首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Southeast Asia is one of the richest reservoirs of biodiversity on earth and home to one of the highest concentrations of endemic species. Many protected areas (PA) have been established across the region, but to date no systematic evaluation of their efficacy has been published because no comprehensive dataset was available which could be fed into an analysis of conservation gaps. We collected the geographic range for 1086 mammal species of Southeast Asia and we built species-specific habitat suitability models for 901 of them. We performed two gap analyses (one based on a combination of distribution models and distribution ranges and one based on distribution ranges only) for each mammalian species, to evaluate the effectiveness of the existing network of PA and to identify priority regions and priority species for expanding and consolidating the network. Our results indicate that 7.5-8.2% of species are not covered by any PA, and 51.6-59.1% are covered only partially. These species are distributed throughout the entire study area and their conservation requires the creation of new PA that can help fill this existing conservation gap. This would be particularly important for species which are endemic of small islands, where species survival is often threatened by the presence of introduced species and habitat conversion. Yet PAs cannot be considered as the ending point of a conservation strategy, because overall, 34% of the species we analyzed (many of which already covered by existing PAs) were at risk of extinction when considering the IUCN red-list criteria. PAs should therefore be considered in a broader framework of all local ecological and socio-economic trends, including the growing human population, growing economy and infrastructure development.  相似文献   

2.
In many cases, the designation of Protected Areas (PAs) is not based on biological information, particularly in tropical regions where such information is generally lacking. Thus it is unclear whether tropical PAs are well-placed for conserving biodiversity currently, or under future climate change. We used reserve-design software (‘Zonation’) to investigate current and future conservation value of PAs of Thailand (N = 187 PAs, covering ∼20% of Thailand) in relation to forest-cover and butterfly diversity. Currently, PAs are about 2 °C cooler than non-PAs because PAs tend to occur at higher elevation (66% of land above 1000 m is protected compared with only 6% below 250 m). Temperature is predicted to increase in Thailand in future, but PAs are predicted to remain ∼2 °C cooler than non-PAs in future. We obtained modelled distribution data for 161 butterfly species (∼12% of national butterfly fauna), and used Zonation to rank areas (∼1 km2 grid resolution) based on species richness, complementarity, and forest cover. The conservation value of PAs was approximately twice that of non-PA areas, although many highly-ranked areas are not currently protected. The species richness of PAs was projected to decline by ∼30% in future, but the relative conservation rankings of individual PAs were projected to change very little. The preponderance of PAs in montane regions makes them well-placed to support forest species shifting from areas at lower elevation that become climatically unsuitable in future. By contrast, the conservation value of low-elevation PAs may decline in future if climate conditions become unsuitable for species.  相似文献   

3.
Biological reserves are established to protect natural resources and represent the diversity of environments found within a region. Unfortunately, many systems of protected areas do not proportionally capture the range of environmental conditions occupied by species and communities. Combinations of habitat loss and climate change may exacerbate these representational biases, and result in future distributions of environmental conditions that bare little resemblance to historic patterns. New protected areas need to be established to correct existing biases, and create conservation networks that remain representative despite climate change, habitat loss, and changes in species distributions. We demonstrate a new method to identify and prioritize habitat based on its value for improving bioclimatic representation. We assessed representation provided by existing protected areas for 301 Proteaceae species under historic and projected 2050 climate across the Cape Floristic Region in South Africa. The existing reserve system has relatively modest biases with respect to current species distributions and climate. However, if the system is not supplemented, protected areas in 2050 will capture an increasingly skewed sample of climatic conditions occupied by Proteaceae. These biases can be repaired through the systematic establishment of new protected areas, and many of the most valuable areas coincide with high priority ecosystem components and irreplaceable elements identified in the Cape Action for People and the Environmental conservation plan. Protecting these areas achieves nearly the best possible improvement in climatic representation while also meeting biodiversity representation goals.  相似文献   

4.
Many protected area (PA) systems have developed in response to socio-economic and aesthetic criteria and need to be modified to increase their conservation value. National gap analyses are an important step in describing and addressing this problem, so we sought to determine the representativeness of English PAs devoted to biodiversity conservation by using Natural Areas (NAs), elevation and PA boundary data. We found that National Nature Reserves (NNRs) and Sites of Special Scientific Interests (SSSIs) cover only 6.3% of England and are generally small, with respective median areas of 1.1 and 0.2 km2. The English PA system under-represents lowland areas and provides a median level of 2.5% protection for the NA types, with seventy nine per cent of NA types having less than 10% protection. Therefore, we suggest that England's PA system needs to be expanded, although this would probably entail modification of existing legislation to increase involvement by landowners. We also compare our results with previous appraisals that used species distribution record data and suggest that landscape-level analyses may give a more accurate and less positive assessment.  相似文献   

