首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

2.
A series of half-diallel crosses involving early, medium and late maturity desi and kabuli type chickpea (Cicer arietinum L.) genotypes with stable resistance to Helicoverpa pod borer, along with the parents, were evaluated at two locations in India to understand the inheritance of pod borer resistance and grain yield. Inheritance of resistance to pod borer and grain yield was different in desi and kabuli types. In desi type chickpea, the additive component of genetic variance was important in early maturity and dominance component was predominant in medium maturity group, while in the late maturity group, additive as well as dominance components were equally important in the inheritance of pod borer resistance. Both dominant and recessive genes conferring pod borer resistance seemed equally frequent in the desi type parental lines of medium maturity group. However, dominant genes were in overall excess in the parents of early and late maturity groups. In the kabuli medium maturity group, parents appeared to be genetically similar, possibly due to dispersion of genes conferring pod borer resistance and susceptibility, while their F1s were significantly different for pod borer damage. The association of genes conferring pod borer resistance and susceptibility in the parents could be attributed to the similarity of parents as well as their F1s for pod borer damage in kabuli early and late maturity groups. Grain yield was predominantly under the control of dominant gene action irrespective of the maturity groups in desi chickpea. In all the maturity groups, dominant and recessive genes were in equal frequency among the desi parental lines. Dominant genes, which tend to increase or decrease grain yield are more or less present in equal frequency in parents of the early maturity group, while in medium and late maturity groups, they were comparatively in unequal frequency in desi type. Unlike in desi chickpea, differential patterns of genetic components were observed in kabuli chickpea. While the dominant genetic component was important in early and late maturity group, additive gene action was involved in the inheritance of grain yield in medium duration group in kabuli chickpea. The dominant and recessive genes controlling grain yield are asymmetrically distributed in early and medium maturity groups in kabuli chickpea. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in desi and kabuli chickpea cultivars.  相似文献   

3.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

4.
The genetics of resistance to Ascochyta blight (Ascochyta fabae f. sp. fabae) was studied in two populations of faba bean (Vicia faba). Plants of a resistant population, ILB 752, and a susceptible one, NEB 463, were screened for their reaction to the pathogen and the results were quantified on a scale of 0–5. Crosses were made between plants both within and between accessions and the F1 and F2 generations assessed in a field trial 21 and 45 days after inoculation. Disease scores were greater at 45 days than at 21 days and they were not significantly affected by the presence of susceptible spreader rows in part of the trial. ILB 752 carried a major dominant gene conferring resistance while NEB 463 carried the recessive allele for susceptibility. Furthermore, a minority of plants of NEB 463 appeared to carry at least one pair of complementary recessive genes, also conferring resistance. Most of the plants of ILB 752 were homozygous for the dominant resistance gene and a few were heterozygous. Reciprocal crosses behaved identically, indicating the absence of maternal effects in the expression of Ascochyta blight resistance in faba beans. The results show that it is important to confirm the level of heterozygosity for the resistance genes in this partially outbreeding species before crossing is commenced. The major dominant gene for resistance, identified in ILB 752, has clear potential for use in breeding for Ascochyta blight resistance. The minor genes identified in NEB 463 also show the potential for accumulating resistance through mass selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
G. O. Myers  S. C. Anand 《Euphytica》1991,55(3):197-201
Summary The objectives of this study were to determine if genes for resistance to soybean cyst nematode (SCN) in soybean PI 437654 were identical or different from the genes in Peking, and PI 90763. The F2 plants and F3 families were studied from crosses between PI 437654, Peking, and PI 90763. The cross PI 437654 × susceptible Essex was included to determine inheritance of resistance to SCN. For Race 3, PI 437654 was found to have genes in common with Peking and PI 90763. The segregation in PI 437654 × Essex indicated the presence of one dominant and two recessive genes. For Race 5, PI 437654 indicated the presence of similar genes as those in PI 90763 and Peking whereas, PI 437654 × Essex indicated the action of the segregation ratios of two dominant and two recessive genes. For Race 14, the data from the cross PI 437654 × PI 90763 indicated monogenic inheritance with resistance being dominant; whereas PI 437654 × Peking showed a recessive gene controlling resistance. The segregation in PI 437654(R) × Essex(S) suggested one dominant and two recessive genes for Race 14 reaction.  相似文献   

