首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose  

Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China.  相似文献   

2.
Litter decomposition is a major fundamental ecological process that regulates nutrient cycling, thereby affecting net ecosystem carbon (C) storage as well as primary productivity in forest ecosystems. Litter decomposes in its home environment faster than in any other environment. However, evidence for this phenomenon, which is called the home-field advantage (HFA), has not been universal. We provide the first HFA quantification of litter decomposition and nutrient release through meta-analysis of published data in global forest ecosystems. Litter mass loss was 4.2 % faster on average, whereas nitrogen (N) release was 1.7 % lower at the home environment than in another environment. However, no HFA of phosphorus (P) release was observed. Broadleaf litter (4.4 %) had a higher litter mass loss HFA than coniferous litter (1.0 %). The positive HFA of N release was found in the coniferous litter. Mass loss HFA was significantly and negatively correlated with the initial lignin:N litter ratio. The litter decomposition and N release HFAs were obtained when mesh size ranged from 0.15 mm to 2.0 mm. The HFA of litter decomposition increased with decomposition duration during the early decomposition stage. The HFA of N release was well correlated with mass loss, and the greatest HFA was at mass loss less than 20 %. Our results suggest that the litter decomposition and N release HFAs are widespread in forest ecosystems. Furthermore, soil mesofauna is significantly involved in the HFA of litter decomposition.  相似文献   

3.
Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium > beetle-affected Tamarix > natural Tamarix. Altered nutrient dynamics with beetle introduction as well as the rapid decomposition rates exhibited by L. latifolium are consistent with vulnerability to secondary invasion. In this desert ecosystem, decomposition and nutrient release were strongly affected by litter type and much less so by UVB exposure.  相似文献   

4.
为探索加快毛白杨落叶分解的途径, 采取室内培养的方法研究了添加铵态氮、硝态氮及混合氮对三倍体毛白杨落叶分解速度和主要营养元素释放的影响。结果表明, 添加氮源对三倍体毛白杨落叶分解有一定的促进作用, 不同氮源之间差异显著。140 d后, 施加铵态氮、混合氮和硝态氮的落叶分解率分别为46.0%、30.0%和28.8%, 而对照为27.4%, 处理间差异显著; Olson指数方程拟合结果表明,施加铵态氮、混合氮和硝态氮后落叶分解50%和95%所需时间分别为175 d、316 d、301 d和781 d、1 238 d、1 627 d,比对照分别缩短49.7%、9.2%、13.5%和52.0%、23.9%、14.1%。同时, 添加氮源后对落叶中N、P、K元素的释放影响有所不同, 其中对K元素的释放基本没有产生影响, 随着分解的进行, 不同处理落叶中K元素浓度逐渐降低。但添加氮源对N、P元素的释放产生了显著影响, 与对照相比, 添加氮源缩短了N、P释放的富集时间, 降低了富集的幅度;N、P的富集时间均从对照的21 d缩短到处理的7 d; N的富集幅度从对照为初始浓度的1.94倍降低到处理为初始浓度的1.32~1.56倍, P的富集幅度从对照为初始浓度的2.98倍降低到处理为初始浓度的1.70~2.26倍。因此添加氮源加快了落叶的分解速度,促进了落叶中N、P的释放, 有利于加快养分循环, 提高立地生产力。  相似文献   

5.
The litter decomposition, nutrient patterns, as well as nutrient release and soil nutrient contents were determined in response to nitrogen (N) and phosphorus (P) addition and drought treatments following long-term vegetation recovery. The litter decomposition rate decreased with vegetation recovery, due to changes in litter quality, soil nutrient availability, and soil enzyme activity. Nitrogen addition promoted litter decomposition in the early recovery stages but inhibited decomposition in the later stages, indicating a shift in the nutrient limitations to litter decomposition with succession. Neither N nor P addition had any effect on the release of litter carbon (C), whereas N addition inhibited litter N release. In addition, drought decreased litter decomposition and nutrient release during the vegetation recovery process. Our findings suggest that litter quality, soil nutrient availability, and moisture at different vegetation recovery stages should be considered when modeling the C cycle and nutrient dynamics in these ecosystems.  相似文献   

