首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purple coneflower plants showing leaf reddening and flower abnormalities were observed in South Bohemia (Czech Republic). Transmission electron microscopy observations showed phytoplasmas in sieve cells of symptomatic plants but not in healthy ones. Polymerase chain reactions with universal and group specific phytoplasma primers followed by restriction fragment length polymorphism analyses of 16S rDNA allowed us to classify the detected phytoplasmas into the X-disease group, ribosomal subgroup 16SrIII-B. Sequence analyses of the 16S-23S ribosomal operon (1684 bp), ribosomal protein L15, and protein translocase genes (1566 bp) confirmed the closest relationship with phytoplasmas belonging to the 16SrIII ribosomal group, specifically the 16SrIII-B subgroup. The current study reports purple coneflower as a new host for the X-disease phytoplasma group in the Czech Republic and worldwide.  相似文献   

2.
广东枣疯病植原体的鉴定   总被引:1,自引:1,他引:0  
Several jujube plants with witches′ broom, little leaf, and big bud symptoms, which were likely infected by jujube witches′ broom (JWB) phytoplasma, were collected in Guangzhou, Guangdong Province. To identify the pathogen, PCR was performed using phytoplasma 16S rDNA universal primer pairs R16mF2/R1 and P1/P7 and SecA gene primer pair SecAfor1/rev3 with total DNA of the symptomatic plants as templates. Specific fragments, 1.4 kb, 1.8 kb, and 0.8 kb in length, were amplified from one of three symptomatic samples. Phylogenetic analysis based on 16S rDNA verified that the pathogen harming jujube plants in Guangzhou was jujube witches′ broom phytoplasma which belonged to 16SrV-B subgroup. Comparison results also showed that the 16S rDNA sequence of Guangzhou JWB phytoplasma shared the highest nucleotide identity (100%) with the reported jujube witches′ broom phytoplasma Japanese strain (AB442218) and JWB strain (AY197661) and shared the nucleotide identity ranging from 99.74% to 99.80% with the other JWB phytoplasma strains. In addition, phylogenetic analysis based on SecA also showed that Guangzhou jujube witches′ broom phytoplasma belonged to 16SrV-B subgroup and shared 99.28%-99.76% similarity with other phytoplasma strains. All these results suggested that jujube witches′ broom phytoplasma has infected jujube plants in Guangdong Province.  相似文献   

3.
Peach (Prunus persica L.) plants with symptoms of yellowing, reddening, curling and leaf necrosis, premature defoliation and internode shortening were observed in production fields in Jujuy province (Argentina). A phytoplasma was detected by PCR using the universal primer pairs P1/P7 and R16F2n/R16R2 in all the symptomatic samples analysed. The RFLP profile of PCR products, amplified with R16F2n/R16R2 primers, shows that this phytoplasma, named Argentinean Peach Yellows (ArPY), belongs to subgroup 16Sr III-B. The phylogenetic analysis of the 1244 bp 16S rDNA cloned sequence, grouped the ArPY phytoplasma into the X-disease group with a closer relationship with CFSD, PssWB and ChTDIII phytoplasmas. This is the first report of a phytoplasma infecting peach trees in Argentina.  相似文献   

