首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
建兰胶孢炭疽菌ITS序列分析及其PCR快速检测   总被引:3,自引:3,他引:0  
由胶孢炭疽菌Colletotrichum gloeosporioides引起的炭疽病是建兰的重要病害.为建立快速检测该病原菌的方法,以ITSl/ITS4为引物,对15个建兰胶孢炭疽菌的ITS进行PCR扩增及测序,将测定的序列与炭疽菌属其它种的ITS序列进行比对分析,设计特异性引物CFl/CR1,并通过常规和巢式PCR对建兰胶孢炭疽菌进行检测.结果显示,15个菌株中有13个菌株ITS序列与该菌的模式种序列相似性高达99%以上,而另外2个菌株相似性则为86%;供试菌株在系统发育树上聚为2个不同的分支;引物CFl/CR1通过常规PCR可从1 ng的建兰胶孢炭疽菌基因组DNA中扩增到目的条带,而利用引物ITSl/ITS4和CF1/CR1通过巢式PCR可从1 pg的基因组DNA中扩增到目的条带,即巢式PCR反应检测灵敏度较常规PCR至少高1 000倍.表明建立的巢式PCR法可从自然感病的建兰叶片组织中检测到胶孢炭疽菌.  相似文献   

2.
云南葡萄产区葡萄炭疽病病原鉴定及致病力分析   总被引:11,自引:6,他引:5  
为了明确引起云南葡萄产区炭疽病的病原种类,利用形态鉴定和特异性引物分子检测相结合的方法对从云南省主要葡萄产区采集的60株炭疽病菌菌株进行了鉴定。葡萄炭疽病菌菌株的菌落形态和生长速率与对照菌株尖孢炭疽菌Colletotrichum acutatum差异不明显,但其分生孢子大小显著小于尖孢炭疽菌,附着胞深褐色,球形或不规则形。胶孢炭疽菌Colletotrichum gloeosporioides特异性引物CgInt/ITS4从供试葡萄炭疽病菌菌株基因组DNA中扩增出1条约500 bp的特异性条带,而尖孢炭疽菌特异性引物CaInt2/ITS4对葡萄炭疽病菌无扩增条带。研究表明,引起云南葡萄主产区炭疽病的病原为胶孢炭疽菌;供试胶孢炭疽菌对红提葡萄均有致病力,但菌株致病力差异较大,对番茄和草莓存在交叉侵染的能力,且对多菌灵的敏感性较尖孢炭疽菌高。  相似文献   

3.
张静  麻文建  朱天辉 《植物保护》2015,41(5):110-115
桉树焦枯病是威胁桉树生长的首要病害,建立准确、有效的桉树焦枯病的PCR快速检测技术是桉树焦枯病前期诊断的必要手段。试验以桉树焦枯病原菌(Calonectria morganii)DNA为模板,分别以ITS和factor 1-alpha序列为靶区域,针对Calonectria属和C.morganii设计了CYS1/CYS2和EF-S-1/EF-A-1两对特异性引物,建立了基于属和种的双重PCR快速检测技术。利用引物CYS1/CYS2可以从全部Calonectria属的供试菌株中扩增出一条351bp大小的条带,单独用特异性引物EF-S-1/EF-A-1进行PCR扩增,仅病原菌扩增出197bp的条带,同时使用2对引物时,病原菌可扩增出两条明亮条带。当体系退火温度为53℃时,DNA灵敏度检测限度达到450fg/μL。野外田间时效检测结果显示,该体系能准确检测出不同发病程度桉树组织上的病原菌,完全符合田间检测的要求。这是关于桉树焦枯病快速检测的首次报道。  相似文献   