6.
Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early-successional stages. Since most fertilization studies have focused on mature boreal forests, the response of burned boreal ecosystems to increased nutrient availability is unclear. Therefore, we used a nitrogen (N) fertilization experiment to test how C cycling in a recently-burned boreal ecosystem would respond to increased N availability. We hypothesized that fertilization would increase rates of decomposition, soil respiration, and the activity of extracellular enzymes involved in C cycling, thereby reducing soil C stocks. In line with our hypothesis, litter mass loss increased significantly and activities of cellulose- and chitin-degrading enzymes increased by 45-61% with N addition. We also observed a significant decline in C concentrations in the organic soil horizon from 19.5 ± 0.7% to 13.5 ± 0.6%, and there was a trend toward lower total soil C stocks in the fertilized plots. Contrary to our hypothesis, mean soil respiration over three growing seasons declined by 31% from 78.3 ± 6.5 mg CO2-C m−2 h−1 to 54.4 ± 4.1 mg CO2-C m−2 h−1. These changes occurred despite a 2.5-fold increase in aboveground net primary productivity with N, and were accompanied by significant shifts in the structure of the fungal community, which was dominated by Ascomycota. Our results show that the C cycle in early-successional boreal ecosystems is highly responsive to N addition. Fertilization results in an initial loss of soil C followed by depletion of soil C substrates and development of a distinct and active fungal community. Total microbial biomass declines and respiration rates do not keep pace with plant inputs. These patterns suggest that N fertilization could transiently reduce but then increase ecosystem C storage in boreal regions experiencing more frequent fires.  相似文献   

7.
Purpose

Understanding ecosystem processes such as litter decomposition in response to dramatic land-use change is critical for modeling and predicting carbon (C) cycles. However, the patterns of litter decomposition along with long-term secondary succession (over 100 years) are not well reported, especially concerning nutrient limitations on litter decomposition.

Materials and methods

To clarify the response of litter decomposition to changes in soil nutrient availability, we conducted four incubation experiments involving soil and litter and nutrient addition from different successional stages and investigated the changes in microbial respiration and litter mass loss.

Results and discussion

Our results revealed that microbial respiration increased with succession without any litter addition (1.19~1.73 mg C g?1 soil), and litter addition significantly promoted microbial respiration (16.5~72.9%), especially in the early successional stage (grassland and shrubland). The decomposition rate of the same litter decreased with succession. In addition, nitrogen (N) and phosphorus (P) addition showed significant effects on litter decomposition and microbial respiration; P addition promoted litter decomposition (2.4~15.3%) and microbial respiration (10.1~34.5%) in all successional stages, while N addition promoted litter decomposition (4.0~10.3%) and microbial respiration (5.4~27.2%) in all except the last stage of succession, which showed a negative effect on litter decomposition (??7.5%) and microbial respiration (??6.1%), indicating possible N saturation of litter decomposition and microbial respiration.

Conclusions

This work highlights that soil nutrient availability and successional stages need to be taken into account to predict the changes to litter decomposition in response to global changes.

  相似文献   

8.
Herbivores can indirectly affect ecosystem productivity and processes such as nutrient cycling and decomposition by altering the quantity and quality of resource inputs into the decomposer subsystem. Here, we tested how browsing by red deer impacts on the decomposition of, and nutrient loss from, birch leaf litter (Betula pubescens), and tested whether effects of browsing on these measures were direct, via alteration of the quality of leaf litter, or indirect through long term impacts of deer browsing on soil biological properties. This was tested in a microcosm experiment using soil and litter taken from inside and outside three individual fenced exclosures located at Creag Meagaidh National Nature Reserve, Scotland. We found that litter of un-browsed trees decomposed faster than that from browsed trees, irrespective of whether soil was sourced from inside or outside exclosures. These findings suggest that effects of browsing on litter quality, rather than on soil biological properties, are the key determinant of enhanced decomposition in un-browsed areas of this ecosystem. Despite this, we found no consistent impact of browsing on litter C:N, a key indicator of litter quality; however, the rate of litter decomposition was linearly and negatively related to litter C:N when analysed across all the sites, indicating that this measure, in part, contributed to variation in rates of decomposition in this ecosystem. Our findings indicate that herbivores impact negatively on rates of decomposition in this ecosystem, ultimately retarding nutrient cycling rates, and that these effects are, in part, related to changes in litter quality.  相似文献   