4.
Polymerase chain reaction (PCR) assays were used to detect phytoplasmas in foliage samples from Chinaberry ( Melia azedarach ) trees displaying symptoms of yellowing, little leaf and dieback in Bolivia. A ribosomal coding nuclear DNA (rDNA) product (1·8 kb) was amplified from one or more samples from seven of 17 affected trees by PCR employing phytoplasma-universal rRNA primer pair P1/P7. When P1/P7 products were reamplified using nested rRNA primer pair R16F2n/R16R2, phytoplasmas were detected in at least one sample from 13 of 17 trees with symptoms. Restriction fragment length polymorphism (RFLP) analysis of P1/P7 products indicated that trees CbY1 and CbY17 harboured Mexican periwinkle virescence (16SrXIII)-group and X-disease (16SrIII)-group phytoplasmas, respectively. Identification of two different phytoplasma types was supported by reamplification of P1/P7 products by nested PCR employing X-disease-group-specific rRNA primer pair R16mF2/WXint or stolbur-group-related primer pair fSTOL/rSTOL. These assays selectively amplified rDNA products of 1656 and 579 bp from nine and five trees with symptoms, respectively, of which two trees were coinfected with both phytoplasma types. Phylogenetic analysis of 16S rDNA sequences revealed Chinaberry yellows phytoplasma strain CbY17 to be most similar to the chayote witches'-broom (ChWBIII-Ch10) agent, a previously classified 16SrIII-J subgroup phytoplasma. Strain CbY1 resembled the Mexican periwinkle virescence phytoplasma, a 16SrXIII-group member. The latter strain varied from all known phytoplasmas composing group 16SrXIII. On this basis, strain CbY1 was assigned to a new subgroup, 16SrXIII-C.  相似文献   

5.
Previously undescribed phytoplasmas were detected in diseased plants of dandelion (Taraxacum officinale) exhibiting virescence of flowers, thistle (Cirsium arvense) exhibiting symptoms of white leaf, and a Gaillardia sp. exhibiting symptoms of stunting and phyllody in Lithuania. On the basis of restriction fragment length polymorphism (RFLP) analysis of 16S rDNA amplified in PCR, the dandelion virescence (DanVir), cirsium whiteleaf (CirWL), and gaillardia phyllody (GaiPh) phytoplasmas were classified in phylogenetic group 16SrIII (X-disease phytoplasma group), new subgroups III-P and III-R and subgroup III-B, respectively. RFLP and nucleotide sequence analyses revealed 16S rRNA interoperon sequence heterogeneity in the two rRNA operons, rrnA and rrnB, of both DanVir and CirWL. Results from phylogenetic analysis based on nucleotide sequences of 16S rDNA were consistent with recognition of the two new subgroups as representatives of distinct new lineages within the group 16SrIII phytoplasma subclade. The branching order of rrnA and rrnB sequences in the phylogenetic tree supported this interpretation and indicated recent common ancestry of the two rRNA operons in each of the phytoplasmas exhibiting interoperon heterogeneity.  相似文献   

6.
Winter oilseed rape grown in several areas in South Bohemia showed symptoms of stunting, leaf reddening and extensive malformation of floral parts. Phytoplasmas were consistently observed by using electron microscopy only in phloem tissue of symptomatic plants. DNA isolated from infected and healthy control plants was used in PCR experiments. Primer pairs R16F2/R2, P1/P7 and rpF2/R2, amplifying, respectively, 16S rDNA, 16S rDNA plus spacer region and the beginning of the 23S and ribosomal protein gene L22 specific for phytoplasmas, were used. According to RFLP and sequence analyses of PCR products, the phytoplasma from rape was classified in the aster yellows phytoplasma group, subgroup 16SrI-B. The PCR products from the Czech phytoplasma-infected rape also had RFLP profiles identical to those of phytoplasma strains from Italian Brassica . This first molecular characterization of phytoplasmas infecting rape compared with strains from Brassica does not, however, clearly indicate differences among isolates of the same 16SrI-B subgroup. Further studies on other chromosomal DNA portions could help the research on host specificity or on geographical distribution of these phytoplasmas.  相似文献   

