首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corpus luteum growth and endocrine function are closely dependent on the formation of new capillaries. The objectives of this study were to evaluate (i) tissue growth and microvascular development in the equine cyclic luteal structures; (ii) in vitro angiogenic activity of luteal tissues in response to luteotrophic (LH, PGE2) and luteolytic (PGF2) hormones and (iii) to relate data to luteal endocrinological function. Our results show that microvascular density was increased in the early and mid luteal phase, followed by a fall in the late luteal phase and a further decrease in the corpus albicans. Hyperplasia of luteal tissue increased until the mid luteal phase and it was followed by tissue regression. Luteal explants were cultured with no hormone added, or with PGF2, LH, PGE2, LH + PGE2 or LH + PGF2. Media conditioned by equine luteal tissue from different stages of the luteal phase were able to stimulate mitogenesis of bovine aortic endothelial cells (BAEC), suggesting the presence of angiogenic activity. No difference was observed among luteal structures on their mitogenic capacity, for any treatment used. Nevertheless, Late-CL conditioned-media with PGF2 showed a significant decrease in BAEC proliferation (p < 0.05) and LH + PGF2 a tendency to reduce mitogenesis. Thus, prostaglandin F2 may play a role on vascular regression of the CL during the late luteal phase in the mare. These data suggest that luteal angiogenesis and vascular regression in the mare are coordinated with the development of non-vascular tissue and might be regulated by many different factors.  相似文献   

2.
Prostaglandin F (PGF) induces luteolysis in the mid but not in the early luteal phase; despite this, both the early and the mid corpus luteum (CL) have PGF receptor (FPr). We previously indicated that the luteal blood flow surrounding the CL drastically increases prior to a decrease of progesterone (P) in the cows, suggesting that an acute increase of luteal blood flow may be an early sign of luteolysis in response to PGF and that this may be induced by a vasorelaxant nitric oxide (NO). The aim of this study was to investigate the luteal stage‐dependent and the site‐restricted effect of PGF and NO on the mRNA expressions and P secretion. To mimic the local luteal region both of peripheral and central areas of the CL, we utilized co‐cultures using bovine aorta endothelial cells (EC), smooth muscle cells (SMC) and luteinizing granulosa cells (GC) or fully‐luteinized GC. PGF stimulated the expression of endothelial NO synthase (eNOS) mRNA at 0.5 h in mix‐cultures of EC and SMC with fully‐luteinized GC but not with luteinizing GC. The expression of eNOS mRNA in EC was increased by PGF at 1 h only when EC was cultured together with fully‐luteinized GC but not with luteinizing GC. In all co‐cultures, PGF did not affect the mRNA expression of FPr. Treatment of NO donor inhibited P secretion at 0.5 h. In conclusion, the present study suggests that the coexistence of the mature luteal cells (fully‐luteinized GC) with EC/SMC may be crucial for acquiring functional NO synthesis induced by PGF.  相似文献   

3.
Prostaglandin F2alpha (PGF2alpha) is the primary luteolysin in the cow. During the early luteal phase, the corpus luteum (CL) is resistant to the luteolytic effect of PGF2alpha. Once mature, the CL becomes responsive to PGF2alpha and undergoes luteal regression. These actions of PGF2alpha coincide with changes in luteal blood flow (BF): PGF2alpha has no effect on BF in the early CL, but acutely increases BF in the peripheral vasculature of the mature CL within 30 min of PGF2alpha injection. During spontaneous luteolysis, luteal BF increases on Days 17-18 of the estrous cycle, prior to any decrease in plasma progesterone (P). The increase in luteal BF is synchronous with an increase in plasma PGFM levels, suggesting that pulsatile release of PGF2alpha from uterus stimulates the increase in luteal BF. Serial biopsies of these CL showed that mRNA expression for endothelial nitric oxide synthase (eNOS) together with endothelin-1 (ET-1) and angiotensin converting enzyme (ACE) increases on Days 17-18 when the luteal BF is elevated. On Day 19 when plasma P level firstly decreases, eNOS mRNA returns to the basal level whereas ET-1 and ACE mRNA remains elevated. Cyclooxygenase-2 (COX-2) mRNA expression increases on Day 19. In support of these data, an in vivo microdialysis study revealed that luteal ET-1 and angiotensin II (Ang II) secretion increases and precedes PGF2alpha secretion during spontaneous luteolysis. In conclusion, we show for the first time that an acute increase of BF occurs in the peripheral vasculature of the mature CL together with increases in eNOS expression and ET-1 and Ang II secretion in the CL during the early stages of luteolysis in the cow. We propose that the increase in luteal BF may be induced by NO from large arterioles surrounding the CL, and simultaneously uterine or exogenous PGF2alpha directly increases ET-1 and Ang II secretion from endothelial cells of microcapillary vessels within the CL, thereby suppressing P secretion by luteal cells. Taken together, our results indicate that an acute increase in luteal BF occurs as a first step of luteolysis in response to PGF2alpha. Therefore, local BF plays a key role to initiate luteal regression in the cow.  相似文献   