4.
冬生疫霉(Phytophthora hibernalis)的快速分子检测   总被引:4,自引:1,他引:3  
 由冬生疫霉(Phytophthora hibernalis)引起的疫病是一类植物检疫性病害。为建立该病原菌的快速检测技术,本文比较分析了冬生疫霉和其它疫霉的ITS序列,在此基础上设计了一对检测冬生疫霉的特异性引物751F/752R,该对引物从冬生疫霉中扩增得到一条616bp的条带,而其它19种疫霉和其它真菌菌株均无扩增条带,表明该对引物对冬生疫霉具有特异性。在25μL PCR反应体系中,引物751F/752R检测灵敏度为10龟基因组DNA;而以卵菌ITS区通用引物ITS1/ITS4和751F/752R进行套式PCR扩增,能够检测到10ag的基因组DNA,使检测灵敏度提高了1000倍。该检测体系对灭菌水中游动孢子的检测灵敏度可达0.5个游动孢子。结合快速碱裂解法提取发病组织的DNA,采用该PCR检测技术,在1个工作日内即可从人工接种发病的植物组织中特异性的检测到该病原菌。表明本研究建立的检测方法可用于冬生疫霉的快速分子检测。  相似文献   

5.
棉花黄萎病病原菌大丽轮枝菌的快速分子检测   总被引:5,自引:0,他引:5  
大丽轮枝菌Verticillium dahliae是引起棉花黄萎病的土传病害病原真菌。快速及时地检测出大丽轮枝菌,对棉花黄萎病的早期预警及后期防治具有重要意义。采用聚合酶链式反应(polymerase chain reaction,PCR)检测技术对已报道大丽轮枝菌的检测引物进行验证、筛选和改进,获得1对改进的特异性PCR引物VDS-F/VDS-R。在优化的反应体系与扩增条件下,能特异性地从大丽轮枝菌基因组扩增出l条约520 bp的产物条带,检测灵敏度达到10~(-2)ng/μL;利用该引物可特异性地从含有大丽轮枝菌的土壤及棉花植株组织中检测出病原菌;采用巢氏PCR法对人工病土的检测灵敏度达到了10个孢子/g土。表明本引物的PCR检测体系可用于棉花黄萎病的早期快速检测。  相似文献   

6.
雪松疫霉(Phytophthora lateralis)的快速分子检测   总被引:1,自引:0,他引:1  
由雪松疫霉(Phytophthora lateralis)引起的疫病是一类植物检疫性病害。为建立该病原菌的快速检测技术,本文比较分析了雪松疫霉和其他疫霉的tRNA序列,在此基础上设计了一对检测雪松疫霉的特异性引物T1/T2,该对引物从雪松疫霉中扩增得到1条192 bp的条带,而其他15种疫霉和其他真菌菌株均无扩增条带,表明该对引物对雪松疫霉具有特异性。在25μL PCR反应体系中,引物T1/T2检测灵敏度为10 pg基因组DNA;而以引物T3/T4和T1/T2进行巢式PCR扩增,能够检测到1 fg基因组DNA,使检测灵敏度提高了10 000倍。该检测体系对灭菌水中游动孢子的检测灵敏度可达0.5个游动孢子,对人工接种发病的植物组织能够特异性地检测到该病原菌。此外,进一步建立了该病原菌的实时荧光定量PCR检测体系。  相似文献   

7.
瓜黑星病菌、枯萎病菌和蔓枯病菌的三重PCR检测   总被引:2,自引:0,他引:2  
通过测定黄瓜黑星病菌(Cladosporium cucumerinum)rDNA的ITS序列,比对近缘种及瓜类几种重要病原菌的ITS序列,设计出特异性引物HX-1/HX-2,经过对引物HX-1/HX-2PCR条件的优化,可以扩增出1条190bp的黄瓜黑星病菌特异性DNA条带,灵敏度达到1pg/μL。进一步将引物HX-1/HX-2和瓜类枯萎病菌、瓜类蔓枯病菌特异检测引物Fn-1/Fn-2、Mn-1/Mn-2组合,建立三重PCR体系,可一次检测出瓜类黑星病菌、瓜类枯萎病菌、瓜类蔓枯病菌3种瓜类植物重要的病原菌。建立了可以应用于田间瓜类黑星病菌PCR检测技术和瓜类主要病害三重PCR检测技术,对瓜类病害的诊断和防治具有重要的指导作用。  相似文献   

