首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Indaziflam is a preemergent herbicide widely used for the control of weeds in pecan (Carya illinoinensis) orchards in the southwestern region of the United States. Given the paucity of data regarding the effect of indaziflam on the biochemical properties of soils supporting pecan production, this study was conducted to evaluate the effects of different application rates of indaziflam on soil microbial activity, diversity, and biochemical processes related to nitrogen (N) cycling. During two consecutive growing seasons (2015 and 2016), soil samples were obtained from experimental mesocosms consisting of soil-filled pots where pecan saplings were grown and treated with indaziflam applied at two different rates (25 and 50 g active ingredient (ai) ha-1, with the higher rate being slightly lower than the recommended field application rate of 73.1 g ai ha-1). Soil samples were collected approximately one week before and one week after herbicide application for determination of soil microbial biomass and diversity, N mineralization, and β-glucosaminidase activity. Soil samples collected from the control mesocosms without herbicide application were treated in the laboratory with two rates of indaziflam (75 and 150 g ai ha-1) to determine the immediate effect on microbial activity. No significant effect of herbicide treatment on soil respiration and microbial biomass was detected. The results showed a slight to moderate decrease in microbial diversity (7% in 2015 and 44% in 2016). However, decreased β-glucosaminidase activity with herbicide treatment was observed in soils from the mesocosms (33%) and soils treated with indaziflam in the laboratory (45%). The mineral N pool was generally dominated by ammonium after indaziflam application, which was consistent with the drastic decrease (75%) in nitrification activity measured in the laboratory experiment. The results of this study indicate that indaziflam, even when applied at higher than recommended rates, has limited effects on soil microbial activity, but may affect N cycling processes.  相似文献   

2.
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity.  相似文献   

3.
Soil CO2 efflux, root mass, and root production were investigated in a humid temperate grassland of Japan over a growing season (Apr. to Sep.) of 2005 to reveal seasonal changes of soil CO2 efflux, to separate the respective contributions of root and microbial respiration to the total soil CO2 efflux, and to determine the environmental factors that control soil respiration. Minimal microbial respiration rate was estimated based on the linear regression equations between soil CO2 efflux and root mass at different experimental sites. Soil CO2 efflux, ranging from 4.99 to 16.29 μmol CO2 m-2 s-1, depended on the seasonal changes in soil temperature. The root mass at 0--10 cm soil depth was 0.82 and 1.27 kg m-2 in Apr. and Sep., respectively. The root mass at 0--10 cm soil depth comprised 60% of the total root mass at 0--50 cm soil depth. The root productivity at 0--30 cm depth varied from 8 to 180 g m-2 month-1. Microbial and root respiration rates ranged from 1.35 to 5.51 and 2.72 to 12.06 μmol CO2 m-2 s-1, respectively. The contribution of root respiration to the total soil CO2 efflux averaged 53%, ranging from 33% to 72%. The microbial respiration rate was exponentially related to soil temperature at 10 cm depth (R2 = 0.9400, P = 0.002, n = 6), and the root respiration rate was linearly related to the root production at 0--30 cm depth (R2 = 0.6561, P = 0.042, n = 6).  相似文献   

