首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了探讨新疆冬小麦品种Pins基因等位变异对小麦磨粉品质和新疆拉面加工品质的影响,对109份新疆冬小麦品种的籽粒硬度及其Pins基因等位变异、磨粉品质和新疆拉面加工品质进行测定,初步分析了新疆冬小麦品种资源籽粒硬度Pins基因的分布规律以及不同 Pins基因等位变异对籽粒硬度、磨粉品质和新疆拉面加工品质的影响。结果表明,新疆冬小麦品种属硬质麦类型,Pins基因型以 Pina-D1a Pinb-D1b Pina-D1a/ Pinb-D1b为主, Pins突变类型及Pins突变基因型组合类型小麦的籽粒硬度均显著高于野生型, Pinb-D1a基因型小麦的籽粒硬度最低,L*值和a*值最高,b*值最低; Pinb-D1ab基因型小麦的吸水率最高。不同Pins基因型组合中,野生型小麦的籽粒硬度、b*值和吸水率最低; Pina-D1a/ Pinb-D1aa的出粉率最高, Pina-D1a/ Pinb-D1ab的灰分含量最低,吸水率最高。Pins基因及其基因型组合对新疆拉面加工品质无直接影响,主要通过对灰分、面粉色泽和吸水率等磨粉品质的作用对新疆拉面产生间接影响。优质新疆拉面品种中,Pinb基因突变对新疆拉面加工品质的影响大于Pina基因突变,育种中应优先选择Pinb 基因突变型材料,其中 Pina-D1a/ Pinb-D1b可以作为重点选择的基因型组合。  相似文献   

2.
3.
The Hardness locus on the short arm of chromosome 5D is the main determinant of grain texture in bread wheat. The Pina and Pinb genes are tightly linked at this locus, and the soft kernel texture phenotype results when both genes are present and encode the wild-type puroindoline proteins PINA and PINB. In this study a compensating T5VS•5DL Triticum aestivum-Haynaldia villosa translocation line, NAU415, was characterized by chromosome C-banding, genomic in situ hybridization and molecular markers. Single Kernel Characterization System (SKCS) analysis and scanning electron microscopy indicated that NAU415 had soft endosperm although it lacked the wheat Pina-D1a and Pinb-D1a genes, suggesting the presence of functional Pin gene orthologs on chromosome 5VS. Using a PCR approach, Pina-related (designated Dina) and Pinb-related (Dinb) genes in H. villosa and NAU415 were identified and sequenced. The nucleotide and predicted amino acid sequences showed close similarities to the wild-type puroindolines of T. aestivum cv. Chinese Spring. The tryptophan-rich regions of both Dina and Dinb showed a sequence change from lysine-42 to arginine, a feature that may have an effect on grain texture. The potential of T5VS•5DL translocation line as a source of genes that may be used for modulation of endosperm texture and other valuable traits in wheat breeding is discussed.  相似文献   

4.
Kernel hardness is mainly conditioned by allelic variations of Pina-D1 and Pinb-D1 genes located on the short arm of chromosome 5D. In this work, the Ecotilling approach was optimized to investigate Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm, and three Pina and eight Pinb alleles were found. Generally, more Pinb alleles were detected in the accessions coming from the regions that grow winter or a mixture of spring and winter wheats. This was particularly evident for the Southwestern winter wheat, Xinjiang winter–spring wheat and Yellow and Huai River Valley winter wheat regions. A novel variant (designated as Pinb-D1x) was discovered in one of the accessions from the Xinjiang winter–spring wheat region. Compared to wild type (WT) allele Pinb-D1a, two nucleotide substitutions occurred in the coding region of Pinb-D1x, one (at nucleotide position 257) resulting in the replacement of a WT cysteine residue by tyrosine and the other (at nucleotide position 382) creating a premature stop codon. The implications of our data to understanding the diversity of Pina and Pinb alleles in wheat and to future molecular breeding of wheat kernel hardness are discussed.  相似文献   

