). A total of 17 dogs were included, eight healthy dogs and nine with extrahepatic‐congenital portosystemic shunt. The time‐to‐peak (TTP), rising time (RT), and rising rate (RR) in the hepatic artery, portal vein, and hepatic parenchyma, as well as the portal vein‐to‐hepatic parenchyma transit time (ΔHP‐PV) measured from time‐intensity curve on CEUS were compared between healthy and extrahepatic‐congenital portosystemic shunt dogs. The RT of the hepatic artery in extrahepatic‐congenital portosystemic shunt dogs was significantly earlier than in healthy dogs (P = 0.0153). The TTP and RT of the hepatic parenchyma were significantly earlier in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018 and P = 0.0024, respectively). ΔHP–PV was significantly shorter in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018). CEUS effectively revealed changes in hepatic microvascular perfusion including hepatic artery, portal vein, and hepatic parenchyma simultaneously in extrahepatic‐congenital portosystemic shunt dogs. Rapid hepatic artery and hepatic parenchyma enhancements may reflect a compensatory increase in hepatic artery blood flow (arterialization) caused by a decrease in portal vein blood flow and may be used as an additional diagnostic test to distinguish extrahepatic‐congenital portosystemic shunt dogs from healthy dogs.  相似文献   

7.
Ultrasonography is a sensitive and specific screening method for assessing the adrenal glands. The upper limit of the normal adrenal gland width is used as 7.5 mm. It is not known if adrenal gland width remains consistent with body weight. A reliable criterion of adrenal gland width in small breed dogs should be established. Small breed dogs with body weights of less than 10 kg were divided into two groups: 189 normal dogs and 22 dogs with pituitary-dependent hyperadrenocorticism (PDH). A retrospective study was conducted on dogs seen between January 1, 2006, and February 10, 2008. One hundred eighty-nine dogs of 14 different small breeds were enrolled in the normal adrenal gland group; the median gland width was 4.20 mm. Twenty-two dogs were in the PDH group; the median gland width was 6.30 mm. The cut-off value between normal adrenal glands and PDH was 6.0 mm. This figure gave a sensitivity and specificity of 75 and 94%, respectively, for detecting PDH. The adrenal gland appeared as a peanut shape with homogeneous hypoechoic parenchyma in normal dogs and in most dogs with PDH as well. This study was performed in a large population of small breed dogs and suggests that the normal adrenal gland size in small breed dogs is smaller than previously reported. We believe that a cut-off of 6.0 mm may be used as the criterion for differentiating a normal adrenal gland from adrenal hyperplasia.  相似文献   

8.
Little information is available on medical imaging of the adrenal glands in horses. We investigated the feasibility of transrectal ultrasonography to characterize the normal equine adrenal gland. Transrectal ultrasonography was performed in 25 healthy horses using a 7.5 MHz linear array probe at a displayed depth of 8 cm. Transrectal ultrasonography of the right adrenal gland was not feasible. For the left adrenal gland, the left kidney, the abdominal aorta, the left renal artery, the left renal vein, and the cranial mesenteric artery were used as landmarks. The size of the left adrenal gland was variable, but it generally appeared as a long, flat structure with a hyperechoic medulla surrounded by a hypoechoic cortex. The most cranial part of the gland could not be delineated appropriately in 11 horses (44%). The mean (±SD) thickness of the gland and medulla was 0.66±0.15 cm (n=25) and 0.28±0.09 cm (n=25) near the caudal pole, 0.87±0.25 cm (n=14) and 0.40±0.18 cm (n=12) near the cranial pole, and 0.89±0.18 cm (n=25) and 0.36±0.13 cm (n=25) in the middle of the gland, respectively. The mean (±SD) length of the entire adrenal gland and of the medulla was 6.22±0.77 cm (n=14) and 5.45±0.71 cm (n=6), respectively. Transrectal ultrasonography allowed adequate visualization of the left adrenal gland in horses.  相似文献   

