首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mechanism involved in systemic acquired resistance (SAR) can be non-specifically induced in susceptible plants. In response to pathogens, plants' natural defence mechanisms include the production of lignin and phytoalexins and the induction of plant enzymes. The aim of this research was to study the induction of SAR mediated by the chemical activator DL-3-aminobutyric acid (BABA) and the fungicide fosetyl-aluminium in potato cultivars with different levels of resistance against Phytophthora infestans (Mont) de Bary. To study the chemical induction of the resistance, the foliage of several potato cultivars was sprayed with BABA, fosetyl-aluminium or water (as a control treatment). After 3 days the foliage was inoculated with P. infestans. Seven days after inoculation, development of disease symptoms in the foliage was assessed. In postharvest tuber samples, evidence for enhancement of the defence response was evaluated by measuring the protein content of several hydrolytic enzymes as well as the phenol and phytoalexin content. The highest level of protection against late blight was observed when the chemicals were applied at early stages of crop development. An increase in resistance to late blight was also detected in tubers after harvest. There was also an increase in the protein level of beta-1,3-glucanase and aspartic protease as well as in the phenol and phytoalexin content of potato tuber discs obtained from postharvest tubers of treated plants. Thus the protective effect seemed to persist throughout the whole crop cycle. This treatment may offer the possibility of controlling both foliage and tuber blight and could have a major impact in reducing over-winter survival of P. infestans in tubers.  相似文献   

2.
Field trials in 1996, 1997 and 1998 with six potato cultivars differing in levels of foliar and tuber race-nonspecific resistance to late blight were treated with 100, 50 and 33% of the recommended dose of the fungicide fluazinam at application intervals of 7, 14 and 21 days. Using a mixed inoculum of six or seven indigenous isolates of Phytophthora infestans small potato plots were inoculated via infector plants. A foliar blight model for the relationship between the effects of resistance, fungicide application and disease pressure was developed using multiple regression analysis. Cultivars with a high level of quantitative resistance offered the greatest potential for fungicide reduction. The model showed that the effect of resistance on integrated control increased exponentially with increasing cultivar resistance. Reducing fungicide input by lowering the dose resulted in less foliar disease than extending application intervals. The higher the disease pressure, the greater the risk associated with reducing fungicide input by extension of application intervals. The field resistance of cultivars to tuber blight mainly determined the frequency of tuber infection. Exploiting high foliar resistance to reduce fungicide input carried a high risk when cultivar resistance to tuber blight was low. When field resistance to tuber blight was high, a medium level of resistance in the foliage could be exploited to reduce fungicide dose to c . 50%, provided application was at the right time. At a high level of field resistance to both foliar and tuber blight, application intervals could be extended.  相似文献   

3.
Potato cultivars were evaluated for their resistance responses to aggressive strains of Phytophthora infestans in field and laboratory experiments. Analysis of variance revealed differential cultivar-by-isolate interactions for both foliar and tuber blight resistance. Differential responses occur as revealed by specific susceptibilities of cultivars to certain pathogen genotypes and changing rank order. In general, severity of late blight epidemics as observed in the haulms did not correlate well with foliar blight resistance ratings as presented in the National List of Recommended Potato Varieties. No significant correlation was found between tuber blight incidence under field conditions and the tuber blight rating in the National List. Also, there was no relation between the field and laboratory tuber blight resistance assessments. A significant association was demonstrated between late blight infection in the foliage and tuber blight incidence under field conditions. The presence of differential interaction, independent of R-gene-based resistance, indicates some adaptation of P. infestans to partial resistance and consequently adverse effects on the stability and durability of partial resistance to potato late blight.  相似文献   

4.
Levin A  Baider A  Rubin E  Gisi U  Cohen Y 《Phytopathology》2001,91(6):579-585
ABSTRACT The ability of Phytophthora infestans, the causal agent of potato and tomato late blight, to produce oospores in potato tuber tissue was studied in the field and under laboratory conditions. In 1998 and 2000 field experiments, the canopy of potato cvs. Alpha and Mondial, respectively, were coinoculated with A1 + A2 sporangia of the fungus, and the infected tubers collected at harvest were examined for the presence of oospores. In 1998, only 2 of 90 infected tubers had oospores, whereas none of the 90 tubers examined in 2000 had any oospores. In the latter experiment, infected tubers kept in storage up to 12 weeks after harvest had no oospores. Artificial co-inoculations of whole tubers with A1 + A2 sporangia resulted only rarely in the formation of oospores inside the tubers. Co-inoculations of potato tuber discs taken from dormant tubers 0 to 16 weeks after harvest failed to support any oospore production, whereas discs taken from sprouting tubers of >/=18 weeks after harvest allowed oospores to form. Tuber discs showed enhanced oospore formation when treated before inoculation with either sugars, amino acids, casein hydrolysate, beta-sitosterol, or chloroethylphosphonic acid. In contrast, reducing airflow into the petri dishes where potato tuber discs were incubated reduced the number of oospores produced. The number of oospores produced in tuber tissue was lower compared with that in leaf tissue regardless of the origin of isolates used. The data show that the ability of Phytophthora infestans to produce oospores in potato tuber tissue is very limited and increases with tuber aging.  相似文献   