5.
Kernel hardness is mainly conditioned by allelic variations of Pina-D1 and Pinb-D1 genes located on the short arm of chromosome 5D. In this work, the Ecotilling approach was optimized to investigate Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm, and three Pina and eight Pinb alleles were found. Generally, more Pinb alleles were detected in the accessions coming from the regions that grow winter or a mixture of spring and winter wheats. This was particularly evident for the Southwestern winter wheat, Xinjiang winter–spring wheat and Yellow and Huai River Valley winter wheat regions. A novel variant (designated as Pinb-D1x) was discovered in one of the accessions from the Xinjiang winter–spring wheat region. Compared to wild type (WT) allele Pinb-D1a, two nucleotide substitutions occurred in the coding region of Pinb-D1x, one (at nucleotide position 257) resulting in the replacement of a WT cysteine residue by tyrosine and the other (at nucleotide position 382) creating a premature stop codon. The implications of our data to understanding the diversity of Pina and Pinb alleles in wheat and to future molecular breeding of wheat kernel hardness are discussed.  相似文献   

6.
Puroindoline genotypes (Pina and Pinb) and their encoded proteins related to grain hardness were studied in various common wheat cultivars from Australia, China, Japan, Korea and North America. Most of the hard wheats had the Pinb-D1b genotype with a glycine to serine mutation at position 46. In addition to the known Pina and Pinb genotypes, cultivars were found with Pina and Pinb double-null mutations (Pina-D1b/Pinb-D1h (t)) and a new Pinb frameshift mutation (designated Pinb-D1i (t)) within the region encoding a tryptophan-rich domain. This new Pinb frameshift mutation was found only in Chinese cultivars. Endosperm proteins encoded by Pina and Pinb in these cultivars were analysed by 2D-gel electrophoresis (IPG×SDS-PAGE). Cultivars with Pina and Pinb double-null mutations showed no PIN-a or PIN-b protein, and cultivars with Pinb-D1i (t) had no PIN-b protein. Surprisingly, cultivars with Pinb-D1b had severely reduced amounts of PIN-b and cultivars with Pinb-D1c showed no PIN-b proteins. Grain hardness among cultivars having mutated Pinb may be explained by the amount of PIN-b protein and not by the type of amino acid substitutions.  相似文献   

7.
为了解江苏淮北地区小麦品种资源的籽粒硬度概况及硬度基因型分布规律,以74份近年来江苏淮北地区所育品种(系)和38份来自黄淮其他麦区的常用亲本为材料,采用单籽粒谷物硬度测试仪、KASP标记检测技术和基因扩增及测序技术对其SKCS硬度值及硬度基因型进行鉴定。硬度检测结果表明,供试小麦品种(系)硬度变化范围较大,但硬质麦的比例最大,为70.5%。与常用亲本相比,江苏淮北地区育成品种中软质麦比例较高,为34.3%,但在高代品系中软质麦比例下降到20.5%。基因型检测结果表明,在Puroindoline-D1位点,供试品种(系)中共检测到4种基因型,即野生型(Pina-D1a/Pinb-D1a)、Pina-D1b、Pinb-D1b和Pinb-D1p,其频率依次为25.0%、2.7%、67.9%和4.5%。其中,野生型和Pinb-D1p主要分布在江苏淮北地区。不同硬度基因型的硬度值也存在差异,其中以Pina-D1b基因型的硬度值最高,野生型(Pina-D1a/Pinb-D1a)硬度值最低,Pinb-D1b和Pinb-D1p两硬质类型的籽粒硬度没有显著性差异。在Pinb-2位点,供试品种(系)中共检测到25份材料为Pinb-B2b基因型,包含21份硬质麦、2份混合麦和2份软质麦,其平均硬度值为63.8。  相似文献   

8.
Understanding the effects of different alleles at the puroindoline b (Pinb) locus on processing quality will provide crucial information for quality improvement. Seven near-isogenic lines (NILs) planted at two locations in the 2008 cropping season were used to determine the effect of puroindoline b alleles on milling performance and Chinese raw white noodle (CRWN) quality. The Pina-D1b/Pinb-D1a genotype possessed significantly higher values in grain hardness, protein content and starch damage than other genotypes, whereas the Pina-D1a/Pinb-D1d genotype had the lowest grain hardness and starch damage, with higher break flour yield, and less reduction flour yield, higher flour colour L*, and lower flour colour b*, than other genotypes. Farinograph parameters, except for water absorption, were not significantly affected by variation of puroindoline b alleles. Pina-D1a/Pinb-D1e had the highest peak viscosity, whereas the lowest value was observed in a Pina-D1b/Pinb-D1a genotype. For CRWN quality, higher noodle viscoelasticity was obtained in the genotype Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g, whereas Pina-D1a/Pinb-D1d had a lower smoothness score. Genotypes with Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g produced the best total noodle score. It was concluded that genotype Pina-D1a/Pinb-D1d had better milling qualities, whereas Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g had slightly superior CRWN qualities in comparison with other genotypes.  相似文献   