9.
Contrast‐enhanced ultrasound may be helpful for detecting early renal microvascular damage and dysfunction in dogs. However, before this noninvasive imaging method can be tested as an early‐stage screening tool in clinical patients, an improved understanding of long‐term variation in healthy animals is needed. In this prospective, secondary, longitudinal, serial measurements study, variability of contrast‐enhanced ultrasound renal perfusion parameters was described for eight healthy dogs, using seven time points and a period of 83 weeks. Dogs were sedated with butorphanol (0.4 mg/kg), and contrast‐enhanced ultrasound of each kidney was performed after an intravenous bolus injection of a microbubble contrast agent (0.04 mL/kg). Time‐intensity curves were created from regions‐of‐interest drawn in the renal cortex and medulla. Intensity‐related parameters representing blood volume and time‐related parameters representing blood velocity were determined. A random‐effects model using restricted maximum likelihood was used to estimate variance components. Within‐dog coefficient of variation was defined as the ratio of the standard deviation over the mean. Time‐related parameters such as time‐to‐peak, rise and fall time had lowest within‐dog variability. Intensity‐related parameters such as peak enhancement, wash‐in and wash‐out area under the curve, total area under the curve, and wash‐in and washout rates had high within‐dog variability (coefficient of variation > 45%). Authors therefore recommend the use of time‐related parameters for future studies of renal perfusion. Within‐dog variability for bilateral kidney measurements was extremely low, therefore contrast‐enhanced ultrasound may be particularly useful for detecting unilateral changes in renal perfusion. Future studies are needed to compare contrast‐enhanced ultrasound findings in healthy dogs versus dogs with renal disease.  相似文献   

10.
Blood supply to the peripheral nerves is essential for fulfilling their structural and functional requirements. This prospective, experimental, exploratory study aimed to assess the feasibility of contrast-enhanced ultrasonography (CEUS) for evaluating blood perfusion of the sciatic nerve in normal dogs. Contrast-enhanced ultrasonography examinations were performed on the bilateral sciatic nerves after bolus injection of Sonazoid™ (0.015 mL/kg) in 12 healthy Beagles for 150 s. Then, qualitative assessment of the wash-in timing, degree and enhancement patterns, and quantitative measurement of the peak intensity and time to peak intensity were performed from the sciatic nerve. The results were compared to those obtained from the adductor muscle around the nerve and caudal gluteal artery. After contrast agent injection, the sciatic nerve was enhanced at approximately 13–14 s, immediately after wash-in of the caudal gluteal artery. The peak intensity of the sciatic nerve was significantly lower than that of the caudal gluteal artery and higher than that of the adductor muscle. The time to peak intensity was significantly slower than that of the caudal gluteal artery; but was not significantly different from that of the adductor muscle. There were no significant differences in the peak intensity and time to peak intensity between the left and right sciatic nerves. These results demonstrate the feasibility of CEUS to assess blood perfusion of the sciatic nerve in healthy dogs qualitatively and quantitatively. This result from healthy dogs could serve as a reference for further studies that evaluate the sciatic nerve under pathological conditions.  相似文献   

11.
Contrast‐enhanced ultrasound of the spleen enables the dynamic assessment of the perfusion of this organ, however, both subjective and quantitative evaluation can be strongly influenced by sedative agent administration. The purpose of this prospective, experimental study was to test effects of two sedative agents on splenic perfusion during contrast‐enhanced ultrasound of the spleen in a sample of healthy dogs. Contrast‐enhanced ultrasound of the spleen was repeated in six healthy Beagles following a cross‐over study design comparing three protocols: awake, butorphanol 0.2 mg/Kg intramuscular (IM), and dexmedetomidine 500 μg/m2 IM. After intravenous injection of a phospholipid stabilized sulfur hexafluoride microbubble solution (SonoVue®, Bracco Imaging, Milano, Italy), the enhancement intensity and perfusion pattern of the splenic parenchyma were assessed and perfusion parameters were calculated. Normal spleen was slightly heterogeneous in the early phase, but the parenchyma was homogeneous at a later phase. Sedation with butorphanol did not modify perfusion of the spleen. Dexmedetomidine significantly reduced splenic enhancement, providing diffuse parenchymal hypoechogenicity during the entire examination. Measured parameters were significantly modified, with increased arrival time (AT; (< 0.0001) and time to peak (TTP; P < 0.0001), and decreased peak intensity (PI; P = 0.0108), wash‐in (P = 0.0014), and area under the curve (AUC; P = 0.0421). Findings supported the use of butorphanol and contraindicated the use of dexmedetomidine as sedatives for splenic contrast ultrasound procedures in dogs. Short‐term and diffuse heterogeneity of the spleen in the early venous phase was determined to be a normal finding.  相似文献   