6.
Summary The genetic constitution of two bread wheat accessions from the International Spring Wheat Rust Nurseries (E 5883 and E 6032) has been studied for reaction to four Indian races of stem rust. Analysis of E 5883 has revealed that for each of the races 15C, 21 and 40 a single dominant gene operates for resistance. The dominant gene against race 15C was identified as Sr6. The dominant genes for resistance against races 21 and 40 were found to be different from the genes described so far. Resistance against race 122 is controlled by a single recessive gene producing characteristically a 2 type of reaction. This gene was identified as Sr8.The resistance of E 6032 against each of the races 15C, 21 and 40 is controlled by two genes, one dominant and one recessive, which act independently. Dominant genes effective against 15C, 21 and 40 were conclusively identified as Sr6, Sr5 and Sr9b, respectively. From the correlated behaviour against races 15C and 40 as well as from the phenotypes of the resistance reactions rhe same recessive gene, undescribed so far, operates against the two races. The second recessive gene operating against race 21 was also observed to be different from those so far designated. E 6032 was, however, found to be susceptible to races 122.The presence of Sr6 both in E 5883 and E 6032 against race 15C was further confirmed through F2 and F3 segregation data.  相似文献   

7.
Summary The resistance to cotton jassid in okra was found controlled by dominant genes. Both additive and dominance gene effects were significant but both additive gene effects and dominance x dominance type of interactions appear to be more important than other effects. The former could be exploited for developing genotypes resistant to jassids in okra.  相似文献   

8.
Summary Three lentil genotypes resistant to Fusarium oxysporum f.sp. lentis viz. Pant L 234, JL 446 and LP 286 were crossed with two susceptible ones. The hybrid plants were all resistant in the eight crosses evaluated. Segregation pattern for wilt reaction in F2, BC(P1), BC(P2) and F3 generations in field and glasshouse conditions indicated that resistance to Fusarium wilt is under the control of two dominant duplicate genes in Pant L 234 and two independent dominant genes with complementary effects in JL 446 and LP 286. A third dominant gene complementary to the dominant genes in JL 446 and LP 286 is present in two susceptible lines. Allelic tests suggest the presence of five independently segregating genes for resistance. Duplicate dominant genes in Pant L 234 are non-allelic to two dominant genes with complementary effects in LP 286 and JL 446 and the third gene complementary to the two genes in JL 446 and LP 286 in susceptible lines JL 641 and L 9–12. Gene symbols among parental genotypes have been designated.  相似文献   

9.
The three major leaf types in chickpea are normal compound leaf, simple leaf and multipinnate. Simple leaf types are less commonly cultivated worldwide and are often reputed to be susceptible to ascochyta blight disease, whereas other leaf types range from resistant to susceptible. This study determined the association between host plant resistance to ascochyta blight and different leaf types in segregating populations derived from crosses between disease resistant and susceptible chickpea genotypes. In addition, the inheritance of disease resistance and leaf type was investigated in intraspecific progeny derived from crosses between two resistant genotypes with normal leaf type (ICC 3996 and Almaz), one susceptible simple leaf type (Kimberley Large) and one susceptible multipinnate leaf type (24 B-Isoline). Our results showed that, in these segregating populations, susceptibility to ascochyta blight was not linked to multipinnate or simple leaf types; resistance to ascochyta blight depended more on genetic background than leaf shape; leaf type was controlled by two genes with a dihybrid supplementary gene action; normal leaf type was dominant over other leaf types; and inheritance of ascochyta blight resistance was controlled by two major genes, one dominant and one recessive. Since there was no linkage between ascochyta blight susceptibility and leaf type, breeding various leaf types with ascochyta blight resistance is a clear possibility. These results have significant implications for chickpea improvement, as most current extra large seeded kabuli varieties have a simple leaf type.  相似文献   

10.
Summary Genetics of resistance to Ascochyta fabae Speg. in Vicia faba L. was studied with a final objective to develop resistant faba bean varieties to Ascochyta blight. The study was conducted separately on 3 single spore isolates (AF10-2 and AF13-2 from Tunisia and AF4-3 from France) and belonging to different groups of virulence (GV1 and GV2). Important general combining ability (GCA) effects were found especially with isolates AF10-2 and AF4-3. Specific combining ability (SCA), although significant for the 3 isolates, was important only with AF13 -2, but less important than GCA. Additive gene effects were predominant to non-additive effects. Lines 29H and A8817 transmitted to their progenies resistance to the 3 isolates, whereas 14–12 and 19TB conferred resistance to their progenies only with isolates AF13-2 and AF4-3, respectively. In the material studied, resistance was generally controlled by dominant genes but also could be attributed to recessive genes although less frequent. Analysis of segregation in the F2 of 2 crosses between the resistant lines (A8817 and 29H) and the susceptible line (14–12) with isolate AF4-3 revealed dominant monogenic control at the level of leaves in the 2 resistant lines and, in addition, a recessive gene controlling resistance of stems. Non-allelic interactions were occasionally manifested and their origin appeared to be due to line 19TB. A recurrent selection scheme was proposed with the objective to develop improved open-pollination populations and synthetic varieties responding to the objective of the national Tunisian research programme on faba bean.  相似文献   