7.
Flax plants (Linum usitatissimum) of the white (album) flower variety exhibiting typical phytoplasma-like symptoms were found for the first time in Pakistan during 2011. The symptoms included floral virescence, phyllody, little leaf, stunting and stem fasciation. Light microscopy of hand-cut stem sections treated with Dienes’ stain showed blue areas in the phloem region of symptomatic plants. To confirm phytoplasma infection, total DNA was extracted separately from five plants showing virescence/phyllody and from five others showing fasciation, and was amplified by nested PCR using universal 16S rDNA phytoplasma primers P1/P7 followed by R16F2n/R16R2. All samples from plants with virescence/phyllody and fasciation yielded a 1,250 bp PCR product, and identical RFLP profiles using the enzymes AluI and HpaII. Direct sequencing of the 16S rDNA of one representative PCR amplicon (GenBank Accession No. JX567504 for phyllody and Accession No. JX567505 for fasciation) showed highest sequence identity (99%) with 16SrII ‘Candidatus Phytoplasma aurantifolia’ phytoplasmas, and phylogenetic analysis placed the phytoplasma in subgroup 16SrII-D. Disease was successfully transmitted by grafting and by the leafhopper Orosius albicinctus. To our knowledge, flax is a new natural host for 16SrII-D phytoplasmas in Pakistan.  相似文献   

8.
小麦蓝矮植原体寄主范围的鉴定及RFLP分析   总被引:6,自引:0,他引:6  
 小麦蓝矮是我国首次报道的小麦植原体病害。采用介体接种植物,症状观察和应用植原体16S rDNA基因通用引物对R16mF2/R16mR1进行PCR扩增,在接种小麦和传毒介体中均扩增出1.4kb的特异片段,鉴定出小麦蓝矮植原体新寄主7种。用巢式PCR方法对小麦蓝矮病田自然发病杂草进行分子检测,从表现症状的10种杂草中均扩增出1.2kb的特异片段。利用6种植原体特异性限制性内切酶对10种杂草的扩增片段进行RFLP(restriction fragment length polymor-phism)分析表明:扩增片段的RFLP图谱与目前已知的16Sr I组翠菊黄化植原体的RFLP图谱相近。鉴定出小麦蓝矮植原体田间自然新寄主10种。  相似文献   

9.
California privet (Ligustrum ovalifolium Hassk.) plants exhibiting leaf yellowing, witches’ broom, dieback and decline symptoms were observed for two years (2010–2011) in three gardens at Adana region (Turkey). DNA isolated from symptomatic and healthy plants was used to amplify 16S rDNA fragments by direct and nested-PCR. Phytoplasmas were detected in 21 symptomatic plants, out of 30 samples collected, whilst no PCR amplifications were obtained from asymptomatic plants. BLAST analysis of the 16S rDNA showed that the phytoplasma found in L. ovalifolium from Turkey, denoted as Turkish Ligustrum witches’ broom phytoplasma (TuLiWB), most closely resembled members of group 16SrII (peanut witches’ broom group) and shared up to 92 % sequence identity. Based on in silico 16S rDNA RFLP analysis and automated calculation of the pattern similarity coefficient, TuLiWB showed molecular characteristics different from all previously described phytoplasma species to represent a new taxon. Similar indication also emerged from the phylogenetic tree which allocated it in a novel discrete subclade within the phytoplasma clade. This is the first report on the presence of a phytoplasma affecting L. ovalifolium and whether this novel phytoplasma is the same agent reported as a mycoplasma-like organism (MLO) and associated with witches’ broom disease of Ligustrum in Korea (1989) is yet to be determined.  相似文献   