12.
Contrast‐enhanced ultrasound with sulphur hexafluoride microbubbles was performed in seven healthy dogs without a history of reproductive pathology and with histologically confirmed normal testes and in 42 dogs with chronic scrotal anomalies. All dogs underwent orchiectomy and histological examination. Enhancement patterns and perfusion parameters (peak intensity and regional blood flow) of testes of healthy dogs and testes with chronic lesions were compared. Fourteen non‐pathologic and 60 pathologic testes were considered. Forty testes were neoplastic (24 interstitial cell tumours, 9 seminomas, 7 Sertoli cell tumours), 20 were non‐neoplastic (16 testicular degenerations, 2 chronic orchitis, 1 testicular atrophy, 1 interstitial cell hyperplasia). In healthy dogs, the contrast medium flow had a rapid homogeneous wash‐in and wash‐out, with a short peak phase. With contrast ultrasound, testes that were inhomogeneous with a hyperenhancing pattern were associated with neoplasia (sensitivity: 87.5%, specificity: 100%). Lesions with persistent inner vessels and a hypo‐to‐isoechoic background were significantly associated with seminomas (sensitivity: 77.8%, specificity: 100%). Testes with non‐neoplastic lesions were characterized by a scant/moderate homogeneous enhancement. Perfusion parameters were higher in neoplastic lesions. Contrast ultrasound was a feasible diagnostic tool in the assessment of testicular lesions, with hyperenhancement being an important feature in the diagnosis of malignancy.  相似文献   

13.

Background

Studies in humans identified the synthesis and secretion of inhibin from adrenocortical tumors, but not pheochromocytoma (PHEO). Inhibin has not been examined in dogs as a serum biomarker for adrenal gland tumors.

Objective

To determine serum inhibin concentration in dogs with adrenal gland disease and in healthy dogs.

Animals

Forty‐eight neutered dogs with adrenal disease including pituitary‐dependent hyperadrenocorticism (PDH, 17), adrenocortical tumor (18), and PHEO (13), and 41 healthy intact or neutered dogs.

Methods

Prospective observational study. Dogs were diagnosed with PDH, adrenocortical tumor (hyperadrenocorticism or noncortisol secreting), or PHEO based on clinical signs, endocrine function tests, abdominal ultrasound examination, and histopathology. Inhibin concentration was measured by radioimmunoassay in serum before and after ACTH stimulation, and before and after treatment.

Results

In neutered dogs, median inhibin concentration was significantly higher in dogs with adrenocortical tumors (0.82 ng/mL) and PDH (0.16 ng/mL) than in dogs with PHEO and healthy dogs (both undetectable). Median inhibin concentration was significantly higher in dogs with adrenocortical tumors than in those with PDH and decreased after adrenalectomy. Median inhibin concentration was significantly higher in intact than in neutered healthy dogs and was similar in pre‐ and post‐ACTH stimulation. Sensitivity, specificity, and accuracy of serum inhibin concentration for identifying an adrenal tumor as a PHEO were 100, 88.9, and 93.6%, respectively.

Conclusions and Clinical Importance

Adrenocortical tumors and PDH but not PHEOs are associated with increased serum inhibin concentration; undetectable inhibin is highly supportive of PHEO in neutered dogs with adrenal tumors.  相似文献   

14.
Ultrasonographic evaluation of the adrenal glands was performed in 14 fasted healthy adult dogs. Frequency of visualization was 100% for both the left and right adrenal glands. Moderate correlation was present between Ultrasonographic and gross measurements of thickness for both left (rs= 0.727; p < .005) and right (rs= 0.537; p < .05) adrenal glands. However, no correlation was found between Ultrasonographic and gross measurements for length or width of either adrenal gland. Differentiation of adrenal cortex and medulla was possible in 79% of left adrenal glands and 64% of right adrenal glands. The echogenicity of the adrenal glands was less than that of the renal cortex in all dogs. Factors which made evaluation of the adrenal glands more difficult included pyloric gas, intestinal gas, and deep-chested body conformation.  相似文献   