4.
Nitric oxide (NO) plays an important role in angiogenesis and in the regulation of the blood flow. This study was carried out to investigate (i) the effects of endogenous estrogens and progestins and exogenous progesterone (P4) (5 ng/ml or 1 μg/ml) or estradiol 17β (E2β) (50 pg/ml or 1 μg/ml) on in vitro endometrial NO synthesis; (ii) the presence of different isoforms of NO synthase; (iii) and their relationship to microvascular density in the equine endometrium during the estrous cycle. NOS expression was also evaluated in the myometrium. Expression of endothelial and inducible forms of NOS in the uterus was assessed by Western blot and immunocytochemistry. Vascular density in endometrial tissue was determined on histologic sections. In the luteal phase, compared to the follicular phase, endometrial NO production increased without exogenous hormones and with exogenous E2β (1 μg/ml). Although immunocytochemistry revealed iNOS and eNOS expression in the endometrium, no positive signal for iNOS was detected by Western blot. Endothelial NOS was observed in endometrial glands, endothelial cells, fibroblasts, blood and lymphatic vessels. Endometrial eNOS expression was the highest in the follicular and mid-luteal phases while it was found to be the lowest in the early luteal phase. In the follicular phase, hyperplasia of endometrial tissue with respect to myometrium was detected. No difference in vascular density was present between phases. All together, NO may play some roles in both proliferative and secretory phases of endometrial development in the mare.  相似文献   

5.
Nitric oxide induces apoptosis in bovine luteal cells   总被引:1,自引:0,他引:1  
We previously showed in in vivo and in vitro studies that nitric oxide (NO) is engaged in luteolysis in cattle. Nitric oxide produced locally in the bovine corpus luteum (CL) inhibits progesterone (P4) synthesis and is suggested to be a component of the luteolytic cascade induced by uterine prostaglandin (PG) F2alpha. In the present study, the molecular mechanisms of NO action during structural luteolysis were studied in cultured bovine luteal cells (Days 15-17 of the estrous cycle). The effects of the NO donor (NONOate; 10(-4)M) on DNA fragmentation, cell viability, P4 production and caspase-3 activity were compared with those of PGF2alpha (10(-6)M). Moreover, mobilization of intracellular calcium [Ca2+]i and gene expressions of Fas-L, Fas, bcl-2, bax, and caspase-3 in the cells were determined by semi-quantitative RT-PCR after NONOate treatment. Caspase-3 activity was examined calorimetrically. Contrary to PGF2alpha NONOate decreased cell viability. DNA fragmentation after NONOate treatment increased by more than with PGF22alpha. NONOate increased mobilization of [Ca2+]i in the cells. Although the NO donor did not affect Fas-L and bcl-2 gene expression, it stimulated Fas and bax mRNA and caspase-3 expression. The ratio of bcl-2 to bax mRNA level decreased in the cells treated with NONOate. Moreover, NONOate stimulated caspase-3 activity more effectively than PGF2alpha. The overall results suggest that NO is a luteolytic factor that plays a crucial role in regulation of the estrous cycle in structural luteolysis by inducing apoptosis of luteal cells in cattle.  相似文献   