5.
Benzothiadiazole (BTH), as Bion WG50, and acetylsalicylic acid (ASA) treatments of potato foliage of field- and glasshouse-grown potato plants were compared for control of two foliar diseases, early blight ( Alternaria solani ) and powdery mildew ( Erysiphe cichoracearum ). The effect of these treatments on harvested tubers wound-inoculated with the dry rot fungus ( Fusarium semitectum ) was also evaluated. BTH (50 mg a.i. L−1) gave almost complete control of both foliar pathogens on inoculated glasshouse-grown plants and reduced the severity of leaf spotting diseases (mainly early blight) in the field. BTH (100 mg a.i. L−1) and ASA (400 mg a.i. L−1) reduced the severity of dry rot in field-grown tubers in some post-harvest wound-inoculated treatments but not others and a similar reduction occurred with tubers inoculated post-harvest from BTH-treated plants grown under glasshouse conditions. BTH treatment increased β-1,3-glucanase activity in leaves > stem > tubers > stolons but not in roots. Increased enzyme activity was recorded for up to 45 days post-treatment.  相似文献   

6.
Post-emergence applications of glyphosate [N-(phosphonomethyl)glycine] have been shown not to eradicate purple nutsedge (Cyperus rotundus L.) in the field. It was not known if this was due to failure to control emerged plants or if dormant tubers produced new plants after application. Studies with individual plants were conducted in screenhouse facilities to determine the effects of glyphosate rate, time for translocation, area of foliage treated, and shade on the sprouting ability of tubers attached to treated plants. Rates of 1.5–2.0 kg/ha glyphosate inhibited tuber sprouting; 72 h were required for complete translocation at 1.0 kg/ha whereas 36 h were sufficient at 2.0 kg/ha. Treating less than all of the foliage reduced foliar control and increased tuber sprouting. Shading treated plants reduced control of the foliage but did not affect glyphosate translocation to the tubers. These studies showed that glyphosate kills C. rotundus foliage and the tubers attached to treated plants. Therefore, regrowth after glyphosate application under field conditions is due to dormant tubers which sprout after treatment.  相似文献   

7.
Fungicides were applied as seed-piece treatments to control potato late blight, caused by Phytophthora infestans, US8, A2 biotype in controlled environment and field experiments. Efficacy of seed treatments for controlling late blight was examined under three disease development regimes simulated by artifical inoculation; (a) seed-borne infection, (b) transmission of infection resulting from spread during the seed-cutting operation, and (c) infection of foliage by aerial inoculation. Emergence of plants from the seed-borne infection was uniformly low (<40%) in controlled environment and field experiments. In controlled environment experiments some of the plants that emerged from fungicide-treated seed-pieces were infected with late blight. Following exposure of tuber surfaces to P infestans, emergence rates from seed-pieces treated with formulated products that included mancozeb in the formulation were comparable to the untreated and non-inoculated control in controlled environment and field experiments. Plants that emerged from non-inoculated seed-pieces treated with fungicides that contained active ingredients known to be effective against foliar late blight had lower percentage foliar infection after inoculation than the untreated control. Leaves close to the base of the stem had fewer infections than leaves attached at the mid region of the main stem, 14 days after inoculation, in some of the controlled environment studies. In contrast, field experiments conducted under conditions conducive to late blight development showed that none of the seed treatments applied to late blight-free seed-pieces delayed the onset and severity of late blight infection. In potato production areas at risk of early season late blight, seed treatments applied to healthy seed may confer limited protection against late blight between planting and the first scheduled applications of prophylactic foliar fungicides. © 1999 Society of Chemical Industry  相似文献   