15.
Gall bladder necrosis and rupture are life‐threatening conditions in dogs requiring surgical intervention and early diagnosis is essential. Human patients with suspected gall bladder necrosis/rupture are commonly evaluated with contrast‐enhanced ultrasonography (CEUS), however this procedure has not been described in dogs with suspected gall bladder necrosis/rupture. In a prospective diagnostic cohort study, CEUS (using SonoVue contrast medium) was performed in 93 dogs with gallbladder lesions identified by abdominal conventional ultrasonography. Necrosis/rupture was identified by CEUS as a focal lack of enhancement of the gallbladder wall. Dogs with positive CEUS finding for necrosis/rupture (complete lack of regional wall enhancement) underwent immediate surgery as did dogs with other biliary disorders requiring surgery. Dogs with negative CEUS findings or those not requiring surgery were managed medically. In cases undergoing surgery, necrosis/rupture was confirmed intraoperatively (and via histopathology). Absence of necrosis/rupture was confirmed either intraoperatively (via histopathology) or was assumed to be absent by complete recovery with medical management. Forty‐nine dogs underwent surgery and cholecystectomy: 24 had necrosis/rupture. CEUS was more accurate (100% sensitive and specific) in diagnosing gallbladder wall necrosis/rupture than conventional ultrasonography (75% sensitive and 81% specific) (P < 0.03). In conclusion, CEUS provides accurate characterization of gallbladder wall integrity that can impact decisions regarding clinical management, either surgical or medical.  相似文献   

16.
Abdominal ultrasonography is one of the most common diagnostic imaging modalities used for dogs with suspected insulinoma; however, pancreatic masses are clearly identified in fewer than half of affected dogs and benign pancreatic nodules can be difficult to differentiate from malignant ones. The purpose of this prospective study was to describe contrast‐enhanced ultrasonography (CEUS) characteristics of confirmed pancreatic insulinoma in a group of dogs. Inclusion criteria were as follows: (1) repeated hypoglycemia (blood glucose levels <60 mg/dl, twice or more); (2) elevated blood insulin levels with hypoglycemia; (3) pancreatic nodules detected with conventional ultrasonography; and (4) histological confirmation of pancreatic islet cell carcinoma. Immediately following conventional ultrasonography of the entire abdomen, CEUS of the pancreatic nodule and adjacent parenchyma was performed using contrast‐specific technology pulse inversion imaging and perflubutane microbubble contrast agent. Three dogs met inclusion criteria. Pancreatic nodules in all the three dogs became more clearly demarcated after injection of the contrast agent. Each nodule showed different enhancement patterns: markedly hyperechoic for 5 s, slightly hyperechoic for 1 s, and clearly hypoechoic for over 30 s. These results were not in complete agreement with previously reported CEUS findings in human patients with insulinoma. All nodules were surgically resected and histopathologically confirmed as malignant insulinomas. Findings from the current study indicated that contrast‐enhanced ultrasound may help to increase conspicuity of pancreatic insulinomas in dogs and that enhancement characteristics may be more variable in dogs than in humans.  相似文献   

17.
We characterized the pattern of ultrasonographic contrast enhancement of the small intestinal wall using a commercial contrast medium (Sonovue®) in 10 healthy awake cats. Subjectively, a rapid intense enhancement of the serosal and submucosal layers was followed by gradual enhancement of the entire wall section during the early phase. At peak enhancement, there was a subjective loss of demarcation between intestinal wall layers. In the late phase, there was a gradual wash out of signal from the intestinal wall. Submucosal wash out occurred last. Time‐intensity curves were generated for selected regions in the intestinal wall and multiple perfusion parameters were calculated for each cat. Perfusion parameters included arrival time (7.64 ± 2.23 s), baseline intensity (1.04 ± 0.04 a.u.), time to peak from injection (10.74 ± 2.08 s), time to peak from initial rise (3.1 ± 1.15), peak intensity (8.92 ± 3.72 a.u.), wash‐in rate (2.06 ± 0.70 a.u./s) and wash‐out rate (?1.07 ± 0.91 a.u./s). The perfusion pattern of normal feline small bowel may be useful for characterizing feline gastrointestinal disorders that involve the intestinal wall.  相似文献   