6.
7.
The objectives of this study were to investigate relationship of retained fetal membranes (RFM) to expression of NOS and NOS mRNA and to analyze pathohistological changes and the distribution of nitric oxide synthase (NOS) in foetal placentas of cows with RFM. Twenty cows were assigned to two groups, a control group (no retained fetal membranes, NRFM, n = 10) and a diseased group (RFM, n = 10). The endpoint method was used to detect the nitric oxide (NO) content and nitric oxide synthase (NOS) activity in foetal placental tissue fluid and the fluorescent quantitation PCR was used to measure the expression of NOS mRNA. Immunohistochemistry and hematoxylin-eosin staining were used to observe pathohistological changes. Tissue from RFM cows showed fibronecrosis of the chorionic villi, and a decreased number of trophoblastic cells. The majority of trophoblastic cells displayed vacuolar degeneration. Interstitium vessels were distended and congested. Expression of induced nitric oxide synthase (iNOS) protein and iNOS mRNA was significantly higher (P < 0.05) in the cytoplasm of placental villus trophoblastic cells in the RFM group. But expression of endothelial nitric oxide synthase (eNOS) protein and eNOS mRNA was significantly lower (P<0.05) in the RFM group. The NO content and NOS activity of cows with RFM were significantly higher (P < 0.05). A high expression of iNOS protein and iNOS mRNA in the cow foetal placenta could produce high content of NO, which might inhibit uterine contraction. So over expression of iNOS protein and iNOS mRNA might be an important agent of retained fetal membranes in cows, and it may be a potential diagnosis biomarker.  相似文献   

8.
It has been suggested that nitric oxide (NO) acts in either an anti-luteolytic or in a luteolytic manner, but the mechanism for these opposing roles is unclear. We hypothesized that NO may act in a dose-dependent manner to regulate luteal function, whereby low concentrations of NO might stimulate luteal progesterone production (i.e. luteotrophic) and high concentrations of NO might reduce concentrations of plasma progesterone (i.e. luteolytic). To test this hypothesis we infused increasing concentrations of the fast-acting NO donor, dipropylenetriamine NONOate (DPTA), into the arterial supply of sheep with ovarian transplants bearing a corpus luteum (CL). Infusions were performed on sheep with CL 11 days of age (n=9) or over 30 days of age (n=15). We measured changes in the concentration of progesterone in ovarian venous plasma during the 1-h infusion and for 24h after the infusion, and then compared the mean concentration of progesterone between treatment groups for effects by dose and dose by period interactions. Compared with saline-treated controls (n=6), the highest dose of 1000 microg/min DPTA (n=6) reduced (P0.05) in sheep infused with the lowest dose of 1 microg/min DPTA (n=6) compared with controls. We conclude that NO regulates luteal function in a dose-dependent manner in sheep in vivo.  相似文献   

9.
To determine the physiological significance of tumour necrosis factor‐α (TNFα) in the regulation of luteal functions in pig, this study was conducted to identify the presence of functional TNFα receptors in porcine corpora lutea (CL) throughout the oestrous cycle and the early gestation. The CL were isolated from pigs on days 4, 6, 8, 12 or 15 of the oestrous cycle (n=3; day 0 = oestrus) and days 15, 20 or 25 of gestation (n=3; day 0 = mating). A Scatchard analysis revealed the presence of a high‐affinity binding site for TNFα in all samples (dissociation constant; 2.7 ± 0.51 to 5.8 ± 0.50 nM ). The concentration of TNFα receptors was higher on day 15 of the oestrous cycle than on days 4 and 8 of the oestrous cycle (p < 0.05). Furthermore, TNFα receptor concentrations in the CL on days 15, 20 and 25 of gestation were significantly lower than on day 15 of the oestrous cycle (p < 0.05). On day 9 of the oestrous cycle, exposure of cultured luteal cells to 0.06–60 nM TNFα stimulated prostaglandin (PG) F and PGE2 secretion in a dose‐dependent manner (p < 0.05). These results indicate that functional TNFα receptors are present in the porcine CL throughout the oestrous cycle and early gestation, and suggest that TNFα plays one or more physiological roles in regulating CL function throughout the oestrous cycle and the early gestation period. In addition, TNFα receptor concentration in the CL of the late luteal stage (day 15) of the oestrous cycle was higher than on the respective day in the early pregnant pig, suggesting that TNFα plays a role in accomplishing luteolysis in the porcine CL.  相似文献   