9.
Bamboos are one of the fast-growing and multiple use species in the world, and thus bamboo forests/plantations play an important role in C sequestration at regional and global levels. We studied aboveground litterfall, litter decomposition and nutrient dynamics for two years in two subtropical bamboo ecosystems in Southwest China so as to test the hypothesis that litter quality determine the rate and nutrient dynamics during decomposition of different litter fractions. Mean annual total aboveground litter production ranged from 494 to 434 g m-2 in two bamboo stands (P stand, dominated by Pleioblastus amarus and H stand, hybrid bamboo dominated by Bambusa pervariabilis x Dendrocalamopsis daii). Bulk (-80%) of litter production was contributed by leaf litter in two stands followed by twigs and sheathes. Different litter fractions represented considerable variations in the rates of mass loss and nutrient release. Variation of the mass remaining after 2 years of decomposition was significantly explained by initial C/N ratio and initial P concentration. Initial concentrations of N, P, Ca, and Mg explained 57.9%, 95.0%, 99.8% and 98.1%, respectively, of the variations of these elements mass remaining after 2 years of decomposition. The patterns of nutrient dynamics and the final amount remaining were mainly determined by their initial litter substrate quality in tl~ese two subtropical bamboo plantations.  相似文献   

10.
In peatlands the reduced decomposition rate of plant litter is the fundamental mechanism making these peat-accumulating ecosystems effective carbon sinks. A better knowledge of litter decomposition and nutrient cycling is thus crucial to improve our predictions of the effects of anthropogenic perturbation on the capacity of peatlands to continue to behave as carbon sinks. We investigated patterns of plant litter decomposition and nutrient release along a minerotrophic-ombrotrophic gradient in a bog on the south-eastern Alps of Italy. We determined mass loss as well as P, N, K, and C release of seven vascular plant species and four moss species after 1 year in both native and transplanted habitats. Hence, differences in litter decay were supposed to reflect the degree of adaptability of microbial communities to litter quality. Polyphenols/nutrient and C/nutrient quotients appeared as the main parameters accounting for decomposition rates of Sphagnum litter. In particular, litter of minerotrophic Sphagnum species decomposed always faster than litter of ombrotrophic Sphagnum species, both in native and transplanted habitats. Decomposition rates of vascular plant litter in native habitats were always higher than the corresponding mass loss rates of Sphagnum litter. Minerotrophic forbs showed the fastest decomposition both in native and transplanted habitats in accordance with low C/P and C/N litter quotients. On the other hand, C/P quotient seems to play a primary role also in controlling decomposition of graminoids. Decomposition of deciduous and evergreen shrubs was negatively related to their high lignin content. Nitrogen release from Sphagnum litter was primarily controlled by C/N quotient, so that minerotrophic Sphagnum litter released more N than ombrotrophic Sphagnum litter. Overall, we observed slower N release from litter of ombrotrophic vascular plant species compared to minerotrophic vascular plant species. No single chemical parameter could predict the variability associated with different functional groups. The release of K was very high compared to all the other nutrients and rather similar between ombrotrophic and minerotrophic litter types. In Sphagnum litter, a higher C/P quotient was associated with a slower P mineralisation, whereas a faster P release from vascular plant litter seems primarily associated with lower C/P and polyphenols/P quotients.  相似文献   

11.
It is widely accepted that microarthropods influence decomposition dynamics but we know relatively little about their effects on litter chemistry, extracellular enzyme activities, and other finer-scale decomposition processes. Further, few studies have investigated the role of individual microarthropod species in litter decomposition. The oribatid mite Scheloribates moestus Banks (Acari: Oribatida) is abundant in many U.S. ecosystems. We examined the potential effects of S. moestus on litter decomposition dynamics and chemical transformations, and whether these effects are influenced by variation in initial litter quality. We collected corn and oak litter from habitats with large populations of S. moestus and in microcosms with and without mites measured respiration rates, nitrogen availability, enzyme activities, and molecular-scale changes in litter chemistry. Mites stimulated extracellular enzyme activities, enhanced microbial respiration rates by 19% in corn litter and 17% in oak litter over 62 days, and increased water-extractable organic C and N. Mites decreased the relative abundance of polysaccharides in decomposing corn litter but had no effect on oak litter chemistry, suggesting that the effects of S. moestus on litter chemistry are constrained by initial litter quality. We also compared the chemistry of mite feces to unprocessed corn litter and found that feces had a higher relative abundance of polysaccharides and phenols and a lower relative abundance of lignin. Our study establishes that S. moestus substantially changes litter chemistry during decomposition, but specific effects vary with initial litter quality. These chemical transformations, coupled with other observed changes in decomposition rates and nutrient cycling, indicate that S. moestus could play a key role in soil C cycling dynamics.  相似文献   