10.
Twelve Argentinean 16SrIII (X-disease)-group phytoplasma strains were analyzed. Ten of them, detected in daisy (Bellis perennis), garlic (Allium sativum), ‘lagaña de perro’ (Caesalpinia gilliesii), periwinkle (Catharanthus roseus), ‘rama negra’ (Conyza bonariensis), ‘romerillo’ (Heterothalamus alienus), summer squash (Cucurbita maxima var. zapallito) and tomato (Solanum lycopersicum), are new phytoplasma strains while two strains, detected in garlic and China tree (Melia azedarach), have been previously described. The plants showed typical symptoms of phytoplasma diseases, such as leaf size reduction, proliferation, stunting and virescence. The identification and genetic diversity analysis of the phytoplasmas were performed based on 16S rDNA and ribosomal protein gene sequences. The classification into 16Sr groups and subgroups was established by actual and virtual RFLP analysis of the PCR products (R16F2/R16R2) compared with reference strains. According to the classification scheme, strains HetLL and ConWB-A and B represent two new subgroups 16SrIII-W and X, respectively. On the other hand, strains CatLL, TomLL and CaesLL are related to subgroup 16SrIII-B, and strains BellVir, TomRed, CucVir and GDIII-207 are related to subgroup 16SrIII-J. Ribosomal protein genes were amplified using primers rpF1/rpR1 and rpIIIF1/rpIIIR1. RFLP analysis performed with AluI, DraI and Tru1I (MseI isoschizomer) distinguished three new rp profiles within subgroup 16SrIII-B, one for subgroup 16SrIII-J, and one shared with strains of the new subgroups 16SrIII-W and X. The phylogenetic analysis based on 16S rDNA and ribosomal protein gene sequences confirmed the separation of HetLL and ConWB strains in two new subgroups and the close relatedness among subgroup J phytoplasmas, which have been detected only in South America.  相似文献   

11.
A disease on parthenium weed (Parthenium hysterophorus L.) was observed in June 2008 in Danzhou of Hainan Province. Infected weeds showed phytoplasma-like associated symptoms such as severe stunting, excessive proliferation of shoots, inflorescence-clustering, green petal, small leaves and witches’-broom. The original cause of phytoplasma was further confirmed by polymerase chain reaction (PCR). PCR products of 1.8 kb were obtained using the universal primers pair (P1/P7) designed to amplify the entire 16S rDNA and the 16/23S intergenic spacer region in a direct PCR assay. The primers pair R16F2n/R2 was used to amplify a PCR product of 1.2 kb. Restriction fragment length polymorphism (RFLP) was used to analyze the partial 16S rDNA sequences (1.2 kb) of all phytoplasma DNA digested with five endonucleases (Kpn I, Hpa II, Taq I, Rsa I, EcoR I). The RFLP patterns of the strain were found to be identical with that of the reference peanut witches’-broom phytoplasma. Based on the RFLP data, it is suggested that the phytoplasma strain belongs to subgroup 16SrII-A. This is the first demonstration of a 16SrII-A group phytoplasma associated with parthenium weed.  相似文献   

12.
本研究对河北省大面积发生的金莲花绿变病的病原进行检测和鉴定。以金莲花叶片的总DNA为模板,使用植原体16S rDNA和核糖体蛋白(ribosomal protein)基因rp的特异性引物进行PCR扩增,在感病金莲花样品中扩增到植原体的16S rDNA(1 432 bp)片段和rp基因(1 240 bp)片段。序列分析发现,获得的16S rDNA和rp基因片段与洋葱黄化植原体Onion yellows phytoplasma(GenBank登录号:AP006628)的相似度最高,分别为99.9%和99.3%,确定金莲花绿变病的病原为植原体,暂命名为金莲花绿变植原体Trollius chinensis virescence phytoplasma。对金莲花绿变植原体的16S rDNA进行虚拟RFLP分析,发现其酶切图谱与16SrⅠ-B亚组的洋葱黄化植原体的参照图谱完全一致,相似系数1.00。16S rDNA和rp基因的系统发育进化树显示,金莲花绿变植原体与16SrⅠ-B亚组的植原体聚为一支,属于植原体16S rⅠ-B亚组。  相似文献   