9.
Genetically-diverse wheat samples from the Australian Winter Cereals Collection propagated in two environments were sequenced to identify puroindoline genotypes then the relationships between flour yield, genotype, starch granule size distribution and starch-bound puroindoline protein content were investigated. The Pina-D1a, Pinb-D1b genotype resulted in a higher average flour yield than either the Pina-D1b, Pinb-D1a or the Pina-D1a, Pinb-D1a but the ranges of flour yields for the three genotypes showed considerable overlap. For both hard wheat genotypes (Pina-D1a, Pinb-D1b or Pina-D1b, Pinb-D1a), a higher proportion of type A to type C starch granules was associated with higher flour yield and this relationship accounted for between 31% and 33% of the variation in flour yield. This result is consistent with previously reported findings for soft wheat. For the Pina-D1a, Pinb-D1b genotype, increased flour yield was also associated with a decrease in starch granule-bound puroindoline protein, which accounted for 31–35% of the variation in flour yield across the two environments. The combined effect of starch granule type and associated puroindoline content accounted for 68% of the variation in flour yield within the Pina-D1a, Pinb-D1b genotype.  相似文献   

10.
Kernel hardness is one of the most important characteristics in determining utilization and marketing of bread wheat. Genes coding for puroindoline a and b (PINA and PINB) were located at the Ha locus and designated as Pina-D1 and Pinb-D1, respectively. The coding sequence of the Pinb gene in a Chinese winter wheat cultivar Jingdong 11 (Triticum aestivum L.) was amplified with polymerase chain reaction (PCR), and the obtained 447-bp fragment sequenced from two strands, and compared with the eight known Pinb alleles. The results showed that Jingdong 11 possessed a new Pinb allele not reported previously, and was designated as Pinb-D1q. It is characterized by a single base T to G substitution, which results in a tryptophan to leucine substitution (TGG to TTG) at position 44 and is most likely the cause of hard grain texture in Jingdong 11. The characterization of Pinb-D1 alleles would be helpful in manipulating grain hardness of bread wheat in breeding programs.  相似文献   

11.
Grain hardness is an important quality parameter of bread wheat (Triticum aestivum L.) with importance for wheat classification and end use properties, and is controlled by the genes puroindoline a (Pina) and puroindoline b (Pinb). The presence of known hardness alleles was studied in a representative sample of 373 bread wheat lines from the breeding program at CIMMYT. The PINA-null mutation (Pina-D1b) was the most frequent hardness allele and present in 283 of the 328 lines with hard endosperm. All other hard wheat had the glycine to serine mutation in PINB (Pinb-D1b). A study of historically important CIMMYT bread wheat lines showed that Pina-D1b has been the dominating hardness allele since the inception of the wheat breeding program in Mexico. New puroindoline alleles have recently been introduced through the extensive use of synthetic hexaploid wheat, and the textural effects of various Aegilops tauschii-derived Pina and Pinb alleles were studied in 92 breeding lines derived from various crosses with synthetic wheat. Progeny lines with Pina-D1j/Pinb-D1i were on average 10 SKCS hardness units softer than those carrying the allelic combination Pina-D1c/Pinb-D1h. Further investigation is needed to validate the potential of such minor allelic differences for the improvement of soft wheat quality.  相似文献   