10.
Soon after ovulation, the newly formed corpus luteum (CL) starts secreting progesterone (P(4)), necessary for implantation. The CL, an ovarian transient endocrine organ, undergoes growth and regression throughout its life span. The objective of this study was to evaluate if caspase-3 mediates cell death in the equine cyclic luteal structures and relate it to luteal endocrine function. Blood and luteal tissue were collected during the breeding season after slaughter from 38 randomly assigned cycling mares. Luteal tissues were classified as corpora haemorrhagica (CH; n = 7); mid luteal phase corpora lutea (Mid-CL; n = 17); late or regressing corpora lutea (Late-CL; n = 9) and corpora albicans (CA; n = 5). Plasma P(4) concentration, determined by radioimmunoassay, showed a significant increase from CH to Mid-CL (p < 0.001), followed by a decrease to Late-CL (p < 0.001) and CA (p < 0.001). Caspase-3 processing and poly (ADP) ribose polymerase (PARP) degradation were assessed by western blotting. Active caspase-3 was twofold increased in Mid-CL, Late-CL and CA as compared with CH (p < 0.05). Immunocytochemistry also showed a significant increase in caspase-3 expression in large luteal cells in all structures when compared with CH (p < 0.05). Consistently, the endogenous caspase-3 substrate, PARP, was markedly degraded from CH to CA (p < 0.05). In fact, the ratio of full-length to degraded PARP showed a significant decrease from CH to Mid-CL, Late-CL and CA (p < 0.05). Finally, the decrease in P(4) from Mid- to Late-CL coincided with no further increases in apoptosis. In conclusion, these results suggest that the effector caspase-3 of apoptosis, might play an important role during luteal tissue involution in the mare, even though its relationship with P(4) remains to be elucidated.  相似文献   

11.
When animals do not become pregnant, regression of the corpus luteum (CL) is essential for normal cyclicity because it allows the development of a new ovulatory follicle. Luteal regression is caused by a pulsatile release of prostaglandin (PG) F from the uterus in the late luteal phase in most mammals including cattle. Although it has been proposed in ruminants that pulsatile PGF secretion is generated by a positive feedback loop between luteal and/or hypophyseal oxytocin and uterine PGF, the bovine endometrium may possess other mechanisms for initiation of luteolytic PGF secretion. There is increasing evidence that several cytokines mainly produced by immune cells modulate CL and uterine function in many species. Tumor necrosis factor‐α (TNF‐α) stimulates PGF output from bovine endometrium not only at the follicular phase but also at the late luteal phase. Administration of TNF‐α at a high concentration prolongs luteal lifespan, whereas administration of a low concentration of TNF‐α accelerates luteal regression in cows. The data obtained from the authors’ previous in vitro and in vivo studies strongly suggest that TNF‐α is a crucial factor in regulating luteolysis in cows. The authors’ recent study has shown that interleukin‐1α mediates PG secretion from bovine endometrium as a local regulator. Furthermore, interferon‐τ (IFN‐τ) suppresses the action of TNF‐α on PGF synthesis by the bovine endometrium in vitro, suggesting that IFN‐τ plays a luteoprotective role by inhibiting TNF‐α‐induced PGF production in early pregnancy. The purpose of the present review is to summarize current understanding of the endocrine mechanisms that regulate uterine function by cytokines during the estrous cycle and early pregnancy in cows.  相似文献   

12.
The objective of the present study was to investigate the influence of prostaglandin F(2alpha) (PGF (2alpha)) and nitric oxide (NO) on production of steroids and PGs by culturing bovine luteal cells obtained from ovaries on days 8-12 of the estrous cycle with a nitric oxide (NO) donor (Spermine NONOate), and a NO synthase inhibitor (N(G)-nitro-L-arginine methyl ester dihydrochloride: L-NAME). When the cells were exposed for 24 h to PGF(2alpha) (10(-7)-10(-5) M), production of progesterone (P(4)) increased significantly at all doses used (P<0.05). Moreover, PGF(2alpha) stimulated PGF(2alpha) production (P<0.01), depressed testosterone (T) production (P<0.05), but did not affect synthesis of prostaglandin E(2) (PGE(2)). Spermine NONOate decreased P(4) production to 66%, 47% and 34% of the control concentration after treatment with 10(-5) M, 10(-4) M and 10(-3) M, respectively, but did not affect T production, and increased PGF(2alpha) synthesis (P<0.05) and PGE(2) (P<0.01) at all doses used. L-NAME increased production of P(4) (P<0.01) but did not affect (P>0.05) secretion of T, PGF(2alpha) and PGE(2). Estradiol-17beta (E(2)) was detectable on the level of sensitivity of assay and was not significantly altered by any treatments. The overall results suggest that PGF(2alpha) and NO produced locally in bovine CL play roles in the regulation of the secretory function of the bovine CL as auto/paracrine factors.  相似文献   