13.
安徽桑黄花型萎缩病植原体16S rDNA序列分析及分子检测   总被引:1,自引:0,他引:1  
 Mulberry yellow dwarf(MYD)disease is an quarantine disease and the causal agent is a phytoplasma.Two pairs of published universal primer, P1/P7 and Rm16F2/Rm16R1, based on the 16S-23S rDNA sequence of phytoplasma and total DNA extracted from infected mulberry tissues were employed for PCR and nested-PCR detection.The results revealed that a phytoplasma-specific 1 830 bp fragment with a G+C content of 46.01% was sequenced(GenBank accession No.GQ249410).The sequence shared 99.7% and 99.8% identity with aster yellows, the representatiive phytoplasma in 16SrI group, and mulberry dwarf phytoplasma classified into subgroup B in 16SrI group and named as the MYD phytoplasma strain Anhui(MYD-Anh).A phylogenetic tree based on 16S rDNA sequences was constructed and showed that MYD-Anh was clustered into 16SrI group.Identity of 16S rDNA sequence between MYD-Anh and mulberry yellow dwarf phytoplasma strain Zhenjiang(MD-zj) was nearly 100%, and they might belong to the same strain.Nested-PCR was used to detect the pathogenic phytoplasma from the differential tissues of mulberry infected with MYD-Anh.The results showed that a phytoplasma-specific 1.4 kb fragment was amplified with total DNA extracted from bark and vein.Nested-PCR was more sensitive than PCR for detecting MYD phytoplasma.  相似文献   

14.
利用植原体16S rDNA基因通用引物对新疆轮台县疑似杏褪绿卷叶病植株总DNA进行巢氏PCR检测,扩增出大小约1.2 kb的特异性条带。对扩增产物克隆和测序,确定特异片段大小为1248 bp。序列同源性比较和系统进化分析表明,新疆杏褪绿卷叶植原体不同分离株16S rDNA基因序列同源性极高,达到99.8%~100%。与16SrⅤ组成员的同源性达到98.2%以上,其中与16SrⅤ-B亚组的枣疯病植原体山东宝山分离株,甜樱桃绿化植原体山东分离株同源性最高,达到99.4%~99.6%。进一步虚拟RFLP分析,结果表明该植原体属于榆树黄化组(16SrⅤ)的一个新的亚组,与其相似性最高的是16SrⅤ-B亚组,相似系数为0.94。本研究首次报道了新疆杏褪绿卷叶植原体16S rDNA的序列,确定了其分类地位,为杏褪绿卷叶病的早期诊断和检测提供了基础。  相似文献   

15.
 对仙人掌丛生幼嫩组织进行超薄切片电镜观察,在韧皮部筛管中存在大量植原体;根据植原体16S rRNA基因保守序列设计的通用引物对R16 F2/R2,应用PCR技术对仙人掌丛枝病进行分子检测,结果扩增到约1.2 kb的特异性片段,而在健康组织中却没有此特异片段;通过16S rDNA片段核酸序列同源性比较,结果表明仙人掌丛枝病植原体与花生丛枝病植原体亲缘关系最近,据此可初步判断仙人掌丛枝病植原体是一种属于16Sr Ⅱ组的植原体,基本确定了其分类地位。  相似文献   

16.
Okra plants with bunchy top disease were found to be prevalent during the period of August–October 2009 in New Delhi, India. The common symptoms observed were shortening of internodes, aggregation of leaves at the apical region, reduced leaf lamina, stem reddening, fruit bending, phyllody and stunting of plants. The disease incidence ranged from 2–60% accompanied by significant reductions in production of both flowers and seeds. Nested polymerase chain reaction targeting phytoplasma specific 16S rDNA and rp genes revealed all symptomatic plants to be positive for phytoplasma. Homology searches depicted its closest identity to phytoplasmas of 16SrI ‘Candidatus Phytoplasma asteris’, like the Sugarcane yellows and Periwinkle phyllody phytoplasmas. Profiles for 16S rDNA obtained with 10 restriction endonucleases, differed in TaqI sites for two phytoplasma isolates (BHND5 & 10) from the standard pattern of 16SrI-B subgroup, the latter was seen in the case of isolate BHND1. Restriction fragment analysis of rp genes with AluI, Tsp509I matched with patterns of the rpI-B phytoplasmas. Phylogenetic reconstruction of rp genes revealed okra bunchy top phytoplasma (BHND1) as a divergent isolate, the subsequent sequence analysis of which showed the presence of a novel BslI site. These significant differences suggest that multiple phytoplasma strains are affecting okra, one of which is a diverging lineage within the 16SrI-B group while others represent a new 16SrI subgroup not reported so far. Additionally, this is the first report of a phytoplasma associated disease in okra plants worldwide.  相似文献   