12.
Wheat grain hardness is one of the most important phenotypes related to milling, baking and noodle making. Either a mutation of the Puroindoline-a (Pina) gene or Puroindoline-b (Pinb) gene results in hard grain texture. A deletion mutation of Pina (Pina-D1b) is widely distributed among common wheat cultivars. Although North/South American and Australian cultivars and their descendants have a 15-kbp deletion in common, two new types of deletion mutation were found among Asian wheat cultivars. A 4.4-kbp deletion was found in one Korean and two Chinese wheat cultivars beginning at position +371 within the Pina coding region. The other, a 10.4-kbp deletion, was found in three Chinese and nine Japanese wheat cultivars, including five Japanese landraces, beginning at position −5112. It caused the deletion of the full-length Pina gene. These findings suggest that Asian wheat cultivars are genetically distinct from those in other regions. The 4.4-kbp and 10.4-kbp deletion mutants were designated as Pina-D1r and Pina-D1s, respectively.  相似文献   

13.
Kernel hardness is mainly controlled by one major genetic locus on the short arm of chromosome 5D in bread wheat. Twelve Chinese and CIMMYT wheat cultivars were characterized for the deletion region of Pina-D1b genotype and developing a novel STS marker for this allele. PCR and SDS-PAGE were used to confirm the Pina-D1b genotype, and then 20 pairs of primers were designed to amplify the fragment including deletion region in Pina-D1b genotype by primer walking strategy. An STS marker Pina-N spanning deletion region in Pina-D1b was developed and sequencing results showed that all of 10 Pina-D1b genotypes uniformly possessed a 15,380 bp deletion in comparison with that of Chinese Spring with wild type. This study provided an alternative method to exam Pina-D1b by molecular marker and will accelerate identification of puroindoline alleles in bread wheat.  相似文献   

14.
Genetic and kernel texture relationships between Puroindoline b-2 variants 2 and 3 have not been fully established in wheat (Triticum aestivum L.). Here, 480 F2 plants, derived from three hard spring wheat populations were used to test the segregation of Puroindoline b-2 (Pinb-2) variants 2 and 3. Chi-square analysis indicated that Pinb-2 variants 2 and 3 in all three F2 populations segregated as a single bi-allelic locus, with segregation ratios fitting a 1:2:1 ratio. Using 448 of the 480 plants derived from these three F2 populations, the average SKCS hardness index of plants homozygous for Pinb-2 variant 2 vs. those homozygous for variant 3 was not significantly different (67.5 vs. 67.9). Results indicated that plants with Pina-D1b/Pinb-D1a were on average 10.0 Single Kernel Characterization System (SKCS) hardness index units harder than those carrying the Pina-D1a/Pinb-D1b haplotype. In conclusion, Pinb-2 variants 2 and 3 are allelic and exert little effect on kernel texture in hard-kernel T. aestivum germplasm. Further, the designation of Pinb-2v2 and Pinb-2v3 should be changed to Pinb-B2a and Pinb-B2b, respectively. We propose that Pinb-2 variants 1 and 4 of Chinese Spring be designated Pinb-D2a and Pinb-A2a, respectively.  相似文献   

15.
The closely linked genes puroindoline a (Pina) and puroindoline b (Pinb) control most of the variation in wheat (Triticum aestivum) grain texture. Mutations in either Pina or Pinb result in hard grain with wild type forms of both genes giving soft grain. Asian noodles are prepared from both hard and soft classes of wheat. Our objective was to examine color and texture characteristics of white salted noodles processed from flours of transgenic isolines of Hi-Line hard red spring wheat over expressing Pina-D1a, Pinb-D1a or both and a control giving a range in grain texture from very soft to hard. White salted noodles were prepared and color and texture characteristics were measured. The three softer textured transgenic isolines showed greater change in L* with time than Hi-Line. The noodles were more adhesive (more negative value), firmer, and chewier as the grain texture became successively softer when cooked at 5 min. These texture differences were not as apparent when noodles were cooked for an optimum time. Starch pasting properties did not explain the noodle textural differences. A possible explanation for the noodle texture differences may be related to starch damage which ranged from 2.2% for HGAB to 6.7% for Hi-Line, flour particle size differences and subsequent water absorption differences among the four genotypes. Over expression of puroindolines did not enhance quality of white salted noodles when prepared under these conditions.  相似文献   