13.
The corpus luteum (CL) of the estrous cycle in the cow is a dynamic organ which has a life time of approximately 17-18 days. The main function of the CL is to secrete a large amount of progesterone (P) thereby supporting the achievement of pregnancy. As the CL matures, the steroidogenic cells establish contact with many capillaries and the matured CL is composed of many vascular endothelial cells that account for up to 50% of all CL cells. The bovine CL produces several major angiogenic and vasoactive foctors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin-1 and -2 (ANPT-1 and -2), prostaglandin F (PGF), endothelin-1 (EDN1), angiotensin II (Ang II) and nitric oxide (NO). These factors regulate P secretion directly and/or indirectly within the CL. Moreover, different actions of PGF in the early cycle CL (non-luteolytic) and the mid cycle CL (luteolytic) may provide insight into the luteolysis cascade in the cow. The aim of the present review is to describe the current concepts of the local mechanisms for the cascade of development and regression of the bovine CL as regulated by luteal angiogenic and vasoactive factors.  相似文献   

14.
The corpus luteum (CL) undergoes regression by prostaglandin (PG)F(2alpha) from uterus and endothelin-1 (ET-1) plays an important role during luteolysis as a local mediator of PGF(2alpha) in the cow. Endothelial cells (EC) and luteal cells are main cell types making up the CL and their interactions are vital for CL function. We aimed to examine the relevance of interactions between EC and luteal cells on stimulation of genes which involved ET-1 synthesis by PGF(2alpha). We further focused the impact of maturity of luteal cells on the stimulation of the genes. To make a microenvironment which resembles the CL, we used bovine aortic endothelial cells (BAEC) and luteinizing or fully-luteinized granulosa cells (GC) and evaluated the effect of PGF(2alpha) on the expression for mRNA of ET-1 system by using real-time RT-PCR. PGF(2alpha) stimulated the expression of preproET-1 and endothelin converting enzyme-1 mRNA only in the co-cultures of BAEC with fully-luteinized GC, but not with luteinizing GC. The data suggest that interactions between BAEC and fully-luteinized GC enhance the capability of BAEC to produce ET-1 in response to PGF(2alpha). This mechanism may contribute to the local induction of luteolytic action of PGF(2alpha) which is dependent on the age/maturation of the CL.  相似文献   

15.
The aim of this study was to measure the direct release of nitric oxide (NO) from the porcine mitral valve using a NO microelectrode. Furthermore, the expression and localization of endothelial nitric oxide synthase (eNOS) in the mitral valve was studied using immunohistochemistry, Western blotting and RT-PCR. Results show that bradykinin increases NO release from mitral valves (DeltaBradykinin: 33.71 +/- 10.41 nm NO, P < 0.001, n = 10), whereas N-nitro-l-arginine methyl esther (l-NAME) decreases NO release when compared with basal level (Deltal-NAME: 82.69 +/- 15.66 nm NO, P < 0.005, n = 4). Both protein and mRNA expression of eNOS in mitral valves and in isolated valvular endothelial cells suggest that the NO release is mainly associated with the mitral valve endothelium. It is concluded that direct NO release from porcine mitral valves coincides with eNOS expression. This study documents useful techniques for investigations into the role of local NO release in mitral valve diseases.  相似文献   

16.
Although prostaglandin (PG) F is considered as the principal luteolytic factor, its action on the bovine corpus luteum (CL) is mediated by other intraovarian factors. Among them, nitric oxide (NO) seems to play a mandatory role in luteolysis. In this article we review the background and current status of work on possible roles of NO in the CL function, based on available information and our own experimental data. NO is produced in all three main types of bovine CL cells: steroidogenic, endothelial and immune cells. PGF and some luteolytic cytokines (tumor necrosis factor, interferon) increase NO production and stimulate NO synthase expression in the bovine CL. NO inhibits progesterone production, stimulates the secretion of PGF and leukotriene C4, reduces the number of viable luteal cells and, finally, participates in functional luteolysis. NO induces the apoptotic death of CL cells by the modulation of bcl‐2 family gene expression and the stimulation of caspase‐3 gene expression and activity. However, this simple molecule shows both luteolytic and luteotropic actions during the estrous cycle in ruminants. The aim of this overview is to present and discuss the recent findings crucial for understanding NO role in the process of CL regression in cattle.  相似文献   