4.
Catch crops that are cultivated for green manure play an important role in improving soil properties. A 3-year field experiment was conducted to investigate the effect of catch crop(pea, Pisum sativum L.) management, i.e., incorporation of catch crop in October/November(autumn) and March(spring), and without catch crop(control), on soil organic carbon(SOC), microbial biomass carbon(MBC) and the activities of carbon(C)-cycle enzymes, including cellulase(Cel), β-glucosidase(Glu) and invertase(Inv). Additionally, soil total nitrogen(TN) and p HKClwere investigated. The catch crop was cultivated from August to October each year during 2008–2010. Soil samples were collected from the field of spring barley(Hordeum vulgare L.) that had been grown after the catch crop. Soil samples for microbial activity determination were taken in March, May, June and August in 2009, 2010 and2011, while SOC and TN contents as well as p HKClwere determined in March and August. The chemical properties studied did not show significant changes as influenced by the experimental factors. The use of catch crop significantly increased the MBC content and the activities of C-cycle enzymes compared to the control. When the catch crop was incorporated in spring, a significantly higher MBC content was noted in March and May compared to autumn incorporation. Moreover, the spring incorporation of the catch crop significantly increased the Glu activity(except March), while the activities of Cel and Inv as well as the rate of soil basal respiration were usually unaffected by the time of catch crop incorporation. Greater microbial biomass and higher enzyme activities in the catch crop-treated soil, compared to the control, indicated that the application of the catch crop as a green manure could be recommended as a promising technique to increase the biological activity of the soil. Since there was no significant effect or no consistent results were obtained related to the time of catch crop incorporation, both spring and autumn applications can be recommended as a management tool to improve the status of soil properties during the growth of a subsequent crop.  相似文献   

5.
Land degradation causes great changes in the soil biological properties.The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity.The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation(NV),moderately degraded land(LDL),highly degraded land(HDL) and land under restoration for four years(RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil.Soil samples were collected at 0-10 cm depth.Soil organic carbon(SOC),soil microbial biomass C(MBC) and N(MBN),soil respiration(SR),and hydrolysis of fluorescein diacetate(FDA) and dehydrogenase(DHA) activities were analyzed.After two years of evaluation,soil MBC,MBN,FDA and DHA had higher values in the NV,followed by the RL.The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV.However,after land restoration,the MBC and MBN increased approximately 5-fold and 2-fold,respectively,compared with the HDL.The results showed that land degradation produced a strong decrease in soil microbial biomass.However,land restoration may promote short-and long-term increases in soil microbial biomass.  相似文献   

6.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

7.
Cropping activities may affect soil microbial activities and biomass,which would affect C and N cycling in soil and thus the crop yields and quality.In the present study,a combination of microcalorimetric,enzyme activity(sucrase,urease,catalase,and fluorescein diacetate hydrolysis),and real-time polymerase chain reaction(RT-PCR) analyses was used to investigate microbial status of farmland soils,collected from 5 different sites in Huazhong Agriculture University,China.Our results showed that among the 5sites,both positive and negative impacts of cropping activities on soil microbial activity were observed.Enzyme activity analysis showed that cropping activities reduced soil sucrase and urease activities,which would influence the C and N cycles in soil.Much more attentions should be given to microbial status affected by cropping activities in future.According to the correlation analysis,fluorescein diacetate hydrolysis showed a significantly(P 0.05) negative correlation with the time to reach the maximum power output(R ——0.898),but a significantly(P 0.05) positive correlation with bacterial gene copy number(R = 0.817).Soil catalase activity also showed a significantly(P 0.05) positive correlation with bacterial gene copy number(R = 0.965).Using combined methods would provide virtual information of soil microbial status.  相似文献   

8.
The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllura duraosura) perennial desert shrub and the inter-shrub sites. Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z. duraosura shrubs than from the inter-shrub sampling sites, with no differences between the two sampling layers (0-10 and 10-20 cm) throughout the study period. However, seasonal changes were observed due to autumn dew formation, which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coefficient (qCO2) revealed significant differences between the two sampling sites as well as between the two soil layers, elucidating the abiotic effect between the sites throughout the study period. The substrate availability index was found to significantly demonstrate the differences between the two sites, elucidating the significant contribution of Z. duraosura in food source availability and in moderating harsh abiotic components. The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment.  相似文献   