5.
Amphibians are an important and imperiled component of biodiversity. In this study we analyze the efficacy of Italian reserve network for protecting multiple amphibian species in a climate change scenario, considering both nationally designated areas and Natura 2000 sites. Our approach is based on ensemble niche modeling estimate of potential range shift under two carbon emission scenarios (A1FI and B1) and two dispersal assumptions. The predicted distributions were used to perform gap and irreplaceability analyses. Our findings show that the current Italian reserve network incompletely represents current amphibian diversity and its geographic pattern. The combination of the nationally designated protected areas and the Natura 2000 sites improves current representation of amphibians, but conservation targets based on geographic range extent are achieved for only 40% of species. Under the future scenarios, Natura 2000 sites become a crucial component of the protected areas system. Nonetheless, we predict that climate change decreases for many species the amount of suitable range falling into reserves, regardless of our assumptions about dispersal. We identify some currently unprotected areas that have high irreplaceability scores for species conservation and that maintain their importance under all the future scenarios we considered. We recommend designation of new reserves in these areas to help guarantee long-term amphibian conservation.  相似文献   

6.
One of the most efficient approaches for designing protected area (PA) networks is to use systematic conservation planning software. A number of software packages are available and all of them include a spatial cost or constraint component in their prioritisation algorithms, which allow the user to determine the level of fragmentation of the final PA system. Many conservation planners want to set minimum PA size thresholds, as small PAs are less viable and more expensive to manage, but this can only be achieved with existing software packages by repeatedly reducing the fragmentation levels of the PA system until every PA meets the threshold. Such an approach is inefficient because it increases the size of every PA, not just the smaller ones. Here we describe MinPatch, a software package developed to overcome this problem by manipulating outputs from the Marxan conservation planning software, so that every PA meets the user-defined size threshold. We then investigate the impacts of this approach with a dataset from the Maputaland Centre of Endemism, and find that using MinPatch to meet the PA thresholds is a much more efficient approach than using Marxan alone. We also show that setting a minimum PA threshold can have important effects on where new PAs are located when compared with Marxan outputs. Based on these results, we recommend that conservation planners use MinPatch whenever they want each PA in a network to meet a minimum size threshold.  相似文献   

7.
Protected areas (PAs) often depend on landscapes surrounding them to maintain flows of organisms, water, nutrients, and energy. Park managers have little authority over the surrounding landscape although land use change and infrastructure development can have major impacts on the integrity of a PA. The need for scientifically-based regional-scale land use planning around protected areas is acute in human-dominated landscapes to balance conservation goals with livelihood needs for fuelwood, fodder, and other ecosystem services. As a first step, we propose the designation of a “zone of interaction” (ZOI) around PAs that encompasses hydrologic, ecological, and socioeconomic interactions between a PA and the surrounding landscape. We illustrate the concept by delineating the ZOI in three Indian PAs - Kanha, Ranthambore, and Nagarahole - using remote sensing, population census, and field data. The ZOI in Ranthambore is three times the size of the park and is largely defined by the socioeconomic interactions with surrounding villages. Ranthambore is located in headwaters and wildlife corridors are largely severed. In Nagarahole, the ZOI is more than seven times larger than the park and includes upstream watershed and elephant corridors. Kanha’s ZOI is approximately four times larger than the park and is mostly defined by contiguous surrounding forest. The three examples highlight the differing extents of ZOIs when applying equivalent criteria, even though all are located in densely-populated landscapes. Quantitative understanding of which activities (e.g. collection of forest products, grazing, road construction, tourism development) and which locations within the ZOI are most crucial to conservation goals will enable improved land use planning around PAs in human-dominated landscapes.  相似文献   

8.
Large mammal population declines in Africa’s protected areas   总被引:1,自引:0,他引:1  
Protected areas (PAs) are the cornerstone of global conservation efforts but their performance in maintaining populations of their key species remains poorly documented. Here, we address this gap using a new database of 583 population abundance time series for 69 species of large mammals in 78 African PAs. Population abundance time series were aggregated to form a multi-species index of overall change in population abundance. The index reveals on average a 59% decline in population abundance between 1970 and 2005. Indices for different parts of Africa demonstrate large regional differences, with southern African PAs typically maintaining their populations and western African PAs suffering the most severe declines. These results indicate that African PAs have generally failed to mitigate human-induced threats to African large mammal populations, but they also show some successes. Further development of our index could help to measure future progress towards post-2010 targets for reducing biodiversity loss.  相似文献   