11.
Summary Genetic analysis of resistance to PVY in androgenetic doubled haploid lines, F1, F2 and backcross progenies of the Mexican pepper line, CM 334 (Capsicum annuum L.), was performed. Three reaction types were observed when seedlings were inoculated with several PVY strains of different pathotypes and with an American PeMV strain. Resistant genotypes never showed systemic symptoms although some individuals sporadically developed necrotic local lesions on inoculated cotyledons. Susceptible genotypes exhibited either a typical systemic mosaic or a systemic necrosis that caused the death of the inoculated seedlings. Segregation analyses indicated that resistance to pepper potyviruses in CM 334 is conferred by two genes. The first one, tentatively named Pr4, is dominant and confers the resistance to all now known pathotypes of PVY and to PeMV. The second one, tentatively named pr5, is recessive; it confers only the resistance to common strains of PVY. The systemic necrotic response is conferred by an independent dominant gene, tentatively named Pn1.  相似文献   

12.
Summary Information obtained from breeding work with relatively small F2 populations suggests independent segregation in 12 pairs of characters. Anthocyanin pigmentation in the cotyledon is either recessive or dominant, showing either single gene or polygenic inheritance, depending on parental genotypes. When single gene inheritance was observed, pigmentation was independent of resistance to potato virus-y, of the male sterile-1 (ms1) gene and of male sterile-2 (ms2) gene. However, additional observation suggests that one of the genes involved in pigmentation is linked with the male sterile-1 gene.  相似文献   

13.
Barley yellow mosaic virus disease caused by different strains of BaYMV and BaMMV is a major threat to winter barley cultivation in Europe. Different resistance genes against these viruses have been mapped and suitable PCR-based markers have been developed. In this respect doubled haploid (DH) populations proved to be advantageous as they facilitate a repeated test for resistance against all agents of the barley yellow mosaic virus complex and besides this, dominant marker systems are as informative as co-dominant ones in DHs due to the lack of heterozygous genotypes. Using DH populations resistance genes rym4, rym5, rym11, rym13, rym15 and the BaYMV/BaYMV-2 resistance of the barley cultivar ‘Chikurin Ibaraki 1’ have been mapped. DHs are also well suited to pyramiding resistance genes against BaMMV and BaYMV. Since homozygous recessive genotypes are more frequent in DHs than in segregating F2 populations, DHs can be efficiently used to create broad-spectrum resistance and to extend the usability of partly overcome resistance genes. Results from employing two different strategies for pyramiding, based on one and two DH-steps, respectively, combining three recessive resistance genes, i.e. rym4/rym5, rym9 and rym11, are presented. The faster strategy based on one haploidy step resulted in the identification of all three and two-way combinations of the respective resistance genes.  相似文献   

14.
In this study, we characterized the genetic resistance of the Andean bean cultivars Kaboon and Perry Marrow and their relation to other sources of anthracnose resistance in common bean. Based on the segregation ratio (3R:1S) observed in two F2 populations we demonstrated that Kaboon carries one major dominant gene conferring resistance to races 7 and 73 of Colletotrichum lindemuthianum. This gene in Kaboon is independent from the Co-2 gene and is an allele of the Co-1 gene present in Michigan Dark Red Kidney (MDRK) cultivar. Therefore, we propose the symbol CO-1 2 for the major dominant gene in Kaboon. The Co-1 is the only gene of Andean origin among the Co anthracnose resistance genes characterized in common bean. When inoculated with the less virulent Andean race 5, the segregation ratio in the F2 progeny of Cardinal and Kaboon was 57R:7S (p = 0.38). These data indicate that Kaboon must possess other weaker dominant resistance genes with a complementary mode of action, since Cardinal is not known to possess genes for anthracnose resistance. Perry Marrow, a second Andean cultivar with resistance to a different group of races, was shown to possess another resistant allele at the Co-1 locus and the gene symbol Co-1 3 was assigned. In R × R crosses between Perry Marrow and MDRK or Kaboon, no susceptible F2 plants were found when inoculated with race 73. These findings support the presence of a multiple allelic series at the Andean Co-1 locus, and have major implications in breeding for durable anthracnose resistance in common bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhg rhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.  相似文献   