12.
Elevated nitrogen (N) deposition can affect litter decomposition directly, by raising soil N availability and the quantity and quality of litter inputs, and indirectly by altering plant community composition. We investigated the importance of these controls on litter decomposition using litter bags placed in annual herb based microcosm ecosystems that had been subject to two rates of N deposition (which raised soil inorganic N availability and stimulated litter inputs) and two planting regimes, namely the plant species compositions of low and high N deposition environments. In each microcosm, we harvested litter bags of 10 annual plant species, over an 8-week period, to determine mass loss from decomposition. Our data showed that species differed greatly in their decomposability, but that these differences were unlikely to affect decomposition at the ecosystem level because there was no correlation between a species’ decomposability and its response to N deposition (measured as population seed production under high N, relative to low N, deposition). Litter mass loss was ~2% greater in high N deposition microcosms. Using a comprehensive set of measurements of the microcosm soil environments, we found that the most statistically likely explanation for this effect was increased soil enzyme activity (cellobiosidase, β-glucosidase and β-xylosidase), which appears to have occurred in response to a combination of raised soil inorganic N availability and stimulated litter inputs. Our data indicate that direct effects of N deposition on litter input and soil N availability significantly affected decomposition but indirect effects did not. We argue that indirect effects of changes to plant species composition could be stronger in natural ecosystems, which often contain a greater diversity of plant functional types than those considered here.  相似文献   

13.
森林凋落物分解研究进展   总被引:15,自引:0,他引:15  
 森林凋落物分解是森林生态系统养分生物循环的重要环节,而分解过程中所释放的CO2是全球碳素收支的重要组分,开展森林凋落物分解研究是充分认识森林生态系统结构和功能的基础。研究认为:凋落物分解的预测指标可分为3类,即环境指标(如实际蒸散量)、凋落物物理质量(如叶抗张强度)和化学质量指标(如C/N比、木质素/N比和C/P比等);凋落物分解过程中养分释放机制极其复杂,养分动态模式主要有淋溶—释放、淋溶—富集—释放和富集—释放3种,并因凋落物种类、分解阶段和元素本身性质的不同而异;凋落物混合分解并非单一树种分解的简单叠加,因树种组成和比例不同,基质的化学组成会发生变化,从而影响分解者的多样性、丰富度和生理活性,进而直接和间接地影响其分解速率;凋落物混合分解中可能存在无效应、促进效应和抑制效应;现有的研究结果显示,凋落物混合分解的适宜比例应与群落中不同树种的种群比例相一致;CO2浓度升高不仅影响凋落物的化学性质,而且与分解环境中土壤的生物活性密切相关,但CO2浓度升高并不改变凋落物质量与分解速率之间的关系;越来越多的研究显示,CO2浓度升高的环境下,植物群落的物种组成会产生变化,这种变化对养分循环速率的影响远大于单纯大气CO2浓度变化的影响。  相似文献   

14.
Global atmospheric nitrogen deposition has increased steadily since the 20th century, and has complex effects on terrestrial ecosystems. This work synthesized results from 54 papers and conducted a meta-analysis to evaluate the general response of 15 variables related to plant root traits to simulated nitrogen deposition. Simulated nitrogen deposition resulted in significantly decreasing fine root biomass (<2 mm diameter; −12.8%), while significantly increasing coarse root (≥2 mm diameter; +56.5%) and total root (+20.2%) biomass, but had no remarkable effect on root morphology. This suggests that simulated nitrogen deposition could stimulate carbon accumulation in root biomass. The root: shoot ratio decreased (−10.7%) suggests that aboveground biomass was more sensitive to simulated nitrogen deposition than root biomass. In addition, simulated nitrogen deposition increased the fine root nitrogen content (+17.6%), but did not affect carbon content, and thus decreased the fine root C:N ratio (−13.5%). These changes delayed the decomposition of roots, combined with increasing of the fine root turnover rate (+21.4%), which suggests that simulated nitrogen deposition could increase carbon and nutrient retention in the soil. Simulated nitrogen deposition also strongly affected the functional traits of roots, which increased root respiration (+20.7%), but decreased fungal colonization (−17.0%). The effects of simulated nitrogen deposition on the plant root systems were dependent on ecosystem and climate zone types, because soil nutrient conditions and other biotic and abiotic factors vary widely. Long-term simulated experiments, in which the experimental N-addition levels were less than twofold of the average of atmospheric nitrogen deposition, would better reflect the response of ecosystems under atmospheric nitrogen deposition. These results provide a synthetic understanding of the effects of simulated nitrogen deposition on plant root systems, as well as the mechanisms underlying the effects of simulated nitrogen deposition on plants and the terrestrial ecosystem carbon cycle.  相似文献   