9.
Biological reserves are intended to protect species, communities, and ecosystems in human-dominated landscapes. However, existing protected areas represent only relatively small, geographically biased samples of species and habitats. Climate change and habitat loss can exacerbate these biases and the net result is a small, skewed subset of historic environmental conditions. We developed a general model to improve the representation of environmental conditions across the range of at-risk species or any other elements targeted for conservation. We implemented the model as an integer linear-programming problem to select additional areas to complement existing reserves and create new portfolios that are bioclimatically representative across a range of climatic scenarios. We demonstrated the use of the model for a small dataset including two hydrologic variables across the range of five species of fairy shrimp (Anostraca) in the Central Valley ecoregion of California, USA under three climate scenarios. The bioclimatic representation model identified solutions that meet biodiversity representation goals and substantially improve bioclimatic representation at minimal additional cost in terms of total land selected for a conservation portfolio. Additional constraints rewarding bioclimatic representation under two conflicting climate scenarios resulted in only a small decrease in the performance of solutions with respect to current climate. We conclude that this model provides a general tool for improving bioclimatic representation, and results from the Central Valley case study suggest an encouraging, testable hypothesis that climatically robust bioclimatic representation can be achieved at negligible marginal costs.  相似文献   

10.
Projection of species-response to climate change scenarios is a key tool in conservation strategy. Previous studies have projected climate change impacts for animal and vascular plant species using the ‘bioclimatic envelope’ approach. In this study we apply the principles of the bioclimatic envelope approach to examine the response of 26 lichen species whose distributions are well characterised within the British Isles. Lichen species were subjectively selected based on their contrasting distributions, and their ecological traits, which fulfilled as closely as possible the assumptions of the bioclimatic envelope method. We used a split-sampling approach to model the species-response to present-day climate using confirmed records and pseudo-absences as input data, and testing each model against an ‘independent’ calibration dataset. Predictive models were projected using standard climate change scenarios comprising the UKCIP02 data. Projections indicate broad trends in the response of species placed into contrasting biogeographic groups, and point to the potential for significant change in the spatial distribution of the British lichen flora. We highlight putative threats to montane and Boreal elements of the lichen flora, and emphasise significant uncertainty in projected response of the UK’s internationally important oceanic flora.  相似文献   

11.
To be effective, reserve networks should represent all target species in protected areas that are large enough to ensure species persistence. Given limited resources to set aside protected areas for biodiversity conservation, and competing land uses, a prime consideration for the design of reserve networks is efficiency (the maximum biodiversity represented in a minimum number of sites). However, to be effective, networks may sacrifice efficiency. We used reserve selection algorithms to determine whether collections of existing individual protected areas in Canada were efficient and/or effective in terms of representing the diversity of disturbance-sensitive mammals in Canada in comparison to (1) an optimal network of reserves, and (2) sites selected at random. Unlike previous studies, we restricted our analysis to individual protected areas that met a criterion for minimum reserve size, to address issues of representation and persistence simultaneously. We also tested for effectiveness and efficiency using historical and present-day data to see whether protected area efficiency and/or effectiveness varied over time. In general, existing protected areas did not effectively capture the full suite of mammalian species diversity, nor are most existing protected areas part of a near-optimal solution set. To be effective, Canada’s network of reserves will require at minimum 22 additional areas of >2700 km2. This study shows that even when only those reserves large enough to be effective are considered, protected areas systems may not be representative, nor were they representative at the time of establishment.  相似文献   

12.
Global climate change poses an immense challenge for conservation biologists seeking to mitigate impacts to species and ecosystems. Species persistence will depend on geographic range shifts or adaptation in response to warming patterns as novel climates and community assemblages arise. Assisted colonization has been proposed as a method for addressing these challenges. This technique, which consists of transporting species to a new range that is predicted to be favorable for persistence under future climate scenarios, has become the subject of controversy and discussion in the conservation community due to its highly manipulative nature, questions about widespread feasibility, and uncertainty associated with the likelihood of translocated species becoming invasive. We reviewed the discussion and criticism associated with assisted colonization and sought to identify other conservation techniques that also display potential to promote the colonization and adaptation of species in response to climate change. We propose an integrated conservation strategy that includes management for habitat connectivity, conservation genetics, and when necessary, assisted colonization of species that are still unable to shift their ranges even given implementation of the above standard conservation approaches. We argue that this integrated approach will facilitate persistence for a larger proportion of species than is possible by solely using assisted colonization. Furthermore, a multi-faceted approach will likely reduce the uncertainty of conservation outcomes and will become increasingly necessary for conservation of biodiversity in a changing climate.  相似文献   