8.
9.
几种植物提取物诱导马铃薯对致病疫霉的抗性   总被引:26,自引:2,他引:26  
 采用纤维素膜技术研究了大蒜、洋葱、芹菜、丁香、花椒、大黄等24种植物离体组织及其提取物(其中8种中草药为水煎剂,16种其它植物为水浸剂)对马铃薯晚疫病菌(Phytophthora infestans)静止胞萌发、附着胞形成及侵入丝形成的直接影响和提取物诱导块茎对晚疫病病菌侵入机构形成的影响,并在此基础上进一步就提取物免疫处理种薯、诱导成株期抗病性、增加块茎产量的影响做了初步探讨。在洋葱、葱、大蒜等12种植物组织表面,静止胞萌发率明显低于对照(擦镜纸),而且在6种植物组织表面未见附着胞形成,10种植物组织表面未见侵入丝形成;在大蒜、韭菜等13种植物组织提取液中,静止胞萌发率明显低于对照(擦镜纸),其中6种植物组织提取液中附着胞未见形成,7种植物组织提取液中侵入丝未见形成。经8种植物组织提取物诱导处理的块茎切片,不仅保鲜期长,而且表现出较强的诱导抗性;静止胞萌发率、附着胞形成率及侵入丝形成率均明显低于对照;经8种植物组织提取物诱导处理的种薯在出芽、早期生长、抗晚疫病及产量等各方面均优于对照,病害保护率达54%、增产率达31%。  相似文献   

10.
Differential interactions in tuber blight attack between potato cultivars and Phytophthora infestans isolates were studied using whole tuber and tuber slice assays. Tuber blight incidence and severity were studied in a whole tuber assay, whilst necrosis and mycelium coverage were evaluated in a tuber slice assay. The overall defence reaction of the potato cultivars tested varied considerably. Cultivars like Kartel and Producent showed resistant reactions, whilst Bintje and, to a lesser extent, Astarte reacted more susceptibly after inoculation with aggressive strains of P. infestans . A highly significant cultivar by year interaction was observed when tuber blight incidence was evaluated in two successive years. Differential responses were revealed by changing ranked order of cultivars after exposure to aggressive isolates of P. infestans . The results show that cultivar by isolate interactions existed for all components of tuber blight resistance studied. The quantitative nature of the observed resistance responses suggests the presence of quantitative trait loci governing resistance to tuber blight. The consequences of differential interactions in relation to the stability of tuber resistance are discussed.  相似文献   

11.
The ability of metalaxyl-M, phosphonic acid in the form of phosphonate, and copper hydroxide to inhibit different stages in the life cycle of Phytophthora ramorum , the causal agent of sudden oak death (SOD), was tested in vitro using 12 isolates from the North American forest lineage. In addition, experiments were conducted in planta to study the ability of phosphonic acid injections and metalaxyl-M drenches to control pathogen growth on saplings of California coast live oak ( Quercus agrifolia ), and of copper hydroxide foliar sprays to control infection of California bay laurel ( Umbellularia californica ) leaves. Phytophthora ramorum was only moderately sensitive to phosphonic acid in vitro , but was highly sensitive to copper hydroxide. In planta experiments indicated the broad efficacy of phosphonic acid injections and of copper hydroxide sprays in preventing growth of P. ramorum in oaks and bay laurels, respectively. Finally, although metalaxyl-M was effective in vitro , drenches of potted oak trees using this active ingredient were largely ineffective in reducing the growth rate of the pathogen in planta .  相似文献   

12.
Since most plants possess resistance mechanisms which can be induced upon pre-treatment with a variety of chemical compounds, the use of β-aminobutyric acid (BABA) as a defence inducer without reported toxic effect on the environment was studied. The aim of this work was to analyse the effectiveness of BABA to induce resistance against Phytophthora infestans and Fusarium solani in potato cultivars differing in their level of resistance to late blight. The behaviour of some components of biochemical mechanisms by which BABA increases resistance against P. infestans, as well as the effect of BABA on the activity of a potential pathogenic factor of F. solani, were studied. Plants with four applications of BABA throughout the crop cycle produced tubers more resistant to P. infestans and F. solani than non-treated plants. In addition, tuber slices from treated plants, inoculated with P. infestans, showed an increase in phenol and phytoalexin content. The aspartyl protease StAP1 accumulation was also higher in tubers obtained from treated plants and inoculated with P. infestans. This result was observed only in the more resistant potato cv. Pampeana, early after infection. In the potato–F. solani interaction, infected tubers coming from BABA-treated plants showed minor fungal proteolytic activity than infected, non-treated ones. For potato cvs Pampeana and Bintje, the BABA treatment improved the yield of harvested tubers. The number of tubers per plant and total weight of harvested tubers was greater for those obtained from treated plants with two early or four applications of BABA. The results show that the BABA treatment increases the resistance of potatoes but the degree of increase depends on the original level of resistance present in each cultivar.  相似文献   