15.
Jarrah (Eucalyptus marginata Donn ex Smith) forest grows on poor soils with low stores of plant-available nutrients. We evaluated the impact of fertilizers on nutrient cycling in soil under Jarrah forest using a field study with three rates of P (0, 50, 200 kg P ha–1) and three rates of N (0, 100, 200 kg N ha–1) in a full factorial design. Litterfall was significantly increased by N application (30% relative to controls) in the first 2 years after treatment and by P application in the second year. The amounts of N, P, K, Ca and Mg in litterfall were also increased significantly by both N and P fertilizer. Although fertilizer treatments did not affect the total amount of litter accumulated on the forest floor over 4–5 years after application, there were large treatment differences in the amounts of N and P stored in the forest floor. Microbial respiration in litter was significantly greater (19%) on P-treated plots relative to controls, but this increase did not translate into increased decomposition rates as measured in long-term (5-year) mesh-bag studies. The results indicate that factors other than nutrition are mainly responsible for controlling the rate of decomposition in this ecosystem. Application of P, in particular, resulted in substantial accumulation of P in forest floor litter over 5 years. This accumulation was partly a result of the deposition of P in litterfall, but was also probably a result of translocation of P from the mineral soil. During the 5-year decomposition study, there was no net release of P from leaf litter and, at the highest rate of P application, the amounts of P stored in forest floor litter were more than four-fold greater than in fresh litter. Regular fire, a common phenomenon in these ecosystems, may be an important P-mobilizing agent for enhancing plant P uptake in these forests.  相似文献   

16.
外源氮输入对土壤有机碳矿化和凋落物分解的影响   总被引:3,自引:0,他引:3  
目前,由人类活动造成的陆地生态系统氮输入量已经远远超过了其自身的生物固氮,外源氮输入的增多已经并将继续对土壤有机碳矿化和凋落物分解产生影响。本文分析了国内外有关氮输入增多对土壤有机碳矿化和凋落物分解的影响及其机理:由于研究点环境状况不同,凋落物性质的差异和分解阶段的不同等原因,氮输入对土壤有机碳矿化的结果主要表现为抑制或促进作用;对凋落物分解的影响表现为促进、无影响和抑制三种效果,有关其作用机理还有待进一步深入研究。着重指出对于作为大气CO2"汇"的沼泽湿地,氮输入的增多能够对其碳"汇"功能产生影响,因此进行氮输入对湿地土壤有机碳矿化和凋落物分解方面的研究,对于探讨湿地碳循环对外源氮输入的响应及其机理非常重要。  相似文献   

17.

Purpose

The rate of litter decomposition can be affected by a suite of factors, including the diversity of litter type in the environment. The effect of mixing different litter types on decomposition rates is increasingly being studied but is still poorly understood. We investigated the effect of mixing either litter material with high nitrogen (N) and phosphorus (P) concentrations or those with low N and P concentrations on litter decomposition and nutrient release in the context of agroforestry systems.

Materials and methods

Poplar leaf litter, wheat straw, peanut leaf, peanut straw, and mixtures of poplar leaf litter-wheat straw, poplar leaf litter-peanut leaf, and poplar leaf litter-peanut straw litter samples were placed in litter bags, and their rates of decomposition and changes in nutrient concentrations were studied for 12 months in poplar-based agroforestry systems at two sites with contrasting soil textures (clay loam vs silt loam).

Results and discussion

Mixing of different litter types increased the decomposition rate of litter, more so for the site with a clay loam soil texture, representing site differences, and in mixtures that included litter with high N and P concentrations (i.e., peanut leaf). The decomposition rate was highest in the peanut leaf that had the highest N and P concentrations among the tested litter materials. Initial N and P immobilization may have occurred in litter of high carbon (C) to N or C to P ratios, with net mineralization occurring in the later stage of the decomposition process. For litter materials with a low C to N or P ratios, net mineralization and nutrient release may occur quickly over the course of the litter decomposition.