16.
Summary The inheritance of resistance to coffee berry disease (CBD) has been studied by applying a preselection test to F2 progenies of a half diallel cross between 11 coffee varieties with different degrees of resistance and to sets of parental, F1, F2, B11 and B12 generations of crosses between resistant and susceptible varieties. True resistance to CBD appears to be controlled by major genes on three different loci. The highly resistant variety Rume Sudan carries the dominant R- and the recessive K-genes. The non-allelic interaction between these two genes is of a duplicate nature. The R-locus has multiple alleles with R 1R1alleles present in Rume Sudan and the somewhat less effective R 2R2alleles in a variety like Pretoria, which also has the K-gene. The moderately resistant variety K7 carries only the recessive K-gene. The arabica-like variety Hibrido de Timor (a natural interspecific arabica x robusta hybrid) carries one gene for CBD resistance on the T-locus with intermediate gene action. It probably inherited this gene from its robusta parent. There is circumstantial evidence that the resistance to CBD is of a stable nature, but it is advisable to accumulate in one genotype as many resistance genes as possible by combining in the breeding programme the resistance of Rume Sudan with that of Hibrido de Timor.  相似文献   

17.
The mode of inheritance and allelic relationships among genes conferring resistance to Karnal bunt were studied in seven bread-wheat (six resistant and one susceptible) genotypes. The resistant genotypes originated in China (‘Shanghai#8’), Brazil (PF71131), the USA (‘Chris’), and Mexico (‘Amsel’, CMH77.308 and ‘Pigeon’). The susceptible line WL711 was from India. Evaluation of these wheat lines and all possible crosses among their F1 and F3 generations (about 100 progenies in each cross) revealed that two partially recessive genes conferred the resistance to Karnal bunt in ‘Pigeon’, whereas four partially dominant genes were present in the other genotypes. ‘Chris’, ‘Amsel’ and PF71131 carry one gene, whereas ‘Shanghai#8’ and CMH77.308 have two genes. ‘Chris’, ‘Amsel’, and PF71131 have different genes, whereas one gene was common to PF71131, CMH77.308 and ‘Shanghai#8’, and another to ‘Chris’ and CMH77.308. Gene symbols were formally designated to the resistant stocks. Resistance was incomplete and stable.  相似文献   

18.
Grain moulds are a major constraint to sorghum production and to adoption of improved cultivars in many tropical areas. Information on the inheritance of grain mould reaction is required to facilitate breeding of resistant cultivars. The genetic control of grain mould reaction was studied in 7 crosses of 2 resistant sorghum genotypes. P1, P2, F1, F2, BC1 and BC2 families of each cross were evaluated under sprinkler irrigation for field grade and threshed grade scores and subjected to generation mean analysis. Frequency distributions for grain mould reaction were derived and F2 and BC1 segregation ratios were calculated. Grain mould reaction in crosses of coloured grain sorghum was generally controlled by two or three major genes. Resistance to grain moulds was dominant. Significant additive gene effects were also found in all cross/season combinations. Significant dominance effects of similar magnitude to additive effects were also observed in five out of ten cross/season combinations. Gene interactions varied according to the parents with both resistant and susceptible parents contributing major genes. Choice of parents with complementary resistance genes and mechanisms of resistance will be critical to the success of resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

20.
Five parents of common vetch (Vicia sativa L.) having orange/beige cotyledon colour, brown/white testa colour, purple/green seedling colour and purple/white flower colour were crossed as a full diallele set. The inheritance patterns of cotyledon, testa or seed coat colour, flower and seedling colour, were studied by analyzing their F1, F2, BC1 and BC2 generations. The segregation pattern in F2, BC1 and BC2, showed that cotyledon colour was governed by a single gene with incomplete dominance and it is proposed that cotyledon colour is controlled by two allelic genes, which have been designated Ct1 and Ct2. Testa colour was governed by a single gene with the brown allele dominant and the recessive allele white. This gene has been given the symbol H. Two complementary genes governed both flower and seedling colours. These flower and seedling colour genes are pleiotropic and the two genes have been given the symbols S and F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号