13.
Garrett KA  Mundt CC 《Phytopathology》2000,90(12):1307-1312
ABSTRACT The use of host diversity as a tool for management of potato late blight has not been viewed as promising in the past. But the increasing importance of late blight internationally has brought new consideration to all potential management tools. We studied the effect of host diversity on epidemics of potato late blight in Oregon, where there was little outside inoculum. The experimental system consisted of susceptible potato cv. Red LaSoda and a highly resistant breeding selection, inoculated with local isolates of US-8 Phytophthora infestans. Potatoes were grown in single-genotype plots and also in a mixture of 10 susceptible and 26 resistant potato plants. Half of the plots received inoculation evenly throughout the plot (general inoculation) and half received an equal quantity of inoculum in only one corner of the plot (focal inoculation). The area under the disease progress curve (AUDPC) was greater in single genotype stands of susceptible cv. Red LaSoda inoculated throughout the plot than with stands inoculated in one focus. The host-diversity effect on foliar late blight was significant in both years of the investigation; the AUDPC was reduced by an average of 37% in 1997 and 36% in 1998, compared with the mean disease level for the potato genotypes grown separately. Though the evidence for influence of inoculum pattern on host-diversity effects was weak (P = 0.15), in both years there was a trend toward greater host-diversity effects for general inoculation. Statistical significance of host-diversity effects on tuber yield and blight were found only in one of the two years. In that year, tuber yield from both the resistant and susceptible cultivar was increased in mixtures compared with single genotype stands and tuber blight was decreased in mixtures for susceptible cv. Red LaSoda.  相似文献   

14.
In this study, the influence of potato cultivars Irga, Satina, Valfi, Blaue St. Galler and Highland Burgundy Red (HB Red), growth regulators: Bio-Algeen S?90, Kelpak SL and Trifender WP, and the biostimulator Asahi SL on the health status of potato plants and tuber yield was investigated. The severity of late blight and early blight was estimated during the growing season. After harvest, potato tuber yield was determined according to size fractions. The applied treatments significantly reduced the severity of late blight in cv. Irga (Kelpak SL), Valfi (Bio-Algeen S-90, Kelpak SL, Trifender WP) and Blaue St. Galler (Trifender WP) in 2013. In 2015, the symptoms of early blight were significantly reduced in cv. Irga after the application of all tested bioregulators. HB Red was characterized by the best health status among the evaluated cultivars. Kelpak SL and Bio-Algeen S-90 increased the tuber yield of cvs. Irga and HB Red, respectively, in 2013, and Trifender WP increased the tuber yield of cv. Satina in 2014. In the first year of the study, the applied growth regulators and biostimulator significantly increased the percentage of medium-sized tubers of cv. Blaue St. Galler, and Bio-Algeen S-90 increased the percentage of medium-sized tubers of cv. HB Red.  相似文献   

15.
Potato mop-top virus (PMTV) causes disease in both the growing plant and tubers (spraing) of potato and is transmitted by the plasmodiophorid Spongospora subterranea , the cause of powdery scab. The effect of temperature during plant growth on the transmission of PMTV from infected seed tubers and from infested growing media was investigated in a series of glasshouse experiments. Symptoms developed on foliage of plants derived from infected seed tubers but none developed when PMTV was transmitted by S. subterranea in soil. The incidence of foliar symptoms was greatest on plants grown at 12°C, less at 16°C, few at 20°C and absent at 24°C. The transmission of PMTV from infected seed tubers was not significantly affected by temperatures between 12 and 24°C, but when the virus was transmitted by S. subterranea , minimal tuber infection occurred at 24°C and no differences were recorded at temperatures between 12 and 20°C. The incidence of powdery scab on tubers was greatest at 12 and 16°C and very low at 20 and 24°C. However, the incidence and severity of root galling caused by S. subterranea , was greatest at 20 and very low at 24°C. The incidence of powdery scab was greater on tubers of plants derived from infected seed tubers grown in a fluctuating temperature regime of 12 h at 20°C followed by 24 h at 12°C than on those grown at a constant 20°C, whereas the incidence of tuber infection by PMTV and spraing was similar for both regimes. This demonstrates that infection of roots can occur at a higher temperature than that for powdery scab on tubers and that this root infection can enable the transmission of PMTV into the potato plant.  相似文献   