8.
香蕉炭疽菌rDNA ITS区的分子鉴定与检测   总被引:15,自引:0,他引:15  
 香蕉炭疽病菌(Colletordchum muscat)是一种引起香蕉采后病害的最重要病原,本研究用真菌18S~28S间的内转录间隔区(internal transcribed spacer,ITS)通用引物18SF和28SR扩增香蕉炭疽菌和其它外群真菌的基因组DNA,扩增出约510bp的片段;通过克隆测序香蕉炭疽菌的ITS全序列并与GenBank中炭疽菌属其它种的ITS序列比对,设计出香蕉炭疽菌的特异性引物ColM1和ColM2。用此特异引物可以从香蕉炭疽菌株中扩增出382bp的特异性片段,而其余20个参试菌株和香蕉组织的PCR反应结果为阴性,灵敏度实验证明可以检测到目标DNA的浓度为0.1Pg。该方法可用于快速、准确和灵敏地检测香蕉炭疽菌,为快速监测组织中有无香蕉炭疽病菌潜伏侵染与及早采取防治措施提供积极的指导意义。  相似文献   

9.
番石榴焦腐病菌的ITS分析及PCR检测   总被引:3,自引:3,他引:0  
番石榴焦腐病是台湾入境大陆水果的重要植物病害,由葡萄座腔菌Botryosphaeria rhodina引起.为建立该病原菌快速、灵敏的检测技术,比较分析了葡萄座腔菌和葡萄座腔菌属其它种的ITS序列,在此基础上设计了1对检测番石榴焦腐病菌的特异性引物BF1/BR1,利用此引物从葡萄座腔菌中特异性扩增出287bp条带,而其余参试的菌株未能获得扩增条带.将真菌通用引物ITS1/ITS4和BF1/BR1进行巢式PCR扩增后,检测灵敏度提高1 000倍,可检测到葡萄座腔菌1pg的基因组DNA.结合快速碱裂解法提取发病组织的DNA,采用该PCR检测技术可从自然感染焦腐病果实中检测到葡萄座腔菌.  相似文献   

10.
根据实验室设计的栎枯萎病菌的特异性引物CF01/CF02和2004年Hayden等设计的栎树疫霉猝死病菌特异性引物Phyto1/Phyto4,组合并优化出了可以同时检测2种病原菌的多重PCR检测体系,经PCR扩增可以分别得到687bp和280bp两条特异性条带,利用菌丝DNA检测,灵敏度为10pg基因组DNA。  相似文献   

11.
<正>黄檀黑痣菌(Phyllachora dalbergiicola)能引起降香黄檀黑痣病,该病菌在世界分布十分广泛,且寄主植物种类繁多,除了降香黄檀以外,还可侵染大果紫檀、檀香紫檀等多种紫檀属植物。该菌所致病害会在寄主表面形成黑色凸起的盾片,严重影响寄主光合作用,致使其提前落叶~([1])。通过对黄檀黑痣菌进行早期检测,可以及时采取防治措施,控制病害的进一步发展。而黄檀黑痣菌是活体营养真菌,不能离体培养,使用常规的病害诊断技术  相似文献   