13.
Protected areas are the most important tool for the conservation of biodiversity. However, many species are area-demanding and their populations seldom meet their space requirements in reserves. In this context, the unprotected exterior becomes an important part of their home range, and variations in habitat quality of the surroundings of a protected area might affect the dynamics of populations. Using a spatially explicit simulation model, we studied the effect of the surrounding landscape of a protected area on the density and persistence of a predator population inhabiting inside the reserve in different conditions of environmental variability. We simulated individuals of a predator population, their herbivorous prey and a vegetative substrate in a landscape comprised of a square protected area and different types of habitat quality outside the reserve. We studied the combination of three substrate qualities of protected area (inside) with three of the landscape context and three levels of variability of productivity. Our results showed that there were strong effects of both the relative quality of the surrounding landscape and of the environmental variability on the density and persistence of the simulated population inside the protected area. More importantly, we showed that complex patterns emerge when spatial heterogeneity and temporal variability interact with population dynamics. Specifically, under high environmental variability, when the protected area had a high habitat quality, the highest population persistence was not attained when the exterior was also of high quality, but when the surroundings had an intermediate quality. The latter result suggests that, under the mentioned conditions, small enhancements in the quality of the matrix may have, for some species, better effects on increasing persistence in small reserves than large and costly enhancements.  相似文献   

14.
Rapid land-use and climate changes are projected to cause broad-scale global land-cover transformation that will increase species extinction rates. We assessed the exposure of globally threatened plant biodiversity to future habitat loss over the first half of this century by testing country-level associations between threatened plant species richness and future habitat loss owing to land-use and climate changes, separately. In countries overlapping Biodiversity Hotspots, plant species endangerment increases with climate change-driven habitat loss. This association suggests that many currently threatened plant species will become extinct owing to anthropogenic climate change in the absence of potentially mitigating factors such as natural and assisted range shift, and physiological and genetic adaptations. Countries rich in threatened species, which are also projected to have relatively high total future habitat loss, are concentrated around the equator. Because poverty and poor governance can compromise conservation, we considered the economic condition and quality of governance with the degree of plant species endangerment and future habitat loss to prioritize countries based on conservation need. We identified Angola, Cuba, Democratic Republic of Congo, Ethiopia, Kenya, Laos, Madagascar, Myanmar, Nepal, Tajikistan, and Tanzania as the countries in greatest need of conservation assistance. For conservation endeavors to be effective, the conservation capacity of these high-need countries needs to be improved by assisting political stability and economic sustainability. We make policy recommendations that aim to mitigate climate change, promote plant species conservation, and improve the economic conditions and quality of governance in countries with high conservation need.  相似文献   

15.
Gap analysis is a protocol for assessing the extent to which valued biodiversity attributes are represented within protected areas. Such analysis involves overlaying the distribution of biodiversity features (e.g. species) with protected areas, but the protocol entails arbitrary assumptions that affect the outcome of the assessments. In particular, since species’ distributions are usually mapped at a coarser resolution than protected areas, rules have to be defined to match the two data layers. Typically, a grid cell is considered protected if a given proportion is covered by protected areas. Because the effectiveness of protected areas is dependent on the definition of such arbitrary proportions (i.e., thresholds), errors of commission and omission in the level of species’ representation are bound to exist. We propose an alternative approach whereby the contribution of a cell for the representation of species is defined as the expected value of a hyper-geometric random variable. We compare the conventional approach based on fixed thresholds with this new probability-based approach for both static and dynamic conservation scenarios, using a virtual dataset and a 100-plant-species’ dataset for Iberian Peninsula. Results support the view that traditional fixed thresholds yield inconsistent results. Because species present different distributional patterns coinciding differently with protected areas, species-specific and time-specific thresholds should be used. Our approach enables to easily obtain these more adequate threshold values, thus offering a promising method for gap analyses. Future studies should seek to evaluate the performance of this method empirically in different conservation planning contexts.  相似文献   

16.
Efficient allocation of conservation resources will be achieved only if the priorities for biodiversity conservation – the “hotspots” – are correctly defined. To achieve this we need to pinpoint the main determinants of species diversity. Area, energy available and latitude are thought to be the most important determinants of species richness. Area is clearly the most important, but the relative importance of the other two is uncertain. To test the relative importance of energy available and latitude, data on the species richness of orchids was collected for various countries in the world, the influence of area factored out and the residuals correlated with energy available at these countries and with latitude. This was performed for both total area and that of the protected areas for the 67 countries from five continents, in order to determine which gives a better prediction. We show that – at the large scale considered – area is always very important, latitude is more important than energy available and the size of the protected areas gives a better fit than the total area of the country in most cases. This implies that conservation efforts should be directed to maximizing the size of the protected areas in each country.  相似文献   