16.
Three metalaxyl-sensitive (MS, wild type) and three metalaxyl-resistant (MR) field isolates of Phytophthora infestans were compared, in the absence of metalaxyl, for non-competitive and competitive fitness on potato leaf and tuber tissues. When inoculated singly onto intact plants MR isolates produced larger lesions in leaflets than MS isolates, but no significant differences were recorded in infection frequency or sporulation capacity. When mixtures of MS and MR isolates were inoculated onto intact plants, all MR isolates exhibited a strong competitive ability: their proportion increased in the sporangial populations from 10 to 100% after eight to 10 sporulation cycles. In contrast, when mixtures were inoculated onto detached leaflets or tuber slices in a moisture-saturated atmosphere, only MR2 was a strong competitor; MR1 was a weak and MR3 a moderate competitor. The results showed that in intact plants all MR isolates were able to compete successfully with their MS partner isolates, because of the larger lesions they produced and the unlimited availability of host tissue. However, in detached tissues only MR2 was able to compete successfully with MS2, because of its higher infection and sporulation capabilities compared to MS2. The results explain the severe MR-induced late blight epidemics in potato crops in Israel.  相似文献   

17.
In order to replace copper fungicides in organic potato production, 53 copper-free preparations (CFPs) based on natural compounds, including plant extracts and microorganisms, and five copper preparations were evaluated for their potential to control Phytophthora infestans, the pathogen that causes late blight of potatoes. In in vitro assays, 30% of the CFPs inhibited indirect germination of sporangia, 26% mycelial growth and in growth chamber experiments, 21% efficiently reduced foliar blight of tomato plants. In micro-plot field trials with applications twice a week, the copper preparations were the most effective and reduced foliar blight by 99%. Of the CFPs tested, Oekofluid P, Mycosin and other sulphuric clays, and C-2000 reduced late blight the most, from 63% to 37%. In small-plot trials in 2001, 2002 and 2004, 27 CFPs with different formulations and four copper preparations were examined. In 2004, copper preparations at full and reduced rates and sulphuric clays were applied either weekly or according to the decision support system Bio-PhytoPRE. With Bio-PhytoPRE, copper preparations reduced foliar blight of potatoes by 23–77% and increased tuber yield by 2–28%, depending on the copper rate applied and year. With CFPs, maximal efficacy was 17% and no effect on tuber yield was observed. In vitro and in vivo trials showed that the rainfastness and the persistence of CFPs was low compared with copper preparations. This indicates that the failure of CFPs under field conditions is probably due to a lack of stability under prevailing environmental conditions and not to a lack of efficacy. Until stable formulations for CFPs are developed, an optimised and restricted use of copper fungicides using a decision support system could help to control late blight in organic potato production and to reduce copper input into the environment.  相似文献   

18.
The incidence of potato pathogens on healthy roots of micropropagated (MP) and seed tuber (ST) plants was examined on successive dates during the growing season in two field experiments. Microplants were grown in a glasshouse for 4–5 weeks in perlite or peal-based substrates, and exposed or not to natural inoculum before planting in the field. The seed tubers originated from stocks of visually clean or moderately blemished tubers and were surface-sterilized or not before planting. Polyscytalum pustulans and Helminthosporium solani only infected roots of ST plants and inoculated MP plants. The incidence of P. pustulans was affected by seed tuber-borne inoculum and, in I year, by the substrate. H. solani was detected infrequently on roots. Rhizoctonia solani was present at low frequencies in most root samples, and more ST than MP plant roots were colonized; there were no substrate effects. In 1 year, increased inoculum levels increased root infection, but only in MP roots. Colletotrichum coccodes occurred at high frequencies and was most common in roots of ST plants. Progeny tubers showed some treatment effects when tested in September and after storage for 6 months, but there were no consistent relationships between root and progeny tuber infection.  相似文献   

19.
ABSTRACT Natural potato late blight epidemics were studied to assess the relative impact of various inoculum sources of Phytophthora infestans in Southern Flevoland (the Netherlands) from 1994 through 1996. Disease surveys were combined with characterization of isolates for mating type and DNA fingerprint pattern using probe RG57. Seventy-four percent of the commercial potato fields with early foci were clearly associated with nearby infested refuse piles. Characterization of isolates from refuse piles and fields confirmed the association. Infected seed tubers, volunteer plants, and infested allotment gardens appeared to be of minor importance for late blight development in potato fields. Several foci in refuse piles, potato fields, and allotment gardens contained more than one genotype. Due to favorable weather in August 1994, infested organic potato fields became major inoculum sources, resulting in the spread of P. infestans to adjacent conventional potato fields. Analyses of disease gradients, both at the field and regional levels, confirmed the role of the organic fields as mid-season infection sources. The mean slope of field gradients downwind of refuse piles (point sources) was significantly steeper (100-fold difference) than the mean slope of field gradients downwind of organic fields (area sources). The genotypic composition of the P. infestans populations along the gradient and of the source populations in the organic potato crops did not differ significantly. Analysis of the region gradient revealed genotype-specific disease gradients. Control measures are recommended.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号