12.
A species-specific PCR assay was developed for rapid and accurate detection of the pathogenic oomycete Phytophthora capsici in diseased plant tissues, soil and artificially infested irrigation water. Based on differences in internal transcribed spacer (ITS) sequences of Phytophthora spp. and other oomycetes, one pair of species-specific primers, PC-1/PC-2, was synthesized. After screening 15 isolates of P. capsici and 77 isolates from the Ascomycota, Basidiomycota, Deuteromycota and Oomycota, the PC-1/PC-2 primers amplified only a single PCR band of c . 560 bp from P. capsici . The detection sensitivity with primers PC-1/PC-2 was 1 pg genomic DNA (equivalent to half the genomic DNA of a single zoospore) per 25- µ L PCR reaction volume; traditional PCR could detect P. capsici in naturally infected plant tissues, diseased field soil and artificially inoculated irrigation water. Using ITS1/ITS4 as the first-round primers and PC-1/PC-2 in the second round, nested PCR procedures were developed, increasing detection sensitivity to 1 fg per 25- µ L reaction volume. The results suggested that the assay detected the pathogen more rapidly and accurately than standard isolation methods. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring, as well as guiding plant disease management.  相似文献   

13.
由胶孢炭疽菌复合群(Colletotrichum gloeosporioides species complex)引起的炭疽病是我国橡胶树的主要病害之一。本研究以β-tubulin基因为靶标基因,设计橡胶树胶孢炭疽菌复合群特异性引物,以SYBR Green I为指示剂,建立了特异性强、灵敏度高的环介导等温扩增(LAMP)检测方法,进行了室内侵染和田间自然发病样品的检测验证。结果表明,该方法能在63℃恒温条件下60 min内检测出病原菌,且能特异性识别我国主要植胶区的橡胶树胶孢炭疽菌。该方法最低检测限为1 pg DNA或100个分生孢子。室内和田间样品检测结果表明,该方法可同时检测出潜伏侵染期和发病期的胶孢炭疽菌。本研究建立的LAMP检测方法为橡胶树胶孢炭疽菌的快速鉴定提供了新技术。  相似文献   

14.
 Fusarium oxysporum is one of the most important phytopathogens and cause Fusarium wilt disease in cucumber, watermelon and melon, etc.In this study, a pair of species-specific primers Fc-1 and Fc-2 was synthesized based on differences in internal transcribed spacer sequences of Fusarium genus.With the primers, a specific 315 bp PCR product was amplified from five F.oxysporum isolates isolated from cucumber, watermelon and melon, infected cucumber and watermelon tissues, while no product was obtained from other fourteen fungi, healthy cucumber and watermelon tissues.The detection sensitivity is 100 fg for genomic DNA of F.oxysporum and 1 000 spores/g soil for the soil pathogens.In contrast, the nested PCR with two pairs of primers(ITS1/ITS4 and Fc-1/Fc-2) increased the sensitivity by 100-fold.In addition, one-step PCR could also detect F.oxysporum in symptomless cucumber root of 7 dpi(days post inoculation) and in infected cucumber and watermelon tissues at the early stage of disease development.Therefore, the developed PCR-based method enabled rapid, sensitive and reliable detection of F.oxysporum.It also provides the detection method for early monitoring and diagnosis of the pathogen as well as the plant disease management guidance.  相似文献   

15.
烟草根黑腐病菌的PCR分子检测   总被引:6,自引:1,他引:5  
 根据烟草根黑腐病菌(Thielaviopsis basicola)与其它烟草病原真菌核糖体基因转录间隔区(internal transcribed spa-cer,ITS)序列间的差异,设计了一对特异性引物TB-5/TB-3,用于T. basicola的分子检测。利用该对引物对包括T. basicola在内的13个烟草病原菌菌株的基因组DNA进行PCR扩增,结果表明:只有T. basicola能扩增到一条400bp左右的特异性条带,其它菌株及阴性对照均无扩增产物。对烟草组织和土壤的检测结果也表明,该对引物能特异性的检测到T. basicola基因组DNA的存在。该引物对T. basicola基因组DNA检测的灵敏度为100fg/μL。  相似文献   