9.
黄土高原中国松人工林演替过程中的土壤微生物和酶活性   总被引:5,自引:0,他引:5  
Successional and seasonal effects on soil microbial and enzymatic properties were studied in Chinese pine (Pinus tabu- laeformis) plantations in an age sequence of 3-, 7-, 13-, 21- and 28-year-old in northern Ziwuling region in the middle of Loess Plateau, China. The results indicated that plantation age and season affected soil microbial and enzymatic parameters significantly. Soil organic C, total N, microbial biomass C, microbial quotient, basal respiration, dehydrogenase, N-α-benzoyl-L-argininamide (BAA)-protease, urease and β-glucosidase increased quickly and tended to be highest at PF21 (21-year plantation), thereafter they remained nearly at a constant level, whereas the metabolic quotient (qCO 2 ) showed an initial increase and then decreased gradually. Measures of these soil properties showed significant seasonal fluctuations except for organic C and total N, which were found to be relatively stable throughout the study period, and the seasonal distributions were autumn spring summer winter for microbial biomass C, microbial quotient, dehydrogenase, and β-glucosidase; autumn summer spring winter for BAA-protease and urease; and summer autumn spring winter for basal respiration and qCO 2 . Significant season × age interaction was observed for biomass C, basal respiration, dehydrogenase and BAA-protease.  相似文献   

10.
Brazilian industry produces huge amounts of tannery sludge as residues, which is often disposed by landfilling or land application. However, consecutive amendment of such composted industrial wastes may cause shifts in soil microbial biomass (SMB) and enzyme activity. This study aimed to evaluate SMB and enzyme activity after 3-year consecutive composted tannery sludge (CTS) amendment in tropical sandy soils. Different amounts of CTS (0.0, 2.5, 5.0, 10.0, and 20.0 t ha-1) were applied to a sandy soil. The C and N contents of SMB, basal and substrate-induced respiration, respiratory quotient (qCO2), and enzyme activities were determined in the soil samples collected after CTS amendment for 60 d at the third year. After 3 years, significant changes were found in soil microbial properties in response to different CTS amounts applied. The organic matter and Cr contents significantly increased with increasing CTS amounts. SMB and soil respiration peaked following amendment with 10.0 and 20.0 t ha-1 of CTS, respectively, while qCO2 was not significantly affected by CTS amendment. However, soil enzyme activity decreased significantly with increasing CTS amounts. Consecutive CTS amendment for 3 years showed inconsistent and contrasting effects on SMB and enzyme activities. The decrease in soil enzyme activities was proportional to a substantial increase in soil Cr concentration, with the latter exceeding the permitted concentrations by more than twofold. Thus, our results suggest that a maximum CTS quantity of 5.0 t ha-1 can be applied annually to tropical sandy soil, without causing potential risks to SMB and enzyme activity.  相似文献   

11.
Changes in plant community structure, including the loss of plant diversity may affect soil microbial communities. To test this hypothesis, plant diversity and composition were experimentally varied in grassland plots cultivated with monocultures or mixtures of 2, 3 or 4 species. We tested the effects of monocultures versus mixtures and of plant species composition on culturable soil bacterial activity, number of substrates used and catabolic diversity, microbial biomass N, microbial respiration, and root biomass. These properties were all measured 10 months after seeding the experiment. Soil bacterial activity, number of substrates used and catabolic diversity were measured in the different plant communities using BIOLOG GN and GP microplates, which are redox-based tests measuring capacity of soil culturable bacteria to use a variety of organic substrates. Microbial biomass N, microbial respiration, and root biomass were insensitive to plant diversity. Culturable soil microbial activity, substrates used and diversity declined with declining plant diversity. Their activity, number of substrates used and diversity were significantly higher in plots with 3 and 4 plant species than in monocultures and in plots with 2 species. There was also an effect of plant species composition. Culturable soil microbial activity and diversity was higher in the four-species plant community than in any of the plant monocultures suggesting that the effect of plant diversity could not be explained by the presence of a particular plant species. Our results showed that changes in plant diversity and composition in grassland ecosystems lead to a rapid response of bacterial activity and diversity.  相似文献   