17.
How populations from different regions within the distribution of a species contribute to the adaptive potential and survival of that species has important implications for formulating conservation actions. We test assumptions of concepts on geographic population structure (e.g. central-marginal concept and ‘rear edge versus leading edge’ model) that could be used to inform conservation of plant species under climatic changes. We analyze a comprehensive dataset of demographic traits (e.g. population size, flowering, δ13C of plant leaves) of up to 32 sites of Himantoglossum hircinum (L.) Spreng. (Orchidaceae) located within six sub-regions of its European distribution range. Soil and climate parameters are employed as environmental predictors of variation in measured population traits. Climate is the main driver of demographic variability overriding central-marginal gradients that might be present. Warming of the climate at high latitudes paves the way for northward range expansion of species. Populations at the north and north-eastern range peripheries partly show exponential population growth and high genetic diversity and are likely to be the source of immigrants for colonization of newly suitable habitats as the climate continues to change. In recent times, populations at the southern range periphery have suffered from intensification of land use and decreasing rainfall, but in the case of Southern Italy are important because they contain genetically unique traits. Populations at both, ‘leading’ and ‘rear’, edges ought to be at the focus of conservation planning. Different conservation strategies are proposed at opposing species borders taking into account spatial variation in population needs on a geographic scale, projected population response to expected environmental changes and genetic characteristics.  相似文献   

18.
In the last 40 years, Italy has seen important changes: human pressure is increasing in flat and coastal areas while internal mountainous areas are being abandoned and naturally reforested. These changes have substantial impacts on the biodiversity of the region but no conservation strategy has ever explicitly considered them, and no systematic assessment of the existing protected areas has been carried out. We used a combination of distribution models and extents of occurrence to perform a gap analysis and an irreplaceability analysis. We evaluated the effectiveness of the protected areas for the conservation of terrestrial vertebrates, and we identified regions, species, and strategies that appear to be priorities for expanding and consolidating the existing network. The existing protected areas cannot be considered fully representative, and this is especially true for Sardinia where many of the gap species are located. The Alps and the Apennines represent the strongholds of species diversity, but most of the species of conservation interest are concentrated in the Mediterranean part of the peninsula, as well as in small areas of the plains, where human pressure is higher. Biodiversity and human presence are functionally linked through traditional agriculture and pasture and the only option for conservation is that of considering human presence and activities as an integral part of the system. In a human dominated landscape, protected areas must be planned and managed in conjunction with the matrix in which they are embedded and in the context of the environmental history of the region.  相似文献   

19.
An approach to an overall management planning for the conservation of endangered species within protected natural areas is presented, based mainly on the development of methods for the diagnosis of the conservation status and the identification of critical life cycle stages (phenophases) of target species. This model includes other aspects inherent in the overall planning of a protected area so as to match its technical, human and economic resources in terms of research and conservation. We provide examples of some island endemics that are included in the “Recovery Plans for the Endangered Plants in the Canary Islands National Parks”. The use of demography and genetics is particularly emphasised. We propose reintroductions as one of the most important tools for the management and conservation of endangered plants and the use of “system dynamics” tools as an alternative to traditional population matrix analysis. We provide examples of the application of system dynamics to population dynamics studies and to the design of management actions.  相似文献   

20.
Population size is a major determinant of extinction risk. However, controversy remains as to how large populations need to be to ensure persistence. It is generally believed that minimum viable population sizes (MVPs) would be highly specific, depending on the environmental and life history characteristics of the species. We used population viability analysis to estimate MVPs for 102 species. We define a minimum viable population size as one with a 99% probability of persistence for 40 generations. The models are comprehensive and include age-structure, catastrophes, demographic stochasticity, environmental stochasticity, and inbreeding depression. The mean and median estimates of MVP were 7316 and 5816 adults, respectively. This is slightly larger than, but in general agreement with, previous estimates of MVP. MVPs did not differ significantly among major taxa, or with latitude or trophic level, but were negatively correlated with population growth rate and positively correlated with the length of the study used to parameterize the model. A doubling of study duration increased the estimated MVP by approximately 67%. The increase in extinction risk is associated with greater temporal variation in population size for models built from longer data sets. Short-term studies consistently underestimate the true variances for demographic parameters in populations. Thus, the lack of long-term studies for endangered species leads to widespread underestimation of extinction risk. The results of our simulations suggest that conservation programs, for wild populations, need to be designed to conserve habitat capable of supporting approximately 7000 adult vertebrates in order to ensure long-term persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号