17.
Although prostaglandin (PG) F2alpha is known to be a principal luteolytic factor, its action on the bovine corpus luteum (CL) is mediated by other intra-ovarian factors. Tumor necrosis factor-alpha (TNFalpha) and its specific receptors are present in the bovine CL with the highest expressions at luteolysis. TNFalpha in combination with interferon-gamma reduced progesterone (P4) secretion, increased PGF2alpha and leukotriene C4 (LTC4) production, and induced apoptosis of the luteal cells in vitro. Low concentrations of TNFalpha caused luteolysis, which resulted in a decreased level of P4, and increased levels of PGF2alpha, LTC4 and nitrite/nitrate (stable metabolites of nitric oxide-NO) in the blood. Inhibition of local NO production counteracts spontaneous and PGF2alpha-induced luteolysis. Therefore, NO is a likely candidate for the molecule that mediates PGF2alpha and TNFalpha actions during luteolysis. Both PGF2alpha and TNFalpha increase NO concentrations in blood, and stimulate NO synthase expression on protein level in the bovine CL cells. NO stimulates PGF2alpha and LTC4 secretion, inhibits P4 production and reduces the number of viable luteal cells. TNFalpha and NO induce apoptotic death of the CL by modulating expression of bcl-2 family genes and by stimulating expression and activity of caspase-3. The above findings indicate that TNFalpha and NO play crucial roles in functional and structural luteolysis in cattle.  相似文献   

18.
一氧化氮与卵母细胞发育   总被引:1,自引:0,他引:1  
一氧化氮(NO)是一种在生物体内具有多种生物学效应的气体自由基。论文根据国内外研究资料,介绍了NO的发现、生物学特性、作用途径,着重阐述了NO在卵巢组织中的分布以及NO与卵母细胞的发生、成熟、排卵和卵泡细胞凋亡与卵泡闭锁的关系。  相似文献   

19.
Prostaglandin F(2α) (PGF(2α)) induces luteolysis via a specific receptor, PTGFR. Although PTGFR mRNA expression in the bovine corpus luteum (CL) has been studied previously, changes in PTGFR protein and its localization are not fully understood during the life span of the CL. In addition to full-length PTGFR, several types of PTGFR isoforms, such as PTGFRα (type I) and PTGFRζ (type II), were reported in the bovine CL, suggesting isoform-specific luteal action. Full-length PTGFR mRNA in the bovine CL increased from the early to the mid-luteal phase and decreased during luteolysis, whereas PTGFR protein remained stable. PTGFR protein was localized to both luteal and endothelial cells and was expressed similarly during the life span of the CL. Like full-length PTGFR mRNA, PTGFRα and PTGFRζ mRNA also increased from the early to mid-luteal phases, and mRNA of PTGFRζ, but not PTGFRα, decreased in the regressing CL. During PGF(2α)-induced luteolysis, the mRNAs of full-length PTGFR, PTGFR,α and PTGFRζ decreased rapidly (from 5 or 15 min after PGF(2α) injection), but PTGFR protein decreased only 12 h later. Silencing full-length PTGFR using small interfering RNA prevented PGF(2α)-stimulated cyclooxygenase-2 (PTGS2) mRNA induction. By contrast, PGF(2α) could stimulate vascular endothelial growth factor A (VEGFA) mRNA even when full-length PTGFR was knocked down, thus suggesting that PGF(2α) may stimulate PTGS2 via full-length PTGFR, whereas VEGFA is stimulated via other PTGFR isoforms. Collectively, PTGFR protein was expressed continually in the bovine CL during the estrous cycle, implying that PGF(2α) could function throughout this period. Additionally, the bovine CL expresses different PTGFR isoforms, and thus PGF(2α) may have different effects when acting via full-length PTGFR or via PTGFR isoforms.  相似文献   

20.
Nitric oxide (NO) is a free radical gas with important roles in the host's immune response against viral infections. In this study, we examined the kinetics and distribution of nitric oxide synthase (NOS) expression during the early steps of infection of the porcine nervous system by the alphaherpesvirus pseudorabies virus (PRV). To this end, we examined changes in the expression of the three major NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS), by immunohistochemistry in the trigeminal ganglia and brain of pigs inoculated intranasally with a virulent PRV strain. The results obtained show that infection of the porcine nervous system by PRV induced a rapid and progressive increment in NOS expression that coincided in timing, location, and magnitude with those of virus propagation in the nervous tissue. A major finding of this study was that PRV caused not only nNOS and iNOS induction in a variety of cell types, but also eNOS up-regulation in endothelial cells and neurons; therefore, all possible sources of NO are activated and probably contribute to the overproduction of NO during infection with the neurotropic alphaherpesvirus PRV in its natural host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号