17.
A new disease of tomato plants with typical phytoplasma disease symptoms such as stunting, yellows, auxiliary shoot proliferation and phyllody was observed in Yunnan Province, southwest China in 2011. By a nested-PCR, phytoplasma were detected using the phytoplasma universal primers specific for 16S rDNA. The results of the 16S rDNA sequencing, computer-simulated RFLP patterns and phylogenetic analysis indicated that the phytoplasma associated with the diseased tomato plants belongs to subgroup A of the peanut witches’-broom group. This is the first report of a 16SrII-A phytoplasma associated with a new tomato disease in China. This new disease was named tomato yellows.  相似文献   

18.
樱桃花变绿病植原体的分子鉴定   总被引:1,自引:0,他引:1  
 植原体(phytoplasma)是一类没有细胞壁,不能人工培养,存在于植物筛管细胞中的类似植物病原细菌的原核生物。迄今为止,世界各地报道的1 000余种植物病害与植原体有关,引起的症状主要包括丛枝、黄化、花变绿、花变叶、花器退化等。  相似文献   

19.
滇朴Celtis kunmingensis Cheng et Hong是云南的乡土树种,适宜全国大部分地区种植,极具观赏价值,是近年来最热门的绿化首选树种―绿化行道树,云南部分地区滇朴近年常表现丛芽的症状。本研究采用形态学与分子生物学结合的方法,对染病的幼嫩枝条进行扫描电镜(SEM)观察;利用16S rDNA植原体通用引物P1/P7和R16F2/R16R2进行常规PCR和巢式PCR,分别获得1.8 kb和1.2 kb的特异性基因片段,将该特异性片段与其他已知分类地位的植原体16S rDNA片段进行同源性比对分析,同时利用邻接法(NJ)构建系统发育树。结果表明在染病的滇朴韧皮部组织中可见植原体存在,滇朴丛芽病植原体与芝麻叶状植原体同源性高达99.40%,通过系统发育树可进一步推测滇朴丛芽病植原体是属于16SrⅠ-B亚组成员,本研究结果为该病害的诊断与防治提供了理论依据。  相似文献   

20.
Russian olive trees (Elaeagnus angustifolia) showing witches’ broom symptoms typical of phytoplasma infection were observed in the Urmia region of Iran. A phytoplasma named Russian olive witches’ broom phytoplasma (ROWBp-U) was detected from all symptomatic samples by amplification of the 16S rRNA gene and 16S/23S rDNA spacer region using the polymerase chain reaction (PCR) which gave a product of expected length. DNA from symptomless plants used as a negative control yielded no product. The sequence of the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U showed 99% similarity with the homologous genes of members of the aster yellows group. We also detected a phytoplasma in neighboring alfalfa plants (AlWBp-U) showing severe witches’ broom symptoms. An 1107 bp PCR product from the 16S rRNA gene showed 99% homology with the corresponding product in ROWBp-U, suggesting the presence of the same phytoplasma actively vectored in the area. Further observations showed that Russian olive trees with typical ROWB symptoms were present in an orchard near Tehran which is located over 530 km south-east of the original Urmia site. The corresponding sequence of this phytoplasma (ROWBp-T) showed 99% homology to that of the ROWBp-U. A sequence homology study based on the 16S rRNA gene and 16S/23S rDNA spacer region of ROWBp-U and other phytoplasmas showed that ROWBp-U is most closely related to the 16SrI group. To our knowledge, this is the first report of a phytoplasma infection in a member of the Elaeagnaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号