Conclusions

Non-additive effects were clearly demonstrated for decomposition rates and nutrient release when different types of litter were mixed, and such effects were moderated by site differences. The implications from this study are that it may be possible to manage plant species composition to affect litter decomposition and nutrient biogeochemistry; mixed species agroforestry systems can be used to enhance nutrient cycling, soil fertility, and site productivity in land-use systems.  相似文献   

18.
Nitrogen (N) availability is increasing in many ecosystems due to anthropogenic disturbance. We used a nucleotide analog technique and sequencing of ribosomal RNA genes to test whether N fertilization altered active fungal communities in two boreal ecosystems. In decaying litter from a recently burned spruce forest, Shannon diversity decreased significantly with N fertilization, and taxonomic richness declined from 44 to 33 operational taxonomic units (OTUs). In soils from a mature spruce forest, richness also declined with N fertilization, from 67 to 52 OTUs. Fungal community structure in litter differed significantly with N fertilization, primarily because fungi of the order Ceratobasidiales increased in abundance. We observed similar changes in fungal diversity and community structure with starch addition to litter, suggesting that N fertilization may affect fungal communities by altering plant carbon inputs. These changes could have important consequences for ecosystem processes such as decomposition and nutrient mineralization.  相似文献   

19.
[目的]研究喀斯特森林生态系统凋落叶分解特征,为喀斯特森林区石漠化防治及水土保持提供科学依据。[方法]采用1 mm网孔孔径分解袋,对茂兰喀斯特森林自然保护区不同树种凋落叶(落叶和常绿叶)在不同坡位的分解状况进行为期18个月的观测研究。研究茂兰喀斯特森林自然保护区凋落叶失重率和干重残留率动态变化、分解速率及养分释放特征。[结果]凋落叶分解过程呈现"快—慢—快"的周期变化,春夏季分解速度快于秋冬季,落叶树种凋落叶分解速度快于常绿树种凋落叶,不同坡位凋落叶的分解速度表现为:下坡中坡上坡。利用Olson模型对凋落叶分解50%和95%所需时间进行估测,发现落叶树种凋落叶分解50%和95%所需时间分别为0.95~1.66 a和4.13~7.19 a,常绿树种凋落叶分解50%和95%所需时间分别为1.14~1.69 a和4.92~7.30 a,二者无显著性差异。凋落叶分解速率低于中亚热带东部常绿阔叶林和常绿落叶阔叶混交林,但比同区域喀斯特次生林与人工林高。落叶树种凋落叶和常绿树种凋落叶的N元素释放模式为富集—释放模式,C含量随分解时间的波动差异显著,总体在不断减少,而C/N比呈逐步下降的趋势。[结论]由于不同树种凋落叶初始养分含量和叶片理化结构的差异,落叶比常绿叶具有更快的分解速率和养分释放速率,对促进喀斯特森林生态系统物质循环起着积极作用。  相似文献   

20.
Based on evidence from forest ecosystems that litter decomposition is highest in its home habitat, the so-called home field advantage (HFA), we tested whether HFA also occurs in production grasslands, to which solid cattle manure (SCM) was applied. Two dairy farms were selected which differed in type of home-produced SCM (stacked or composted) and soil type (sand or peat). Disappearance patterns of manure dry matter (DM) and nitrogen (N) were monitored from litterbags (4 mm mesh size) during the grass growing season. At the same time, apparent herbage N recovery (ANR) of SCM, applied at two rates (200 and 400 kg N ha−1 yr−1), was measured. On average, manure DM and N disappearances on the home farms were 20 and 14% greater, respectively, than on away farms. Differences in ANR were also very pronounced (on average 14 and 53% higher at home than away for the two respective application rates). The two SCM types were also studied on two neighbouring dairy farms (one on sand and one on peat soil) where no SCM had been applied for many years. Here, manure DM and N disappearances from the litterbags were much lower (P < 0.01). This experiment provides strong evidence for a home field advantage in production grasslands differing in fertilization history, showing that site-specific manure management affects the soil–plant interactions regulating plant N-availability. These findings have to be taken into account when changing fertilization regimes in production grasslands. This is the first report to quantify a HFA from an agricultural ecosystem. HFA values we report here have not been established in any ecosystem thus far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号