12.
滴灌和微生物有机肥对设施土壤呼吸的耦合作用及机制   总被引:1,自引:1,他引:0  
为研究滴灌水分和微生物有机肥对设施土壤呼吸的影响及耦合作用机制,设计不同灌溉定额(15、18、21 mm)和不同微生物有机肥施用量(2 800、3 600、4 400 kg/hm2)处理,以传统化肥处理为对照,观测滴灌和微生物有机肥协同作用下土壤呼吸速率、累计碳排放量等指标,分析土壤呼吸与土壤温度、湿度、有机质含量、酶(脱氢酶、脲酶和过氧化氢酶)活性及根系生物量之间的互动响应关系。结果表明:滴灌-微生物有机肥处理有利于提高土壤有机质含量和酶活性,土壤脱氢酶、脲酶和过氧化氢酶活性分别提升11.6%~27.6%、8.0%~27.7%和1.8%~11.2%,其中滴灌和微生物有机肥相结合对脲酶活性的影响达到显著(p0.05)水平;土壤呼吸速率与根系生物量、土壤温度和有机质含量呈极显著(p0.01)正相关,与土壤酶活性呈显著(p0.05)正相关。该研究证明了滴灌和微生物有机肥对土壤碳排放有显著的耦合效应,滴灌和微生物有机肥耦合主要通过改变土壤有机质含量和根系生物量,对土壤呼吸产生影响。  相似文献   

13.
  目的  土壤微生物是土壤健康的敏感“指示器”,但不同的土壤微生物类群对连续施用有机肥和石灰的响应规律及不同指标的敏感性仍不明确。  方法  本文选取中亚热带双季稻区的紫泥田作为研究对象,研究连续5年施用有机肥或石灰后,土壤微生物“黑箱指标”(微生物生物量碳氮、微生物熵和土壤呼吸速率)和土壤活体微生物(PLFAs)组成的响应规律与差异。  结果  与对照相比,连续施用有机肥后,土壤微生物生物量碳(MBC)、氮(MBN)含量和土壤呼吸速率分别提高37%、28%和44% ~ 59%,微生物多样性也显著提高,土壤细菌结构发生改变,尤其是革兰氏阴性菌(G?)的PLFAs绝对量提高了100%,但真菌类群的响应不敏感。相反,连续施用石灰5年后,土壤微生物生物量碳、氮含量均呈下降趋势,微生物熵和土壤呼吸速率分别降低11%和26% ~ 52%,微生物多样性显著降低,细菌、放线菌和绝大多数真菌类群PLFAs绝对量下降30% ~ 58%。相关性分析结果表明,土壤有机质含量与土壤微生物总PLFAs和细菌PLFAs含量呈显著正相关关系;而土壤pH仅与Simpson多样性指数呈显著正相关关系。施有机肥显著提高了土壤有机质含量进而导致细菌MBC、MBN、G?和土壤呼吸速率显著增加;而施石灰后土壤微生物群落结构及活性降低与土壤pH有关。  结论  连续5年施用有机肥、石灰后,土壤微生物指标分别表现为正面、负面响应。与“黑箱指标”相比,某些特定微生物类群(如G?)的敏感性指数值更高,在土壤健康评价中极具应用潜力。  相似文献   

14.
《Applied soil ecology》2007,35(1):247-255
Seasonally snow-covered alpine soils may be subjected to freeze/thaw cycles, particularly during years having little snow and during the late winter and early spring periods. Freeze/thaw cycles can stimulate soil mineralization and could therefore be one factor regulating nitrogen (N) and phosphorus (P) availability and cycling. In this study laboratory incubation experiments using four soils having contrasting properties have been used to characterize the change in N and P forms (microbial and soluble inorganic/organic) that occur after simulated freeze/thaw cycles.Soil samples were collected from locations representing extreme examples of either direct human management (grazed meadow (site M) and extensive grazing beneath larch (site L)) or those disturbed by more natural events (recent avalanche and colonisation by alder (site A)) and from beneath the expected forest climax vegetation beneath fir (site F). Topsoil from these sites, maintained at two different water contents (20 and 30%, w/w), were exposed to either a single (SF) or four sequential (4SF) freeze/thaw cycles. Each cycle consisted of 12 h at −9 °C and 12 h at +4 °C mimicking a diurnal pattern.A SF cycle reduced microbial N for soils from sites F and A and was accompanied by a significant increase in dissolved organic nitrogen (DON) at both moisture contents. In contrast, the microbial N of soils from M and L was not affected by the freeze/thaw cycles, suggesting a particular adaptation of soil microbes to these extremes in temperature. Freeze/thaw cycles resulted in a significant increase in the net ammonification in all soils.Extractable total dissolved N (TDN) and total dissolved P (TDP) increased in all soils after a SF cycle, however, the relative importance of the different N and P forms differed. At the lower soil moisture content, NO3 concentrations remained constant or slightly decreased in all soils, except that from site M. In all other soils DON appeared to replace NO3 as the potentially mobile N source after the freeze/thaw cycles. The relative contribution of dissolved organic P to TDP after freeze/thaw remained significant, and greater than 50% in all soils.Freeze/thaw cycles, in seasonally snow covered soils, are likely to have a selective effect on the microbial biomass. Freezing and thawing resulted in a pulse of net ammonification and DON release, which represent an important influence upon N cycling in these alpine systems.  相似文献   