16.
为了明确长江中下游麦区小麦籽粒硬度及puroindoline基因型的分布,以该麦区105份小麦育成品种为材料,利用单籽粒硬度仪(SKCS)测定其籽粒硬度,利用分子标记检测和基因序列分析鉴定puroindoline基因的等位变异。结果表明,在长江中下游麦区历年育成的小麦品种中软质麦比例较高,占52.4%,硬质麦和混合麦分别占38.1%和9.5%;硬质麦和混合麦中存在Pinb-D1b、Pina-D1b和Pinb-D1p三种变异类型,突变频率分别为29.5%、10.5%和3.8%。  相似文献   

17.
Two trials with a total of 75 spring bread wheat cultivars and advanced lines, were used to evaluate single kernel characterization system hardness, puroindoline alleles, milling yield, flour ash content, flour colour, and end-use qualities for Chinese noodles, steamed bread and pan bread. The results indicated that all International Maize and Wheat Improvement Center hard wheat lines surveyed were Pina-D1b genotype, whereas Pinb-D1b was the most common allele in the remaining cultivars. Genotypes with Pinb-D1b possess significantly lower flour ash content and higher milling yield than those of genotypes with Pina-D1b. For steamed bread, mean scores for loaf volume, crumb colour, width, structure and total score of Pinb-D1b genotypes were significantly higher than those of genotypes with Pina-D1b and wild type. For Chinese fresh white noodles, means for noodle a*, colour score, viscoelasticity and total score with Pinb-D1b were significantly higher than those of Pina-D1b and wild type. Means of loaf volume, texture and total score for Pinb-D1b genotypes were significantly higher than those of Pina-D1b genotypes. This study further illustrated the superiority of the Pinb-D1b allele on milling and processing qualities for various end products and provides useful information for wheat quality improvement.  相似文献   

18.
Low-molecular-weight glutenin subunits (LMW-GS) play a key role in determining the processing quality of the end-use products of common wheat. The objectives of this study were to identify genes at Glu-A3 locus, develop the STS markers, and establish multiplex PCR with the STS markers for Glu-A3 alleles. Gene-specific PCR primers were designed to amplify six near-isogenic lines (NILs) and Glenlea with different Glu-A3 alleles (a, b, c, d, e, f and g) defined by the protein electrophoretic mobility. Three Glu-A3 genes with complete coding sequence were cloned, designated as GluA3-1, GluA3-2 and GluA3-3, respectively. Seven dominant allele-specific STS (sequence tagged sites) markers were designed based on the SNPs (single nucleotide polymorphisms) among different allelic variants for the discrimination of the Glu-A3 protein alleles a, b, c, d, e, f and g. Four multiplex PCRs were established including Glu-A3b + Glu-A3f, Glu-A3d + Glu-A3f, Glu-A3d + Glu-A3g, and Glu-A3b + Glu-A3e. These markers and multiplex-PCR systems were validated on 141 CIMMYT wheat varieties and advanced lines with different Glu-A3 alleles, confirming that they can be efficiently used in marker-assisted breeding.  相似文献   

19.
青海小麦籽粒硬度等位变异研究   总被引:1,自引:0,他引:1  
为了解小麦品种籽粒硬度的遗传多样性,利用单粒谷物硬度测定、PCR扩增和核苷酸测序技术,分析了66份青海小麦品种籽粒硬度主效基因的等位变异。结果表明,青海小麦以硬质类型为主,比例达到47.0%,混合麦比例为19.7%,软质麦比例为33.3%。硬度基因有5种组合类型:野生型、Pina-D1a/PinbD1b、Pina-D1a/Pinb-D1c、Pina-D1a/Pinb-D1x和Pina-D1b/Pinb-D1a。野生型小麦类型比例最高,占59.09%,SKCS硬度指数平均为44.12,变化范围为12.75~84.89。突变类型的品种籽粒均为硬质。因此,在青海硬质小麦可以通过突变类型的分子标记进行选育,软质小麦选育需在利用硬度基因分子标记筛选的基础上进一步考察籽粒硬度性状的表现型。  相似文献   

20.
Near-isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6–2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8–2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6–2007/8 v. ‘intensive’, I, 2005/6–2010/11). Further experiments at the site (2006/7–2008/9) compared 64 lines of a doubled-haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The GA-sensitive severe-dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号