16.
双重PCR检测马铃薯晚疫病菌和青枯病菌方法的建立及应用   总被引:3,自引:0,他引:3  
 利用真菌通用引物ITS1和ITS4扩增马铃薯晚疫病菌转录间隔区并进行序列测定,通过序列比较,设计了1对马铃薯晚疫病菌的特异引物INF1/INF2,并对15种不同真菌、细菌和7种疫霉属和腐霉属卵菌基因组DNA进行PCR扩增,结果只有不同来源的马铃薯晚疫病菌株可获得324 bp的特异带。将引物INF1/INF2与卵菌通用引物进行巢式PCR扩增后,其检测灵敏度在DNA水平上可达30 fg。运用设计的引物与马铃薯青枯病菌特异引物结合建立了双重PCR体系,能从马铃薯晚疫病菌和马铃薯青枯病菌总基因组DNA以及人工接种和自然发病的马铃薯植株中分别或同时扩增到324 bp和281 bp的特异片段。实现了同时对马铃薯晚疫病菌和马铃薯青枯病菌的快速可靠检测。  相似文献   

17.
The polymerase chain reaction (PCR) was used for the specific detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils. Primers were based on the nucleotide sequences of the internal transcribed space regions (ITS1 and ITS2) of 16 different species of Phytophthora. Two primer pairs, Pn5B–Pn6 and Pc2B–Pc7, were designed specifically to amplify DNA from P. nicotianae and P. citrophthora, respectively. Another primer pair (Ph2–ITS4) was designed to amplify DNA from many Phytophthora species. All primer pairs were assessed for specificity and absence of cross-reactivity, using DNA from 118 isolates of Phytophthora and 82 of other common soil fungi. In conventional PCR, with a 10-fold dilution series of template DNA, the limit of detection was of 1pgl–1 DNA for all the primer pairs (Ph2–ITS4, Pn5B–Pn6, and Pc2B–Pc7). In nested PCR, with primers Ph2–ITS4 in the first round, the detection limit was of 1fgl–1 for both the primer sets (Pn5B–Pn6 and Pc2B–Pc7). Simple, inexpensive and rapid procedures for direct extraction of DNA from soil and roots were developed. The method yielded DNA of a purity and quality suitable for PCR within 2–3h. DNA extracted from soil and roots was amplified by nested PCR utilizing primers Ph2–ITS4 in the first round. In the second round the primer pairs Pn5B–Pn6 and Pc2B–Pc7 were utilized to detect P. nicotianae and P. citrophthora, respectively. Comparison between the molecular method and pathogen isolation by means of a selective medium did not show any significant differences in sensitivity.  相似文献   

18.
 马铃薯粉痂菌(Spongospora subterranea f. sp. subterranea)是引起马铃薯粉痂病的病原。本研究根据粉痂菌内部转录间隔区和线粒体DNA的保守区域,分别设计了2对适用于普通PCR的引物A5/A9、C3/C8和1对适用于荧光定量PCR的引物QF/QR,用于检测块茎和土壤样品中的粉痂菌。特异性检测结果表明:引物对A5/A9和C3/C8,以马铃薯粉痂菌DNA为模板,能分别扩增出264和367 bp大小的单一条带,而对其他非靶标DNA无扩增;引物对QF/QR对马铃薯粉痂菌有单一的熔解峰,说明三对引物特异性良好。灵敏性检测结果表明:荧光定量PCR灵敏度为13.8 fg·μL-1,是普通PCR灵敏度的1 000倍。进一步建立循环域值(Ct)与质粒DNA含量的曲线关系,获得标准曲线y=-3.893 9 x+35.228,R2 = 0.9966,呈良好线性关系。通过对不同地区采集的18份带菌种薯和18份带菌土壤进行普通PCR和荧光定量PCR检测,引物A5/A9、C3/C8和QF/QR对带菌种薯检测率均为100%,对带菌土壤的检测率分别为44.44%、66.67%和100%。本研究建立的马铃薯粉痂病菌快速检测方法,能及时、准确地检测带菌种薯和土壤,为马铃薯粉痂病的早期诊断和防治提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号