15.
冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响   总被引:4,自引:2,他引:4  
郝瑞军  李忠佩  车玉萍 《土壤通报》2007,38(6):1052-1057
冻融交替影响土壤水分的有效性及土壤团聚体稳定性,进而影响土壤中微生物的活性及土壤有机碳的矿化。通过室内冻融模拟(即分别在-7℃和28℃下处理土壤)及培养实验,研究了不同冻融交替循环处理下土壤水溶性有机碳(WSOC)、微生物生物量及土壤有机碳矿化的变化规律。结果表明,1到3次冻融交替处理会增加土壤中水溶性有机碳的含量,其中经过1次冻融交替处理的2种土壤其WSOC含量分别增加了25%,20%;但在本实验条件下如果继续增加冻融交替次数则会使土壤水溶性有机碳含量减少。冻融交替处理降低土壤微生物生物量,因此也会影响土壤有机碳的矿化。冻融交替处理对培养第1天的土壤有机碳矿化具有激发效应,激发能力:1次冻融交替>3次冻融交替>6次冻融交替,经过1次冻融交替处理后的土壤其呼吸速率与对照相比增加了17%~40%;其后,冻融交替处理土壤呼吸速率迅速下降,在培养后期甚至低于对照处理。  相似文献   

16.
土壤有机质含量和施肥是影响黑土微生物群落结构的重要因素,但是受气候影响,很难单独明确有机质含量或施肥对土壤微生物群落的影响.本研究利用黑土生产力长期定位试验,将有机质含量不同的5个黑土(SOM1.7、SOM3、SOM5、SOM6、SOM11)置于相同气候条件下,通过分析磷脂脂肪酸,系统地研究了施肥与有机质含量对农田黑土...  相似文献   

17.
Perennial rye grass (Lolium perenne) was grown in a greenhouse pot experiment on seven soils to answer the question whether the microbial colonisation of roots is related to existing differences in soil microbial indices. The soils were similar in texture, but differed considerably in soil organic matter, microbial biomass, and microbial community structure. Ergosterol and fungal glucosamine were significantly interrelated in the root material. This ergosterol was also significantly correlated with the average ergosterol content of bulk and rhizosphere soil. In addition, the sum of fungal C and bacterial C in the root material revealed a significant linear relationship with microbial biomass C in soil. The colonisation of roots with microorganisms increased apparently with an increase in soil microbial biomass. In the root material, microbial tissue consisted of 77% fungi and 23% bacteria. In soil, the fungal dominance was slightly, but significantly lower, with 70% fungi and 30% bacteria. Fungal glucosamine in the root material was significantly correlated with that in soil (r=0.65). This indicates a close relationship between the composition of dead microbial remains in soil and the living fraction in soil and root material for unknown reasons.  相似文献   

18.
Abstract

Tree clearing is a topical issue the world over. In Queensland, the high rates of clearing in the past were mainly to increase pasture production. The present research evaluates the impact of clearing on some soil biological properties, i.e. total soil respiration, root respiration, microbial respiration, and microbial biomass (C and N), and the response of soil respiration to change in temperature.