18.
Contrast‐enhanced ultrasound offers a noninvasive means of subjectively and quantitatively evaluating renal perfusion in cats with renal disease, or in renal transplant patients. In this study, we characterized the pattern of ultrasonographic contrast enhancement in 16 normal feline kidneys in eight cats using contrast‐enhanced power Doppler and contrast‐enhanced harmonic ultrasound techniques. Mean time to peak contrast enhancement for the whole kidney was longer using contrast‐enhanced harmonic ultrasound (16.8s, SD 4.7s) than contrast‐enhanced power Doppler ultrasound (12.2s, SD 1.8s). The time to peak enhancement for the cortex alone in contrast‐enhanced harmonic ultrasound was 13s (SD 3.2s), and for the renal medulla was 25.5s (SD 8.7s). The half time for washout of contrast agent was 39s (SD 14.5s) for contrast‐enhanced harmonic ultrasound. The pattern of contrast enhancement in these normal feline kidneys can be used as normal reference values for the evaluation of clinical patients. Contrast‐enhanced harmonic ultrasound may allow the differentiation between cortical and medullary perfusion patterns.  相似文献   

19.
Contrast‐enhanced ultrasonography (CEUS) is increasingly available for veterinary patients, however limited studies describe the use of this method for characterizing intrathoracic mass lesions. The aim of this prospective, observational study was to describe CEUS enhancement patterns for intrathoracic mass lesions in a sample of cats and dogs. Sixty patients (36 dogs, 24 cats) were included. Standardized CEUS examinations were performed for 41 pulmonary masses (68%) and 19 mediastinal masses (32%). Final diagnosis was based on cytology and/or histopathology. Absolute time to enhancement (TTE) values were recorded for the intrathoracic mass lesions and spleen. The spleen was used as a reference parenchymal organ to calculate relative TTE (rTTE) values. Absolute TTE of the spleen and intrathoracic mass lesions differed for dogs and cats (P = 0.001). The rTTE values significantly differed between lesions of neoplastic versus non‐neoplastic origin (P = 0.004). The majority of neoplastic pulmonary masses were supplied by bronchial arteries (63%), while most nonneoplastic pulmonary masses were supplied by pulmonary arteries (78%). The sensitivity and specificity for detecting pulmonary neoplastic masses with rTTE were 63% and 78%, respectively. Enhancement patterns for mediastinal thymomas and lymphomas significantly differed (P = 0.002). Thymomas enhanced heterogeneously in a centripetal pattern (86%), whereas lymphomas typically enhanced uniformly in a centrifugal pattern (75%). Findings indicated that CEUS is a feasible method for characterizing intrathoracic mass lesions in dogs and cats, however, the diagnostic sensitivity for detecting neoplastic pulmonary masses was low.  相似文献   

20.
This prospective case study aimed to clarify the clinical significance of contrast-enhanced ultrasound (CEUS) for the differential diagnosis of canine adrenal tumors. Forty-three client-owned dogs with adrenal tumors were included. All dogs underwent CEUS, which was evaluated qualitatively and quantitatively. The peak signal intensity (PI), time to peak signal intensity (TPI), mean transit time (MTT), upslope, and downslope were calculated for each time-intensity curve. The histopathological diagnosis of each resected mass was compared with the CEUS findings and parameters. Enhancement distribution, vascularity, tortuous nourishing vessels, enhancement pattern, and late-phase enhancement did not differ significantly between adrenal cortical adenoma (CA), adenocarcinoma (CAC), and pheochromocytoma (PHEO) in qualitative assessment. In PHEO, the TPI was significantly more rapid compared with that in CA (P=0.0287) and CAC (P=0.0404). The MTT in PHEO was significantly shorter than that in CA (P=0.0016) and CAC (P=0.0003). Upslope in PHEO was larger than that in CAC (P=0.0406). Downslope in PHEO was significantly larger than that in CA (P=0.0048) and CAC (P=0.0018). A receiver operating characteristic curve analysis demonstrated that the area under the MTT curve yielded 0.91 for distinguishing PHEO from adrenocortical tumors in dogs; an MTT cut-off value less than 6,225 msec yielded a sensitivity of 69%, specificity of 94%, and likelihood ratio of 12.46. CEUS appears to be clinically applicable for the differential diagnosis between cortical and medullary origins of primary adrenal tumors in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号