In-field and laboratory (polyhouse) experiments were undertaken. For in-field studies, paired cleared and uncleared pasture plots were selected to represent three major tree communities of the region, i.e. Eucalyptus populnea, E. melanophloia, and Acacia harpophylla. The cleared sites were chosen to represent three different time-since-clearing durations (5, 11–13, and 33 years; n=18 for cleared and uncleared plots) to determine the temporal impact of clearing on soil biological properties. Experiments were conducted in the polyhouse to study in detail the response of soil respiration to changes in soil temperature and soil moisture, and to complement in-field studies for estimating root respiration.

The average rate of CO2 emission was 964 g CO2/m2/yr, with no significant difference (P<0.05) among cleared and uncleared sites. Microbial respiration and microbial biomass were greater at uncleared compared with those at cleared sites. The Q 10-value of 1.42 (measured for different seasons in a year) for in-field measurements suggested a small response of soil respiration to soil temperature, possibly due to the limited availability of soil moisture and/or organic matter. However, results from the polyhouse experiment suggested greater sensitivity of root respiration to temperature change than for total soil respiration. Since root biomass (herbaceous roots) was greater at the cleared than at uncleared sites, and root respiration increased with an increase in temperature, we speculate that with rising ambient temperature and consequently soil temperature, total soil respiration in cleared pastures will increase at a faster rate than that in uncleared pastures.  相似文献   

19.
To gain insight into microbial function following increased atmospheric CO2 concentration, we investigated the influence of 9 years of enriched CO2 (600 μl litre−1) on the function and structural diversity of soil microorganisms in a grassland ecosystem under free air carbon dioxide enrichment (FACE), as affected by plant species (Trifolium repens L. and Lolium perenne L. in monocultures and mixed culture) and nitrogen (N) supply. We measured biomass and activities of enzymes covering cycles of the most important elements (C, N and P). The microbial community was profiled by molecular techniques of phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analysis. The enrichment in CO2 increased soil microbial biomass (+48.1%) as well as activities of invertase (+36.2%), xylanase (+22.9%), urease (+23.8%), protease (+40.2%) and alkaline phosphomonoesterase (+54.1%) in spring 2002. In autumn, the stimulation of microbial biomass was 25% less and that of enzymes 3–12% less than in spring. Strong correlations between activities of invertase, protease, urease and alkaline phosphomonoesterase and microbial biomass were found. The stimulation of microbial activity in the enriched atmosphere was probably caused by changes in the quantity and kind of root litter and rhizodeposition. The response of soil microorganisms to enriched CO2 was most pronounced under Trifolium monoculture and under greater N supply. The PLFA analysis revealed that total PLFA contents were greater by 24.7% on average, whereby the proportion of bioindicators representative of Gram‐negative bacteria increased significantly in the enriched CO2 under less N‐fertilized Lolium culture. Discriminant analysis showed marked differences between the PLFA profiles of the three plant communities. Shannon diversity indices calculated from DGGE patterns were greater (+12.5%) in the enriched CO2, indicating increased soil bacterial diversity. We conclude that greater microbial biomass and enzyme activity buffer the potential increase in C sequestration occurring from greater C addition in enriched CO2 due to greater mineralization of soil organic matter.  相似文献   

20.
We performed an assay of nutrient limitations to soil microbial biomass in forest floor material and intact cores of mineral soil collected from three North Carolina loblolly pine (Pinus taeda) forests. We added solutions containing C, N or P alone and in all possible combinations, and we measured the effects of these treatments on microbial biomass and on microbial respiration, which served as a proxy for microbial activity, during a 7-day laboratory incubation at 22 °C. The C solution used was intended to simulate the initial products of fine root decay. Additions of C dramatically increased respiration in both mineral soil and forest floor material, and C addition increased microbial biomass C in the mineral soil. Additions of N increased respiration in forest floor material and increased microbial biomass N in the mineral soil. Addition of P caused a small increase in forest floor respiration, but had no effect on microbial biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号